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UNITARY GROUPS ACTING ON
GRASSMANNIANS ASSOCIATED WITH
A QUADRATIC EXTENSION OF FIELDS

CLAUDIO G. BARTOLONE AND M. ALESSANDRA VACCARO

ABSTRACT. Let (V, H) be an anisotropic Hermitian space
of finite dimension over the algebraic closure of a real closed
field K. We determine the orbits of the group of isometries of
(V, H) in the set of K-subspaces of V.

Throughout the paper K denotes a real closed field and K its
algebraic closure. Then it is well known (see, for example, [4, Chapter
2], [23]; see also [8]) that K = K(i) with i = /—1. Also we let
(V, H) be an anisotropic Hermitian space (with respect to the involution
underlying the quadratic field extension K /K) of finite dimension n
over K. In this context we consider the natural action of the unitary
group U = U(V, H) of isometries of (V,H) on the set X of all d-
dimensional K-subspaces of V. The analogous problem where (V, H)
is a symplectic space was treated in [1] (for arbitrary quadratic field
extensions). It turns out that, in contrast with the symplectic case,
there are infinitely many orbits for the action of the unitary group U
on Xg.

In group theoretic language the stated problem turns into the deter-
mination of the double coset spaces of the form

(1) Gw\G/U,

where G = GL (Vi) and Gw denotes the parabolic subgroup of G
stabilizing a member W € X, (we write Vi to indicate that we are
regarding V' as a vector space over K). The precise structure of
double coset spaces involving classical groups is of great interest in
applying the classical Rankin-Selberg method for explicit construction
of automorphic L-functions, as Garrett [2] and Piatetski-Shapiro and
Rallis [6] worked out.
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Besides G = GL (Vk), there are further possibilities for the group
G in (1), because U embeds into other classical groups over K. For
instance, we have

(2) H(J?,y) :S(l‘,y)+2A($,y)

for suitable K-bilinear forms S and A with S (anisotropic) symmetric
and A alternating. Moreover, for any v € U we have

S(y(x),v(y) +iA(v(x),v(y)) = S(z,y) +iA(x,y),

which means that U embeds into the orthogonal group O(Vk,S) of
isometries of (Vk,S), as well as into the symplectic group Sp (Vi, A)
of isometries of (Vk, A). Therefore in (1) we can take G = O(Vk, 5), or
G =Sp(Vk,A). As O(Vk, S) is transitive on X4, double coset spaces
(1) with G = O(Vk, S) are essentially the same as with G = GL (V).
The situation is different when G = Sp (Vk,A): if A restricts to
W € X, with rank r, the double coset space Gy \ G /U corresponds
to the action of U on the set X, of all d-dimensional K-subspaces on
which A induces an alternating form of rank r. In this framework it
has to be emphasized the fact that U has infinitely many orbits in X
for » > 0 and it is transitive on X, i.e., on the set of d-dimensional
A-totally isotropic K-subspaces of V.

I. The set of anisotropic Hermitian forms on V' maps bijectively onto
a set of anisotropic bilinear forms on Vi via

H+— B=S5+A,

) B H = L(B+B)+i(B— B,

where S and A are defined as in (2) and ‘B(z,y) means B(y, ).

The bilinear form B associated to H, in the sense of (3), plays a
fundamental role in this context. It turns out that the orthogonality
in (V, H) is essentially the same as in (Vg, B). Indeed we have

1. Proposition. H(z,y) = 0 if and only if B(x,y) = 0 and
B(y,z) =0.
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Proof. Let H(z,y) = S(x,y) + iA(x,y) = 0. Then
S(x,y) = S(y,x) =0 = Az, y) = Ay, )
and consequently
B(z,y) = S(z,y) + Az, y) = 0= S(y,2) + Ay, 2) = B(y, ).

Conversely, if B(x,y) = B(y,z) = 0, then H(z,y) = 0 follows from (3).
]

Let W be a K-subspace of V, and let W = W; & W5 be a decompo-
sition of W into the direct sum of two nontrivial subspaces. We shall
write

W:W1 J_H W2 (resp. W:W1 J_B Wg),

if H(Wy, W3) = 0 (respectively B(Wy, W) = B(Wa, Wp) = 0). Thanks
to Proposition 1, we have then

(4) W:W1J_HW2<:>W:W1J_BWQ,

so it is superfluous to specify the form with respect to which the
orthogonality occurs.

As B is anisotropic, B induces on any K-subspace W of V' a nonde-
generate K-bilinear form Byy:

Bw (z,y) = B(x,y) Vax,yeW.

So there exists a (unique) linear mapping ow € GL (W) (the asymme-
try of By) such that

Bw (z,y) = Bw(y,ow(z))) Y,y e W.

Then By (z,y) = Bw (ow (2),0w (y)), Bw (0w (2),y) = Bw (2,03 (y))
and, more generally for every polynomial p € K|[z],

(5)
B (p(ow)(@),y) = Bw (2. p(oy}) (1)) = Bw (, 03" P p* (ow) (),

where p* denotes the adjoint polynomial of p, that is, the polynomial

p*(x) = 98 Pp(z1),
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Riehm in [7] pointed out the importance of the asymmetry oy for
the K-bilinear space (W, By, ). In fact, orthogonal decompositions in W
correspond to decompositions into K [owy]-submodules, as the following
proposition states.

2. Proposition. Let W = W1 & Wy be a decomposition of the K-
subspace W into the direct sum of two K -subspaces with B(Wy, Wy) =
0. Then W =Wy L Wy if and only if Wi, as well as Wa, is a K[ow]-
submodule.

Proof. [7, p. 47]. i

II. In view of the foregoing section, if we want to determine the U-
orbit of a given K-subspace W of V, we can apply the Krull-Schmidt
theorem to the K[ow]-module W and reduce matters to the case where
such a module is indecomposable (see [3, p. 115]). This corresponds to
say that (W, By) is an indecomposable K-bilinear space, i.e., it has no
orthogonal decomposition such as (4).

‘We have

3. Proposition. Let (W, By) be indecomposable. Then, one of the
following occurs:

a) W is a K-line;

b) W is a K-substructure (i.e., a K -subspace generated by K -linearly
independent vectors).

Proof. In fact, let C be the largest K-subspace of V contained in W
(the K-component of W), and let C be the subspace of V orthogonal
to the whole C. Then V = C L C* and we have the decomposition
W = C L (CtnW). Hence, either C is trivial, i.e., W is a K-
substructure, or C = W, and we have a line of V because a K -subspace
of V always possesses an orthogonal basis. O

As K isreally closed, to be anistropic for the Hermitian form H means
that H is either definite positive, i.e., H(x,x) is a nonzero square in K
(for any = € V,x # 0), or definite negative, i.e., H(x,x) is the opposite
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of a nonzero square in K. This implies that in every one-dimensional
K-subspace, as well as in every one-dimensional K-subspace, there is
always a vector v with H(v,v) = 1 (in the definite positive case), or
H(v,v) = —1 (in the definite negative case), i.e., there is always a
vector of H-norm ¢ = +1. Therefore we have

4. Proposition. The lines over K form a unique orbit for the
action of U and the same occurs for the lines over K.

Thus we have reduced matters to the determination of the U-orbit
of an indecomposable K-substructure W of dimension > 1. The next
proposition claims that it is the same if we determine the orbit of W
for the action of the group of isometries of (Vi, B).

5. Proposition. Let W and W' be K-substructures of V.. There
exists an element in U mapping W onto W' if and only if there exists
an isometry of (Vi, B) mapping W onto W’'.

Proof. Assume there exists an isometry of (Vi , B) mapping the K-
substructure W onto the K-substructure W’. Then there exist bases
(€1,...,eq) of Wand (e}, ... ,e;) of W with respect to which B has the
same representation in both W and W’. This means that, with respect
to the above bases, the Hermitian form H (= 1/2[(B+ 'B)+1i(B—"'B)])

has the same representation in both the K-vector spaces KW and KW’
generated by W and W’. Hence,

d d
Z i€ — Z /\ie; ()\z S F)
i=1 =1

defines an isometry (KW, H) — (KW', H) which extends, by Witt’s
theorem, to an isometry (V, H) — (V, H) mapping W onto W'.

The converse part follows from the fact that an isometry ¢ € U
satisfies the condition

S(p(x), p(y) +iA(p(x), o(y)) = S(z,y) +iA(x,y),

giving in turn S(p(2), ¢(y)) = S(z,y) and A(p(z),¢(y)) = Alz,y).
Hence, ¢ preserves B =S + A, i.e.,  is an isometry of (Vi, B). o
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III. It turns out from Sections I and II that we have to classify the
K-bilinear spaces (W, By ) with W an indecomposable K-substructure
of dimension > 1. A fundamental result in this direction is

6. Proposition. The asymmetry ow of By has minimal polyno-
mial 2% — 2bx + 1 for a suitable element b € K such that 1 — b* € K2,
b# +£1.

Proof. By [7 Proposition 3], W decomposes orthogonally if the
minimal polynomial of oy has two distinct prime divisors p and p’
with p’ and p* relatively prime. Thus, if for each irreducible monic
polynomial p € K[z] we denote by W, the p-primary component of W,
which is the subspace

W, ={w e W :p*(ow)(w) =0 for some s > 0},

just two cases can occur [7, p. 48]:

a) W = W, for some irreducible monic p € K|x] such that p = +p*,
and in such a case the minimal polynomial of oy is a power p”;

b) W = W, @ W, for some irreducible monic p € KJz] such that
p # +p*, and in such a case the minimal polynomial of oy is a product
cp”p*® for a suitable c € K, ¢ # 0.

First we shall prove that case b) cannot occur because it requires both
W, and W« to be totally isotropic. This can be shown as follows.

Using (5), for all z,y € W we infer

B(p*" (ow) (@), p"* (ow)(y)) = B(x, 03/ ** P pp** (ow) ()
= B(z,0,,/ 8P (0)) = 0.

On the other hand,

Bp™" (ow)(x),p"*(ow)(y)) = B(p**(ow)(y), owp™ (ow)(z))
= B(y, o9 " P p*p*" (o) ().

Hence, the endomorphism p°p*"(ow ) maps every vector to 0, which
means that p*p*" is the minimal polynomial of oy and this occurs if
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and only if r = s. Thus, W, = p*" (ow)(W) and Wy« = p"(ow )(W).
Consequently, for all z,y € W, we have

B(p*" (ow) (), ™" (ow)(y)) = B(z, oy ** Pp'p* (0w ) (y)) = 0

and we see that W, is totally isotropic. Likewise, B(Wy«, Wy+) = 0.

Therefore, we are in case a). Assume now there exists a nonzero
vector w € W such that ow(w) = Aw for some A\ € K (A # 0
because oy € GL (W)) and let Wi € W with B(W;,w) = 0 (hence
W = (w) @ W1, w being anisotropic). Then we have

B(w, Wy) = B(W1, ow (w)) = AB(W;,w) =0,

i.e., an orthogonal decomposition of W occurs.

Thus, as K is real closed, we have p*(x) = p(x) = 22 — 2bz + 1 for a
suitable element b € K such that 1 — b € K2, b# +1 [4, p. 337].

Choose now a vector v such that p"~*(ow)(v) # 0. Then using (5)
we have

0# B ow)(v), o' ow)(v)) = B(v, oty "*EPp> =2 (ay,)(v)),
which means 2r —2 < r,or r = 1. u]

Now we are able to determine definitively the dimension of an inde-
composable K-substructure:

7. Proposition. An indecomposable K -substructure has dimension
<2.

Proof. In view of Proposition 2, the claim is an immediate conse-
quence of Proposition 6. u]

Thanks to Propositions 6 and 7, if we are given an indecomposable
K-bilinear space (W, Byy) with W a K-substructure of dimension > 1,
then dimg W = 2 and the asymmetry oy of By has a representation

of shape
b V1-1b2
ViR b )
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for a suitable element b € K such that 1—b2 € K2, b # +1. Let (ey, e2)
be a basis of W giving the above representation of oy and put

a:= B(ey,e1).
Then

B(el,el) = B(el,aw(el)) = bB(el,el) +vV1-0b2 B(el,eg),

that is
1-0
B(€1,€2):a 1——|—b
Likewise we find
B(esz,e1) = —a 1=b and Bles,e3) =a
2, €1 - 1+b 2,6€2) — .
Now
bi— k = 1__b
1+0
(6) :
kn—>b:1_k
1+ k2

is a bijective mapping from the set of elements b € K with 1 — b? a
nonzero square onto the set of nonzero squares k € K2. Thus, with
respect to the basis (e1, e2), By has the representation

a ak
—ak a )’
for some k € K2, k # 0, and this representation can be turned in a
straightforward way into

™ (% 5).

where € = 1 or € = —1 according to whether H is positive or negative
definite. By Theorem 4 in [7], equivalent K-bilinear forms have similar
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asymmetries, hence the parameter k in (7), arising via (6) from the
minimal polynomial of oy, distinguishes the isometry class of (W, By ).

Summing up, the restriction of the Hermitian form H to a two-
dimensional indecomposable K-substructure has a representation of
the shape

(8) (—ik . ) = (E]:'l gij—l)

for some k € K2, k # 0, with ¢ depending on the signature of H. We
shall denote by W, such a K-substructure of V.

IV. The above arguments say that a K-subspace W € X, de-
composes orthogonally into K-lines, K-lines and two-dimensional K-
substructures such as Wy. Hence there is a decomposition W = C' L
D 1 E, where

e C is the largest K-subspace contained in W, generated by mutually
orthogonal vectors having H-norm e,

e D is a K-substructure generated by mutually orthogonal vectors
having H-norm e,

e E is a K-substructure splitting into an orthogonal sum £ = Wy, L
-+ L Wy, for nonzero elements ki, ...k, € K,

where e = 1 or ¢ = —1 according to whether H is positive or negative
definite. Let us term the set of parameters

1
9) (m:dimf07 p=dimg D, g = 5 dimg B k... ,kq)

the U-type of W, where the g-tuple (k1,...,k,) is ordered and 2m +
p+ 2q = d. Then the Krull-Schmidt theorem allows one to state

8. Theorem. Two K-subspaces W', W" € Xy are in the same orbit
for the action of U if and only if W' and W' have the same U-type.

Remarks. 1) As there is no unipotent element in U, every orbit in Xy
for the action of U is negligible in the sense of [5].

ii) As the K-bilinear symmetric form S is always either positive or
negative definite (according to H) on any member of Xy, the group
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O(Vk, S) of isometries of the orthogonal space (Vi, S) acts in X4 with
the same orbits as the group GL (V).

iii) If W € X4 has U-type (9), then the K-bilinear alternating form A
restricts to W with rank r = 2(m+¢). Manifestly the group Sp (Vi, A)
of isometries of the alternating space (Vx, A) acts in Xy with orbits
Xg,r consisting of all d-dimensional K-subspaces on which A induces
an alternating form of rank r. Hence, if > 0, there are infinitely many
orbits for the action of U even in each of X, ,, whereas U operates
transitively on Xy, i.e., on the set of A-totally isotropic members of
Xq.
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