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PLANAR CUBIC POLYNOMIAL DIFFERENTIAL
SYSTEMS WITH THE MAXIMUM NUMBER
OF INVARIANT STRAIGHT LINES

JAUME LLIBRE AND NICOLAE VULPE

ABSTRACT. We classify all cubic systems possessing the
maximum number of invariant straight lines (real or complex)
taking into account their multiplicities. We prove that there
are exactly 23 topological different classes of such systems.
For every class we provide the configuration of its invariant
straight lines in the Poincaré disc. Moreover, every class is
characterized by a set of affine invariant conditions.

1. Introduction and statement of the main results. We
consider here the real polynomial differential system

dx dy
1 _— = P —_— =
(1) o =Py, =0y
where P, () are polynomials in x, y with real coefficients, i.e., P, Q €
Rz, y]. We shall say that system (1) is cubic if max(deg (P),deg (Q))
=3.

A straight line ux + vy + w = 0 satisfies

U (cii_f +v % =uP(z,y) + vQ(z,y) = (ux + vy + w) R(z,y)
for some polynomial R(z,y) if and only if it is invariant under the flow
of the system. If some of the coefficients u, v, w of an invariant straight
line belong to C \ R, then we say that the straight line is complex;
otherwise the straight line is real. Note that, since system (1) is real,
if it has a complex invariant straight line ux 4+ vy + w = 0, then it also
has its conjugate complex invariant straight line ux + vy + w = 0.

Let

0 0
X = P(z,y) p + Q(z,y) y

be the polynomial vector field corresponding to system (1).
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An invariant straight line f = 0 for a cubic vector field X has
geometric multiplicity m if there exists a sequence of cubic vector fields
X}, converging to X, such that each X, has m distinct invariant straight
lines fi =0,..., fi" =0, converging to f = 0 as k — oo, and this does
not occur for m + 1.

An invariant straight line f = 0 for a cubic vector field X has algebraic
multiplicity m if m is the greatest positive integer such that f™ divides
PX(Q) — @X(P). In [4] it is proved that both notions of multiplicity
coincide. The algebraic definition of multiplicity is very useful for its
computation.

We note that this definition of multiplicity can be applied to the
infinite line Z = 0 in the case when this line is not full of singular
points. So, including the infinite line according with [1] the maximum
number of the invariant straight lines for cubic systems is 9.

In this paper we classify all cubic systems possessing the maximum
number of invariant straight lines taking into account their multiplici-
ties.

Invariant straight lines for quadratic systems have been studied by
Druzhkova [6] and Popa and Sibirskii [16, 17|, for cubic systems by
Liybimova [9, 10], for quartic systems by Sokulski [22] and Xiang
Zhang [23], for some more general systems by Popa [13, 14] and Popa
and Sibirskii [15].

The maximum number of invariant straight lines taking into account
their multiplicities for a polynomial differential system of degree m is
3m when we also consider the infinite straight line, see [1]. This bound
is always reached if we consider the real and the complex invariant
straight lines, see [4].

Using geometric invariants as well as algebraic ones a classification
of all quadratic systems possessing the maximum number of invariant
straight lines taking into account their multiplicities have been made
in [19].

It is well known that for cubic system (1) there exist at most 4
different slopes for invariant affine straight lines, for more information
about the slopes of invariant straight lines for polynomial vector fields,
see [2].
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If a cubic system (1) possesses 9 distinct invariant straight lines we say
that these lines form a configuration of type (3,3,1, 1) if there exist two
triples of parallel lines and two additional lines every set with different
slopes. And we shall say that these lines form a configuration of type
(3,2,2,1) if there exist one triple and two couple of parallel lines and
one additional line every set with different slopes. Note that in both
configurations the straight line which is omitted is the infinite one.

If a cubic system (1) possesses 9 invariant straight lines taking into
account their multiplicities we shall say that these lines form a potential
configuration of type (3,3,1,1), respectively, (3,2,2,1), if there exists a
sequence of vector fields X}, as in the definition of geometric multiplicity
having 9 distinct lines of type (3,3,1,1), respectively, (3,2,2,1).

Consider generic cubic systems of the form:

dx
) = = Po+ 1@ y) + pa(w,y) + pa(w,y) = Pla,y),
2

d

d_lt/ =90+ q1(z,y) + a2(2,9) + a3(z,y) = Qz,y),

with real homogeneous polynomials p; and ¢;, i = 0,1, 2,3, of degree i
in z,y. We introduce the following polynomials:

_9pj 94
D; = Oz + oy’

fori =0,1,2,3 and j = 1,2, 3 which in fact are G L-comitants, see [20].

In order to state our main theorem we need to construct some 7-
comitants and CT-comitants (see [18] for detailed definitions) which
will be responsible for the existence of the maximum number of in-
variant straight lines for system (2). They are constructed by using
the polynomials C; and D; via the differential operator (f,g)®* called
transvectant of index k (see, for example, [7]) which acts on RJa, z, 3]
as follows:

k
k orf kg
(k)ZE _1)h
(f9) (=1) <h> Oxk—hoyh dxhoyk—h"

h=0

Here f(x,y) and g(z,y) are polynomials in x and y and a € R? is the
20-tuple formed by all the coefficients of system (2).
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First we construct the following comitants of second degree with
respect to the coefficients of the initial system:

Ty = (Co, )Y, Tio=(C1,C5)",  Tig = (Co, D)V,
Ty = (Co, C)V, Tiy = (C1,C3)®, Tog = (Co, D3)?,
Ty = (Co, Do)V, Tio = (C1, D3)" | Ty = (D2, Ca)V,
Ty = (Co,C3)V,  Tiz=(C1,D3),  Tap = (D, Dy) "V,
Ts = (Co, D3)M,  Tia = (Co,C2) | Ty = (C3,C5)?
Ts = (C1,C1)?,  Tis = (Co, Do), Toy = (C3,C3)Y,
Ty = (C1,C)Y, Tig = (Co,C3)M,  Tos = (Ca, D3)V,
Ty = (C1,C2)?,  Tir = (C,C5)®,  Tos = (Cs,D3)?,
Ty = (C1, D), Tis = (C2,C3)®,  Tor = (D3, D3)®

3 H1?
Dl (a) = 6T24 — {(Cg,T23)( )} N
Dy(a, x,y) = — Ths,
Ds(a, x,y) = (Ths, Taz)® — 6C3(Cs, Tas)W,
Dy(a) = (Cs, D2)™,
Vi(a,z,y) = Tas + 2D3,
V2(37xa ?J) = T26a
Vs(a, z,y) = 6Tbs — 3Th3 — 2D3,
V4(a,x,y) = 03 (037T23)(4) + 36 (D37T26)(2) )

Li(a,z,y) = 9Cs (Toy + 24T57) — 12D3 (Too + 8T52)
—12(Tyg, D3)® — 3 (T3, C2)® — 16 (Tyy, C3)?
+ 12 (5Tso + 24Ts0, C5) Y

Lo(a, z,y) = 32 (13T + 33Ta1, Do) + 84 (971, — 2Ty, D3)™Y
+ 8D (12T + 35Ty5 — T3Tsg) — 448 (s, Co) ™
— 56 (Ti7, C2)® — 63 (T3, 1)
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+ 756 D3T3 + 1944D1 Tog + 112 (Ty7, Do)V
— 378 (Tug, C1)'M) + 9C (48Ty7 — 35Thy)

Ly(a,z,y) = (Tos, D3)® [(D27T22)(1) — DiTo7|,

Li(a,z,y) = Tos,

Ni(a, x,y) = 402(27Dy D3 — 8D2) + 205(20Ty5 — 4T14 + 39T12)
+ 18C1 (3T1 — D2D3) + 54D5(3Ty — Tr) — 288C5Ty
+ 54 (Ty, C3)™ — 567 (Ty, C5) Y + 135C, D2,

) = 203D — 3C3Ds,

) = C3D3 + 3716,

) = Dy D3 + 9T5 — 2747,

) =

)

SRS

T17 + 2Th,

a,z,y) = 6C5(Tha + 6T11) — 9C1 (Tas + Tos) — 8 (The, Cz)(l)
— C3D3,

N7(a,:c,y) = 603(12T11 — T12 — 6D1D3) — 2101T23 — 24 (Tlﬁ, CQ)(I)
+ 301T25 + 4D2(T16 + 2D203 — CQD3),

NS(avxay) = D; - 4D1D3a
NQ(avxay) = (;'22 - Sclc?n
Nw(a,x,y) = 2CQD1 + 3T4.

Main theorem. Any cubic system having invariant straight lines
with total multiplicity 9 via affine transformation and time rescaling can
be written as one of the following 23 systems. In the figure associated
to each system is presented the configuration of its invariant straight
lines in the Poincaré disc. Real invariant straight lines are represented
by continuous lines. Complex invariant straight lines are represented
by dashed lines. If an invariant straight line has multiplicity k > 1,
then the number k appears near the corresponding straight line and this
line is more thick. Moreover, every system has associated a set of affine
invariant conditions which characterize it.
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& =x(2? - 1),
W=y -1
& =x(2®+1),
@ =2+ 1)
=3
(3) y:yS’
#=2z(z?-1),

W =@y -1)
i = 2x(x?+1),
)= @e-y)P+1)

& = 223,
©) )= 230 )
& =x(1+2?),
5=y - 2)
& =23
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(D1 >0, D2>0, D3>0, £3<0, |
Vi=Vo=L1=Lo=N1=0

< Fig. 1;

(D1 >0, D2>0, D3 >0, £3>0, |
Vi=Vo=L1=Lys=N1=0

< Fig. 2;

[D1 >0, D2a>0, D3>0, L3=0, |
Vi=Vo=L1=Lo=N1=0 |
Fig. 3;

(30)

(D1 >0, D2 >0, D3>0, £3>0,]
Vi=Vi=L1=Ls=N1=0

< Fig. 4;

[D1 >0, D2 >0, D3>0, £3<0, ]
Vi=Vi=L1=Lo=N1=0 |
<= Fig. 5;

Dy >0, Dy >0, D3>0, £L3=0,]
Vi=Vi=L1=Lo=N1=0 |
Fig. 6;

(44)

[ Di<0, £3#0, £4<0,
_V1=V2=£1=E2=N1=0_

<= Fig. 7,
[ D1 <0, L3=0, L£4<0,

_V1=V2=£1=E2=N1=0_
Fig.8;

(52)

—

[ Di<0, £3#0, £4>0,

_Vl =Vo=L1=Ls=MN =0_
<= Fig.9;
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00— y(302 )

(11) 3: =2z(2? - 1),

= 2x(x? + 1),

12) = y(3e2+y? 1)

(13) ; _ ;?33322 +7%)
(14) gyc _ §f2 Y
(15) ; _ i(;; =
(16) © — T(f -
an = z(2? + 1),

T = x(x2 - 3y2)7

§=yBa’+y*+1)

D1 <0, L3=0, L4>0,
Vi=Vo=L1=Ly=N1 =0

D1 <0, L3<0,

_V3=V4=£1=£2=N1=0_

D1 <0, L3>0,

_V3=V4=E1=E2=N1:0_

D1 <0, L3=0,

V3:V4:E1:£2:N1:0_

|
|

Fig. 10;

(55)

< Fig. 11;

< Fig. 12;

Fig. 13;

(62)

D1=D3=D4 =0, D2#0, L4 <0,
Vi=N1=No=N3=N7=0,Ng <0

Fig. 14;
(71),(72)

D1=D3=D4 =0, D2 #0, L4 <0,
Vi=N1=No=N3=N7=0,Ng >0

Fig. 15;
et
(73),(74)

D1=D3=D4 =0, Dy 750, L4 <0,
Vi=N1=No=N3=Ng =0, Ns >0

._Fig.16;

(76),(77);

Vi=N1=No=N3=Ng =0, Ng <0

D1=D3=D4 =0, D2 #0, L4 <0, ]

<:>Fig. 17;

(78),(79)
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(18) LiZ'ZLL'?’, D1=D3=Dy4 =0, D2 #0, L4 <0,
=1 Vi=N1=No=N3=Ng=0,Ng =0
Fig. 18;
(80),(81)
i =z(z? - 1), D1 =D3=Ds =0, D2 #0, L4 >0,
(19) (3.232 — 1) = |:V1 =N1=N4=N5=Ng =0, Ng > 0:|
Fig. 19;
(88)
i =x(x? + 1), Dy =D3=D4 =0, D2 #0, L4 >0,
(20) y = y(3$2 + 1) |:V1 =N1=Ny=N5=Ns=0, Ng < 0]
Fig. 20;
(89);
= 2x(x? — 1), [D1=D3=Ds=0, Da#0, L4 >0, |
(21) y = y(3x2 —+ ].) _V3 =N1=N4=Nj5 =N7=0, Ng > 0_
Fi,(g. 21;
95)
i =2x(z? + 1), [D1=D3=Ds =0, Dy #0, L4 >0,]
(22) y = y(31‘2 — ].) _V3 =N1=N4=N5 =N7=0, Ng < 0_
Fig. 22;
(96)
:'c::c, D1 =Dy =D3=V; =0,
(23)y:y—x3 No=N3=Ng=Ni0=0
Fig. 23.
e
(107),(108)

Here, a condition of the type S(a,z,y) > 0, respectively S(a,z,y) <
0, means that the respective homogeneous polynomial of even degree
in x and y is positive, respectively negative, defined. And equality
S(a, z,y) = 0 must be understood in R[z, y].

Note that, only in the case that some invariant straight lines have
multiplicity > 1, in the last column of the statement of the main theo-
rem appear some numbers under the figures indicating the correspond-
ing perturbed systems which show the potential configurations of the
considered cubic system.
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2. Necessary conditions for the existence of parallel invari-
ant straight lines. We define the auxiliary polynomial U;(a) =
Toy — 4T57.

Lemma 1. For cubic systems (2) the conditions Vi = Vo =U1 =0
are mecessary for the existence of two triples of parallel invariant
straight lines with different slope.

Proof. Let Li(xz,y) = ax + Py +v =0, i = 1,2,3, be three parallel
invariant straight lines for a cubic system (2). Then, we have

aP(z,y) + pQ(x,y) = {(ax + By + 1) (ax + By + 72)(ax + By + 73),

where the constant & can be considered 1 (rescaling the time, if
necessary). Therefore, from the cubic terms we obtain aps(z,y) +
Bqz(z,y) = (ax + By)3. If we denote

p3(x,y) = px® + 3qz’y + 3ray® + sy,

q3(x,y) = ta® + Buz’y + 3vry® + wy’,
then, for the existence of 3 parallel invariant straight lines it is necessary
for the solvability of the following systems of cubic equations with
respect to the parameters o and g:
3) Al =ap+ ft—a® =0, Ay =g+ fu—a?p =0,
As=ar+pv—af? =0, As=as+pw—F>=0.

Without loss of generality we can consider a3 # 0, otherwise a rotation
of the phase plane can be done. We have:
By = ady — fA; = qa® + (u—p)af —t3* =0,
(4) By = ads — BAy = ra® + (v — q)aB — uf? =0,
Bs = oAy — BA3 = sa® + (w —r)af —v3* = 0.
Clearly, for the existence of two directions (aq, 1) and (a2, B2) such

that in each of them there are 3 parallel invariant straight lines of a
system (2) it is necessary that the rank (U) = 1, where
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We denote by U ,ijl the 2 x 2-minor of the matrix U formed only by the
columns 7 and j and by the rows k and [ of U. We obtain

12 g u-p 1 |g —t] 93 [u—-p —t
Uiz = K v—q] Ui = L —ul’ Uiz = | v—q —u} '
12_ g u—p 1 g —t] 03 [u—-p —t
Uis = K w—r] Uiy = s —v|’ Us = w—r —v} ’
12 _ [ v—(q 13 _ [r —u] 23 _ | V—q —Uu
Uzs = E w—r] Uy = s —v]’ Uz = w—r —v} :

Hence, the rank (U) = 1 if and only if U,Z =0forall1 <i<j<3
and 1 <k <l <3.

On the other hand, it is easy to calculate the values of the T-comitants
Vi =16 [Ufsz* + (U5 — 2U13) 2y + (U5 — 2U}5 + UF) 2*y°

+ (U13 = 2053) 2y® + Uaiy']
Vo =8 [ (2035 + U) 2® +2 (U3 — Us3) oy + (Ui +2053) v°]
Uy =27 (U5 + U +U33) .

Thus, it is obvious that U}] = 0,1 <i < j<3,1 <k <[ <3, if and
only if V1 = V5 = U; = 0. This completes the proof of the lemma. i

We assume that Vi + V3 +U?% # 0. Then, by Lemma 1, there cannot
exist two triples of parallel invariant straight lines for system (2). Now,
we shall examine the case when a system (2) possesses only one triple of
parallel invariant straight lines. This means that system (4) can have
at most one solution (ag,y). By using (4) and considering (3), we
construct the following linear system with respect to the parameters «
and f:

aB; = qa® + (u — p)a®B — taB? = Biia+ B1o3 =0,
BBy = qo”B + (u—p)af® — 1% = By + By = 0,
aBy =ra® + (v — q)a?f — uaf® = Bsja + B33 =0,
BBy =ra?B+ (v — q)af® — uf® = Bya + B3 =0,
aBs = sa® + (w —r)a?B — vaf?= Bsia + Bsaff = 0,
BBs = 50’3 + (w — r)af? —vBE*= Bgya + Bgaf = 0,
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where
13 23 12 ;13 13 ;.23
B11=-Ui3, Bi2=-Uj3, B9y =-U13 U1z, Bao=-U;s—-Uis,
12 13 13 23
Bs1=Ui3, B3o=Ujz, By1=-Us3, Bys=-U33,
12 | ;+13 13 | .23 12 13
Bs1 =Ui3+Uz3, Bsa=Ui3+U3, Bg1=Us3, Bga=Ups.

We denote by B the 6 x 2-matrix of the linear system (5) and by M;;
its corresponding 2 X 2 minors:

M. Bi1 B

B= (Bij) ij — |:Bj B;

{i=1,... ,6; j=1,2} > } , 1<i<j<6.

It is clear that the linear system (5) has a nontrivial solution if and
only if the rank (B) =1, i.e., M;; =0for 1 <i < j <6.

On the other hand, calculating the polynomial V5 as well as the
auxiliary polynomials

Uz(a,z,y) = 6 (Tog — 315, T26)(1) — 3T3(Toy — 8To7) — 24T
4205 (Cs, Tas) ™ + 24D3 (D3, Tog) ™M + 24D2Ty,
Us(a,2,) = Ds [(Co, o) +36 (D5, To0) ]

for system (2) we have

Vy =20 3% [(Myz 4+ Mis) a* + 3 (Mg + M) 2°y* + (Mg + Mse) y*
+ (8Muy + Mys — Maz) 2y + (Mag + 3Msg — Mys) zy°]

Uy =2'%-3% -5 [Mysa* + (2Mg + Mas — Maq) 2y + Mysy®
+ (Mg + Mis + Mag) 2%y + (Mag + Msg + Mys) 2y°]

Us =23 [(Mys — Myy — Maz) 2 + (Mg — 2Mag — Msy) zy
+ (Msg — Mas + Mys) y?] .

It is not difficult to observe that conditions V4, = Uy = Uz = 0 are
equivalent to M;; = 0 for 1 <4 < j < 6. Moreover, taking into account
the expressions of the polynomials V4 and U3, we can conclude that,
for C5 # 0, the condition V4 = 0 implies U3 = 0. Hence, the following
lemma was proved:
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Lemma 2. For cubic system (2) the necessary conditions for the ex-
istence of one triple of parallel invariant straight lines are V4 = Us = 0.

The next step is to find some necessary conditions in order that
system (2) possesses three couples of parallel invariant straight lines.

Let Li(z,y) = ax + By +v; = 0, i = 1,2, be two parallel invariant
straight lines for a cubic system (2). Then, we have

aP(z,y) + BQ(z,y) = (az + By + 7)) (ax + By + v2) (px + ny + 73).

Therefore, from the cubic terms we get

aps(z,y) + Bas(z,y) = (ax + By)* (px + ny).

Thus, for the existence of 2 parallel invariant straight lines the solvabil-
ity is necessary of the following system of cubic equations with respect
to parameters «, [, p and n:

Ei=ap+ ft—a’u=0,
Ey = 3aq + 30u — o*n — 2a8u = 0,
Fs = 3ar + 36v — 2af8n + (% = 0,
Ey=as+ pw— 3*n=0.

(6)

Without loss of generality we may consider a3 # 0, otherwise a rotation
of the phase plane can be done. We have

Iy

Res,, (ResH(El, Es), E4) Ja
sat +waB — 3qa’f% + (2p — 3u)aB® + 2t6° =0,
Res,, (ResM(El, Es), E4) /5
2sa* + (2w — 3r)aB — 3va?B% + paf + 3% =0,

Fy

where Res, (f, g) denotes the resultant of the polynomials f and g with
respect to the variable z, for more details on the resultant, see [11].
Then

2Fy — F;
Gi(a,B) = % = sa® + (w— 2r)a26 + (g — 2v)a52 +uB® =0,
Fy —

Ga(a,B) = Z2 = rad o (0= 20003+ (p — 2u)af? + 45 = 0



PLANAR CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS 1315

Now, it is clear that for the existence of three distinct solutions (v, 5;),
i = 1,2,3, of the system (6), it is necessary that the polynomials
G1(a, ) and Ga(«, 8) be proportional, i.e., the following identity holds:

G _ [(0G0)/(00) (9G1)/(09)
(0G2)/(00) (9G2)/(99)

=3 (K()Oé4 + Kla?’ﬁ + K2a2ﬁ2 + K30463 + K4ﬁ4) =0,
where

Koz—rw+2r2—2qs—|—vs,

K1 = 2ps — 4us — 2qr + 4vr,

Ky = 2¢% + 20% 4 3ts — 2pr + wr + pw — 2uw — 5qu,
K3 = —4tr + 2tw + 4uq — 2uw,

Ky = 2u? + tq — 2tv — pu.

On the other hand, the comitant V5 calculated for system (2) gives
Vg =2°.32 (K4x4 — K3x3y + K2x2y2 — Kla:y3 + K0y4) .

Consequently, condition G = 0 is equivalent to V3 = 0. Hence, we get
the next result.

Lemma 3. For cubic systems (2) the condition V3 = 0 is necessary
for the existence of three distinct couples of parallel invariant straight
lines.

Taking into account Lemmas 2 and 3, we obtain the next result.

Lemma 4. If a cubic system (2) possesses the configuration or the
potential configuration of parallel invariant straight lines of the type
(3,2, 2, 1), then it is necessary that Vs = V4 =Uo = 0.

3. Infinite singular points and associated homogeneous cubic
canonical systems. From [12], see also [5], we have the following
result. Here a € C is imaginary if a ¢ R.
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Lemma 5. The number of distinct roots (real and imaginary) of the
homogeneous polynomial Cs = yps(x,y) — xqs(z,y) # 0 is determined
by the following conditions:

(i) 4 real if Dy >0, Dy > 0, D3 > 0;
(ii) 2 real and 2 imaginary if D1 < 0;

(iil) 4 imaginary if Dy > 0 and for every (x,y) where DyD3 # 0
either Dy < 0 or D3 < 0;

(iv) 3 real (1 double, 2 simple) if D1 =0, D3 > 0;

(v) 1 real and 2 imaginary (1 real double) if D1 =0, D3 < 0;

vi) 2 real (1 triple and 1 simple) if D1 = D3 =0, Dy # 0, Dy = 0;
vii) 2 real (2 double) if D1 = D3 =0, Dy >0, Dy # 0;

viii) 2 imaginary (2 double) if D1 = D3 =0, Dy < 0, Dy # 0;

(ix) 1 real (of the multiplicity 4) if D1 = Dy = D3 = 0.

where D; fori=1,2,3,4 are the T-comitants defined in the Introduc-
tion.

(
(

We consider the polynomial C3(a,z,y) # 0 as a quartic binary form.
It is well known that there exists g € GL(2,R), g(z,y) = (u,v), such
that the transformed binary form gCs(a,z,y) = Cs(a, g~ (u,v)) is one
of the following 9 canonical forms:

(i) ay(z—y)(ra+sy), rs(r+s) £ 0; (iv) 2’y(z—y); (vi) 2’y

(i) z(sz+y)(="+y°); (v) @ +y?); (vil)) (@®+y%)%
(ii)) (p2”+ qy®)(=°+y*), pg > 0; (vi) a’y; (ix) .
We note that each of such canonical forms corresponds to one of the
cases enumerated in the statement of Lemma 5.

On the other hand, applying the same transformation g to the initial
system and calculating for the transformed system its polynomial
Cs(a(g),u,v) the following relation holds:

Cs(a(g), u,v) = det(g) Cs(a, z,y) = det(g) Cs(a, g_l(u,v))
= )‘CB(aa gil(uvv))v

where we may consider A =1 (via a time rescaling).
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Taking into account that Cs(z,y) = yPs(x,y) — zQs(x,y), we con-
struct the canonical forms of the cubic homogeneous systems having
their polynomials C; the indicated canonical forms (i)—(ix):

(7) = (p+r)a’ + (s +v)2’y +qry?, O3 = zy(z —y)(ra + sy),

/
x
y = prly+ (r+v)zy? + (g +s)y®, rs(r+s)#£0

(8) 2’ = (u+ 1)z + (s +v)2’y +roy?, Cs=z(sx+1vy)(x? +v?),
y = —sx3 4+ ur’y + vay? + (r — 1)y°,

9) 2 =ur+(ptgtv)aly+rayi+qy®,  Cs = (pa®+qy®)(a?+y?),

/

y = —pas3 +ua:2y+vxy2 +ry3, pqg >0

(10) 2’ =3(u+ 1)3:3 + (v— 1)x2y +rzy?, Cy= 3:2y(x —9),
Y = uz’y + vy’ +ry’,

(11) 2’ =wua® 4+ (v + D)2y +ray?®, Cz = 2% (2 +y?),
Yy = — 23 + ux2y + vfcy2 + ry?’,

(12) 2’ = (u+ 1)z + vy +ray®, Cs = 23y,
y = uay +ory® +ry’,

(13) 2’ =wua® 4 qzy +ray?, Oz = (¢ — v)zy?,
y' =ua’y +ory® +ry’, q-v#0

(14) 2’ =ua® + (v+ D)2’y +ray® +y°, Cs = (2° +y°)?,
y = — 23 +ua’y + 3(v — Day?® +ry®,

(15) 2’ = ua® + vy +ray?, Cs =a?,

/

Yy = — 23 + ux2y + vfcy2 + ry?’.
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4. Criteria for the existence of an invariant straight line
with a given multiplicity. We consider a cubic system (2) and the
associated four polynomials C;(z,y) for i =0,1,2,3.

Proposition 6. The straight line Z(x, y) = ux +vy = 0 is invariant
for a cubic system (2) with p2 + g3 # 0 if and only if for i = 0,1,2,3
the following relations hold:

(16) either Ci(—v,u) =
(17) or RGSW(C(), Oz) =

Proof. The line L(z,y)=0 is invariant for system (2) if and only if
u(po +p1+p2+p3) +v(g0 + g1+ ¢2 + g3) = (ux + vy)(So + S1 + S2),

for some homogeneous polynomials S; of degree i. The last equality is
equivalent to

upo +vqo =0,

up1(z,y) +vq1(z,y) = (uz + vy)So,
ups(x,y) + vg2(z, y) = (uz + vy)Si(z,y),
ups(x,y) +vgs(z,y) = (ux + vy)Sa(z, y).

If x = —v, y = u, then the left-hand sides of the previous equalities
become Cy(—v,u), Cy(—v,u), Co(—v,u)) and C3(—v,u)), respectively.
At the same time the right-hand sides of these identities vanish. Thus,
we obtain equations (16) in which Cy (respectively, C1; Ca; Cs) is
a homogeneous polynomial of degree 1 (respectively 2; 3; 4) in the
parameters u and v, and Cy(z,y) # 0 because p3 + g5 # 0. Hence,
the necessary and sufficient conditions for the existence of a common
solution of systems (16) are conditions (17). o

Let (79,%0) € R? be an arbitrary point on the phase plane of systems
(2). Consider a translation 7 bringing the origin of coordinates to the
point (zg,y0). We denote by (27) the system obtained after applying
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the transformation 7, and by a = a(xg,yo) € R?® the 20-tuple of its
coefficients. If v = y/z or v = x/y, then, for i = 1,2,3 we denote

Qi(aa Zo, yo) = Res’y (C’L (5a €, y)7 00(57 €T, y)) € R[aa Zo, 90]7
gi(aazay) = Qi(aa $07y0)|{10:m7 Yyo=y} € R[a,I,y]-

(18)

Remark 7. For j = 1,2,3, the polynomials G;(z,y) = G;(a,z,y) are
affine comitants and are homogeneous in the coefficients of system (2)
and nonhomogeneous in the variables z and y. Additionally,

deg a1 = 3, deg aGo =4, deg aG3 = 5,
deg (2,1 =8,  deg(y,)Go =10,  deg(,,)Gs = 12.

The geometrical meaning of these affine comitants is given by the
following lemma.

Lemma 8. The straight line L(x,y) = ux + vy +w = 0 is invariant
for a cubic system (2) if and only if the polynomial L(x,y) is a common
factor of the polynomials G1, Go and Gs over C.

Proof. Let (x9,y0) € R? be a nonsingular point of system (2), i.e.,
P(x0,90)? + Q(x0,v0)®> # 0, which lies on the line L(z,y) = 0, i.e.,
uzo 4 vyo +w = 0. Denote by L(x,y) = (LoT) (z,y) = uz +vy (7 is a
translation) and consider the line uz + vy = 0. By Proposition 6,
the straight line E(x,y) = 0 will be an invariant line of systems
(27) if and only if conditions (17) are satisfied for these systems,
ie., for i = 1,2,3, Q;(a,z9,y0) = 0, for each point (z¢,yo) on the
line L(z,y) = wx + vy + w = 0. Thus, we have Q;(a,zg,y0) =
(uzo + vyo + w)%(a, 20, yo). Taking into account relations (18), the
lemma follows. o

Lemma 9. If L(z,y) = ur+vy+w = 0 is an invariant straight line
of (geometric) multiplicity k for a cubic system (2), then, fori=1,2,3,
we have that

Gi = (uzx + vy + w)* Wiz, y).



1320 J. LLIBRE AND N. VULPE

Proof. By the definition of geometric multiplicity, we denote by (25)
the perturbed system from the system (2), which has k invariant lines
of multiplicity 1: L;s(z,y) fori=1,... k.

By Lemma 8, for i = 1,2, 3, system (25) satisfies G;5 = L1s -+ Lgs X
Wi(z,y), and when & — 0, then L;s(x,y) — L(z,y). At the same time
Gis = Gi = L(z,y)*W;. o

Taking into account Remark 7 and Lemmas 8 and 9 we conclude the
following result.

Lemma 10. If a cubic system (2) possesses the mazimum num-
ber of invariant straight lines (counted with their multiplicities), then

g1(:c,y) ‘ g2($7y) and gl(xvy) | Qg(x,y).

In order to determine the degree of the common factor of the poly-
nomials G;(z,y) for i = 1,2, 3, we shall use the notion of the k' subre-
sultant of two polynomials with respect to a given indeterminate (see
for instance, [8, 11]).

We consider two polynomials

f(z) =aoz" +a1z"" + -+ ap,

9(2) = boz™ + 012" 4 4 by,

in variable the z of degree n and m, respectively.

We say that the k' subresultant with respect to variable z of the
two polynomials f(z) and g(z) is the (m + n — 2k) x (m + n — 2k)
determinant, see equation (19), in which there are m — k rows of a’s
and n — k rows of b’s, and a; = 0 for ¢ > n, and b; =0 for j > m.

For k = 0 we obtain the standard resultant of two polynomials. In
other words we can say that the k' subresultant with respect to the
variable z of the two polynomials f(z) and g(z) can be obtained by
deleting the first and the last k rows and columns from its resultant
written in the form (19) when k£ = 0.
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(19)
ag ajl a e PN Am+n—2k—1
0 a a1 ... ... Gmin—2k—2 } (m—k)-times
*) 0 0 ao ce e Am+n—2k—3
R (f,g)=1|--- o oo o
0 0 by ... ... byin—2k-3 )
0 by b1 e oo bin_oko (n—k)-times
bo b1 b2 ... ... bpyn—2k—1

The geometrical meaning of the subresultants is based on the follow-
ing lemma.

Lemma 11 (see [8, 11]). Polynomials f(z) and g(z) have precisely
k roots in common (counting their multiplicities) if and only if the
following conditions hold:

RO(f,g9)=RM(f,9) =R (f,g9) =

=RFEV(f.9)=0#RP(f,g).

For the polynomials in more than one variable it is easy to deduce
from Lemma 11 the following result.

Lemma 12. Two polynomials f(:vl, Zoy... ,Xy) and §(x1, Tay ..., Tp)
have a common factor of degree k with respect to variable x; if and only
if the following conditions are satisfied:

RO(f.9)=RU(f,9) = RO (f.g) =

= RYV(F,9) =0# RU(F,9),

where R;?(f,g) =0in Rlz1,...2j-1,Tj41,- -, Tn)-
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5. Cubic systems with 4 real simple roots of C3. As it was
shown above, a cubic homogeneous system having 4 real distinct infinite
singular points via a linear transformation becomes in the canonical
form (7). Therefore, in what follows we consider the system

& =po+p1(x,y) + p2(2,y) + (p+7)2* + (s + v)2y + qay?,

(20) / 2 2 3
Y =q+ q(z,y) + ¢z, y) +pxy + (r +v)zy” + (¢ + 5)y°,

where the parameters r and s satisfy the condition rs(r + s) # 0.
For system (20) we obtain C5 = zy(z — y)(rx + sy), and hence, infinite
singular points are situated at the “ends” of the following straight lines:
r=0,y=0,x—y=0and rx+ sy =0.

The goal of this section is to construct the cubic systems of the

form (20) which have 8 invariant straight lines with the configuration
(3,3,1,1)or (3, 2,2,1).

5.1. Systems with the configuration (3, 3, 1, 1). In this subsec-
tion we construct the cubic system with 4 real infinite singular points
which possesses 8 invariant affine straight lines in the configuration
or potential configuration (3, 3, 1, 1), having total multiplicity 9; as
always the invariant straight line of the infinity is considered.

According to Lemma 1, if a cubic system possesses 8 invariant straight
lines in the configuration (3, 3, 1, 1), then necessarily the conditions
V1 =Vy =U; =0 hold.

A straightforward computation of the values of V; and Vs for system
(20) yields:

4 2
V) = 16ZV1jx47jyj, Vo = 821}2]'3327]-?4]-’
j=0 Jj=0

where
(21)
Vio = p(2p + 3r),
Vi1 = 2ps + 4pv + 2pr + 3r? + 3ro,
Via = 4rs + 4dpq + 3ps + 3rq + 2sv + 2rv — s2 — 1?2 4+ 202,
Vi3 = 2sq + 4qu + 3sv + 2rq + 3s2,
Via = q(2q + 3s),
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Voo = — 3rv — 312 + 2ps — 2pr,
Vo1 = 6rq — 25% — 4dsv + 4rv + 2r? — 6ps,
Vg = 2¢s + 3s% — 2rq + 3sv.
Consequently, relations V1 = Vo = 0 provide the following equalities:
(22)
Vio = p(2p+3r) =0, Via = q(29+3s) =0,
Vi1 + Voo = 4p(s+v) =0, Vis — Voo = 4q(r+v) =0,
Vi1 — Voo = 2(r4v)(2p+3r) =0, Vi3 + Vaog = 2(s+v)(2¢+3s) = 0.

Thus, we shall consider three cases: (1) pg # 0; (2) pg = 0, p* +¢* # 0;
B)p=q=0.

Case pq # 0. Then, from (22), we obtain v = —s, r = s,
p =g = —3s/2 # 0, and consequently V; = Va = 0. Therefore, by
changing the time, t — —2t/(3s), we obtain the following system:

x' = po+p1 +p2 + 2 + 3397,
y/ZQO+Q1+QQ+3x2y—|—y3,

for which U, (a) = 0.

Case pqg =0, p?> + ¢ # 0. Then, without loss of generality, we can
consider p = 0 and ¢ # 0 via the transformation z < y and the changes
p < qand r < s. From (22) we have v = —r, ¢ = —3s/2 # 0, and

Vlizoy i:071>3747 V2j207 j:O>27
Vig =4V = — Vo1 = —4(7" + 28)(27’ + S).

Consequently, we obtain either s = —2r or r = —2s. The first case
after a suitable time rescaling writes the system as

(24) 2’ =po+pi+p2+a’ =3Py +3ey, Y =qtat+ae+y’
whereas the second one goes over to the system

(25) 2’ = po+p1 +p2 +42° —62%y+3zy*, Y =q+a+ae+y’
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We note that for both systems we have U/;(a) = 0.

Case p = ¢ = 0. Then, by (22), we have r(r +v) = s(s +v) = 0.
We claim that rs # 0. Indeed, we suppose r = 0 (case s = 0 can be
reduced to this one by changing = < y). Then, taking into account
(21), we obtain

Vig+6Vy =125 =0 = Vip = 160? = 0.
Thus r = s = v = 0 and we obtain p3(z,y) = ¢g3(x,y) = 0. Hence, the

claim is proved. Considering (22), we obtain ¢ = —r = —s, and after a
suitable time rescaling the system becomes
(26) ' =potprt+pta’, Y =awt+a+tet+y’

for which U (a) = 0.

Lemma 13. All systems (23), (24) and (25) can be written via some
affine transformations to system (26).

Proof. Tt is sufficient to check by straightforward computation that
the transformation 1 = x — y, y; = y writes system (26) into system
(24), and the transformation z; = x, y; = x —y writes system (23) into
system (25). It remains to observe that the transformation z; = =,
y1 = y/2 and t; = 4t writes system (25) into system (24). O

Let L(z,y) = Uz+Vy+W = 0 be an invariant straight line of system
(2), which we write explicitly as:
& =a+cx+dy+ gr? + 2hay + ky® + pr® + 3qz’y + 3ray® + sy,
y=0b+ex+ fy+1z® + 2may + ny? + tz> + 3uaz?y + 3vzy® + wy.
Then, we have
UP(z,y)+VQ(z,y) = (Uz+Vy+W)(A2*+2Bry+Cy*+Da+Ey+F),
and this identity provides the following 10 relations:
Eqi=pU+tV =0, BEqg= (2h—E)U+(2m—D)V—2BW =0,
Eg= (3¢—2B)U+(Bu—A)V=0, Eq=kU+(n—E)V-CW =0,
Egz3= (3r—CU)+(3v—2B)V=0, Eqs= (c—F)U+eV—-DW =0
Bqi= (s—C)U + VW = 0, Bqo=dU+(f—F)V —EW =0,
Eqgs= (9g—D)U+IV—-AW =0, Eqio=aU+bV—FW =0.
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We concentrate our attention on the system with 4 real distinct
infinite singular points. According to Lemma 13 we can only work
with system (26). It is clear that, via a translation of the origin of
coordinates at the point (—g/3,—n/3), we can consider the parameter
g = 0, respectively n = 0, in the polynomial ps, respectively ga. Thus,
we shall work with the following system

& =a+ cx +dy + 2hay + ky® + 23,
g =0b+ex+ fy+ 1z + 2may + >,

for which C5(z,y) = xy(x+y)(z—y). Therefore, there are the following
4 directions for the possible invariant straight lines: x = 0, y = 0,
Yy=—x,Y ==

We claim that, in the direction y = —x as well as in the direction
y = x, there can be only one invariant straight line. Indeed, for the
directions y = —x and y = =, we have U = 1, V = +1 and then, from
the first 6 equations (27), we obtain

At =Cc* =1, BTf=71, D*=+I-W, E*=4+2W+2h—I1+2m,

and Eq; = —3W F2h+ k+1—2m = 0. Here, the