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DERIVATIVE RELATIONSHIPS
BETWEEN VOLUME AND SURFACE AREA

OF COMPACT REGIONS IN Rd

JEAN-LUC MARICHAL AND MICHAEL DORFF

ABSTRACT. We explore the idea that the derivative of
the volume, V , of a region in Rd with respect to r equals
its surface area, A, where r = d(V/A). We show that
the families of regions for which this formula for r is valid,
which we call homogeneous families, include all the families
of similar regions. We determine equivalent conditions for a
family to be homogeneous, provide examples of homogeneous
families made up of non-similar regions and offer a geometric
interpretation of r in a few cases.

1. Introduction. It is well known that there exists a remarkable
derivative relationship between the area A and the perimeter P of a
circle, namely

dA

dr
= P,

where the variable r represents the radius of the circle. It is natural to
wonder whether such a derivative relationship remains valid for other
familiar shapes. At first glance, though, it does not even hold for the
square when r represents the side length. However, it holds when r
represents half of the side length, that is, the radius of the inscribed
circle.

In a similar manner, the derivative of the volume function of a sphere
is equal to the surface area, that is,

dV

dr
= A

and this relationship still holds for cubes if r represents the radius of
the inscribed sphere.
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We show that by choosing an appropriate variable to calculate volume
and area, namely

(1) r = d
V

A
,

as recently suggested by Tong [22], we can generalize the derivative
relationship to many compact regions in Rd, d � 2.

Notice that, when we consider the derivative relationship of a given
compact region, we actually consider a one-parameter family of similar
compact regions. For example, the derivative relationship for a sphere
involves considering a sphere that grows in radius, that is, a family of
spheres.

Also, we can investigate families of non-similar regions. For example,
consider a right circular cone in R3 whose base radius and height are
functions of a certain parameter s. We can calculate the volume V (s)
and the surface area A(s) as functions of s and then search for an
appropriate change of variable r(s) for which the derivative relationship
holds.

In this general case of possibly non-similar regions, we show that the
derivative relationship always holds for the change of variable

(2) r(s) =
∫

V ′(s)
A(s)

ds.

In this paper we mainly investigate one-parameter families of regions
for which the change of variable reduces to (1). We call these families
homogeneous families and we show that a family is homogeneous if
and only if its regions have the same isoperimetric ratio. In particular,
any family of similar regions is homogeneous. We also show how to
construct homogeneous families made up of non-similar regions.

The outline of this paper is as follows. In the next section we
derive the change of variable formula (2). In Section 3 we provide
characterizations of the class of homogeneous families. In Section 4 we
show how to construct such families. In Section 5 we yield a geometric
interpretation of the variable (1) for certain homogeneous families such
as families of star-like polyhedra. Finally, in Section 6 we provide
Bonnesen-type isoperimetric inequalities constructed from this latter
variable.
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Surprisingly, derivative relationships between volume and area of
compact regions have not been widely investigated. To our knowledge,
only a few researchers have worked on this interesting topic; see [10,
11, 16, 21, 22].

Throughout, we will use the notation R+ for the interval (0, +∞).

2. Derivative relationship: the general case. Let d � 2 be
an integer. Consider a one-parameter family of compact regions in Rd

with boundaries of finite measures,

F := {R(s) ⊂ Rd | s ∈ E},

where E is an open interval of the real line. We assume that with
this family is associated a strictly monotone and differentiable function
V : E → R+ and a continuous function A : E → R+ such that, for
any s ∈ E, the values V (s) and A(s) represent respectively the volume
and the surface area of region R(s).

For the sake of convenience, such a family will be called a smooth
family.

Note that for plane figures in R2, we replace the volume V (s) and
the area A(s) with the area A(s) and the perimeter P (s), respectively.

The parameter s can represent either a linear dimension, or an angle,
or may have no geometric meaning.

Example 2.1. Consider a (smooth) family of cubes in R3, with edge
length s ∈ R+. In that case the volume and area functions are clearly
given by V (s) = s3 and A(s) = 6s2, respectively. Of course, we could as
well choose any positive function φ(s) of the parameter s to represent
the edge length, thus leading to the new functions V (s) = φ(s)3 and
A(s) = 6φ(s)2. In such an alternative representation the parameter s
may have no geometric interpretation.

Let us now show that, for any smooth family, it is always possible to
find an appropriate variable of differentiation leading to the derivative
relationship between volume and surface area.
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Proposition 2.1. Let F be a one-parameter smooth family of
compact regions. Then there is a differentiable change of variable
r(s) : E → r(E), defined as

(3) r(s) :=
∫

V ′(s)
A(s)

ds, s ∈ E

and unique within an additive constant, such that

(4)
d
dr

V [s(r)] = A[s(r)], r ∈ r(E).

Proof. The sign of the derivative

(5) r′(s) =
V ′(s)
A(s)

, s ∈ E

is constant and r(s) is a differentiable change of variable from E to
r(E).

By the chain rule, we then have

d
dr

V [s(r)] = V ′[s(r)] s′(r) =
V ′[s(r)]
r′[s(r)]

= A[s(r)]

for all r ∈ r(E). The uniqueness of r(s) follows immediately from the
latter equality.

From equation (3) we immediately see that the variable of differenti-
ation r represents a linear dimension. Moreover, if V (s) and A(s) are
replaced with

Vφ(s) = V [φ(s)] and Aφ(s) = A[φ(s)],

respectively, where φ : E → φ(E) ⊆ E is a differentiable change of
variable, then r(s) is simply replaced with

rφ(s) =
∫

V ′
φ(s)

Aφ(s)
ds =

∫
V ′[φ(s)] φ′(s)

A[φ(s)]
ds =

∫
V ′(t)
A(t)

dt
∣∣∣
t=φ(s)

= r[φ(s)],
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which clearly shows that the change of variable r(s) remains stable
under any change of representation.

In Example 2.1, with the family of cubes of edge lengths s, we have

r(s) =
s

2
+ C,

for a constant C ∈ R. When C = 0, the variable r represents the
radius of the inscribed sphere. When C �= 0, this radius is given by
r − C. We then have

V [s(r)] = 8r3 and A[s(r)] = 24r2,

thus retrieving equation (4) with E = r(E) = R+.

Although the new variable r represents a length, a geometric inter-
pretation of it is not always immediate, as the following example shows.

Example 2.2. Consider a family of rectangles with fixed length a >
0 and variable width s > 0. Then we have A(s) = as, P (s) = 2s + 2a
and

r(s) =
a

2
ln(2s + 2a) + C.

In this case, no interpretation is known for the variable r.

As we will see in the subsequent sections, when the regions of F are
all similar, r takes a simpler form and can sometimes be interpreted.

Example 2.3. Consider a family of similar rectangles with length
s > 0 and width ks, where k ∈ (0, 1) is a fixed constant. Then we have
A(s) = ks2, P (s) = 2s + 2ks and

r(s) =
k

k + 1
s + C.

In this case, r is the harmonic mean of the half-length and the half-
width, i.e.,

r(s) = H

(
s

2
, k

s

2

)
+ C.
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Notice also that it is necessary that V (s) be strictly monotone in
E for r(s) to be a change of variable. In situations where V (s) is not
strictly monotone in its domain, it is necessary to partition this domain
into open subintervals E in which V (s) is strictly monotone.

Example 2.4. Consider a family of rhombi in R2 with sides of
fixed length a > 0 and a diagonal of variable length s ∈ (0, 2a). The
perimeter P (s) = 4a is constant while the area

A(s) = s

√
a2 − s2

4

is strictly increasing in (0,
√

2 a) and strictly decreasing in (
√

2 a, 2a).
In either of these subintervals, the change of variable is defined by

r(s) =
∫

A′(s)
P (s)

ds =
A(s)
4a

+ C,

for a constant C ∈ R. Fixing C = 0, we merely have A[s(r)] = 4ar
and P [s(r)] = 4a. Moreover, we can easily see that r represents half of
the radius of the inscribed circle, see final remark in Section 5.

Remark. The Minkowski’s concept of surface area, see e.g., Bonnesen
and Fenchel [6, Section 31], which is based on the derivative relationship
(4), is worth particular mention here. Let R ∈ Rd be a convex body of
volume V and surface area A. For any s > 0, the Minkowski sum

R(s) := R + sBd = {x ∈ Rd | dist(x, R) � s},

where Bd is the d-dimensional unit ball, is called the outer parallel body
of R at distance s or, equivalently, the s-neighborhood of R. According
to the Steiner formula, see e.g., Leichtweiß [15, p. 30] and Schneider
[20, Chapter 4], its volume can be expressed as a polynomial of degree
d in s, namely

V (s) =
d∑

i=0

siκi Vd−i,

where κi is the volume of the i-dimensional unit ball, with κ0 = 1, and
Vd−i is the intrinsic (d − i)-volume of R, with special cases Vd = V
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(volume of R) and κ1Vd−1 = A (area of R). It is then clear that

lim
s→+0

V (s) − V

s
= lim

s→+0

dV (s)
ds

= A

and hence, see also Guggenheimer [14, Chapter 4],

dV (s)
ds

= lim
t→+0

dV (s + t)
dt

= A(s)

since V (s + t) is the volume of the sum R(s) + tBd. We therefore
retrieve equation (4) with r = s.

3. Homogeneous families. Let F be a one-parameter smooth
family of compact regions in Rd. Assume that E = R+ and that
the parameter s represents a linear dimension of region R(s), e.g., a
diameter or an edge length. Then, under a dilation s 	→ ts, the volume
and area of that region are clearly magnified by the factors td and td−1,
respectively. This means that the functions V (s) and A(s) fulfill the
functional equations

V (ts) = tdV (s) and A(ts) = td−1A(s), s, t ∈ R+,

and hence are homogeneous functions of degrees d and d − 1, respec-
tively, i.e., of the form

V (s) = k1s
d and A(s) = k2s

d−1, s ∈ R+,

where k1 and k2 are positive constants.

Starting from this observation, Tong [22] noted that, for such homo-
geneous functions, the derivative relationship (4) holds for the change
of variable

(6) r(s) = d
V (s)
A(s)

and the new variable r also represents a linear dimension.

Note, however, that formula (6) can also be valid for families of non-
similar regions, see Example 3.1.
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Definition 3.1. A smooth family F is said to be homogeneous if the
change of variable in (6) ensures relation (4). This change of variable
is then called the inradius function of F .

The following proposition yields equivalent conditions for a smooth
family to be homogeneous.

Proposition 3.1. Let F be a smooth family of compact regions in
Rd, and let r(s) be given by equation (3). Then the following assertions
are equivalent :

i) There exists a constant C ∈ R such that

r(s) = d
V (s)
A(s)

+ C, s ∈ E.

ii) There exists a constant k > 0 such that

A(s)d = kV (s)d−1, s ∈ E.

iii) There exists a differentiable change of variable φ : E → φ(E) and
constants k1, k2 > 0 such that

V (s) = k1 φ(s)d and A(s) = k2 φ(s)d−1, s ∈ E.

Proof. i) ⇔ ii). Since V (s) is differentiable, so is A(s). Then, from
equation (5), we have

∃C ∈ R : r(s) = d
V (s)
A(s)

+ C ⇔ d
d
ds

V (s)
A(s)

=
V ′(s)
A(s)

⇔ d
d
ds

ln A(s) = (d − 1)
d
ds

ln V (s)

⇔ ∃ k > 0 : A(s)d = kV (s)d−1.

ii) ⇒ iii) For any s ∈ E, define φ(s) = V (s)1/d. Then V (s) = φ(s)d

and
A(s) = k1/d V (s)(d−1)/d = k1/d φ(s)d−1.

iii) ⇒ ii) Clear.
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According to assertion (ii), equation (6) forces the functions A(s)d

and V (s)d−1 to be linearly dependent in E. Thus, it turns out that a
family is homogeneous if and only if the isoperimetric ratio

(7) Q(s) =
A(s)d

V (s)d−1
,

introduced in Pólya [19], is a constant function on E.

On the other hand, assertion (iii) clearly means that V (s) and A(s)
are homogeneous functions of degrees d and d − 1, respectively, up
to the same change of variable φ(s). This justifies the terminology
“homogeneous family.” Clearly, this function φ(s) represents a linear
dimension and identifies with V (s)1/d up to a positive multiplicative
constant.

We have seen in the beginning of this section that any smooth family
of similar regions is homogeneous whenever the parameter s represents
a linear dimension. The following corollary shows that this property
holds even if s does not represent a linear dimension.

Corollary 3.1. If the regions of a smooth family are all similar then
the family is homogeneous.

Proof. Since the regions are all similar, the isoperimetric ratio (7),
which does not depend on the size, e.g., length of diameter, of R(s), is
a constant function on E.

Alternative proof. For any s ∈ E, let φ(s) be the diameter of region
R(s). Since the regions are all similar, the functions V (s) and A(s) are
constant multiples of φ(s)d and φ(s)d−1, respectively.

The following example shows that a homogeneous family need not be
constructed from similar regions, even if the transformation carrying
any region into any other one is angle-preserving.

Example 3.1. Consider a smooth family of hexagons whose inner
angles all have a fixed amplitude 2π/3 and the consecutive sides have
lengths a(s), b(s), c(s), a(s), b(s), and c(s), respectively. Then it can
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be easily shown that

A(s) =
√

3
2

[a(s)b(s) + b(s)c(s) + c(s)a(s)],

P (s) = 2[a(s) + b(s) + c(s)].

By choosing a(s) = 1, b(s) = s2, and c(s) = (s+1)2, where s ∈ R+, we
see that this particular family of hexagons is homogeneous. Moreover,
even though the interior angles are fixed, the hexagons are not similar
since the functions a(s), b(s), and c(s) are not linearly dependent.

Before closing this section, let us present an alternative interpretation
of homogeneous families.

Introduced in economics, the concept of elasticity is defined as the
proportional (or percent) change in one variable relative to the propor-
tional change in another variable. For example, the price elasticity of
demand measures the change in quantity demanded with respect to the
change in price.

Applying this concept to the volume function V (s) and the inradius
function r(s), defined in equation (6), we can define the r-elasticity of
volume as the proportional change in volume relative to the propor-
tional change in the linear dimension r, that is, in view of equation (5),

eV,r(s) :=
dV (s)/V (s)
dr(s)/r(s)

=
V ′(s)
r′(s)

r(s)
V (s)

=
r(s) A(s)

V (s)

and we observe immediately that a smooth family is homogeneous if
and only if

eV,r(s) = d.

Considering the family of rhombi in Example 2.4, we simply have
eA,r(s) = 1, which shows that the elasticity may be constant while
being different from d. Notice also that a unit elasticity means that if
r increases by x percent then so does the area.

4. Finding homogeneous families. Consider an n-parameter
family of compact regions in Rd with boundaries of finite measures,

C := {R(x) ⊂ Rd | x ∈ F},
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where F := F1 × · · · × Fn is the product of n open intervals of the
real line. We assume that with this family is associated a differentiable
function V : F → R+ and a continuous function A : F → R+ such
that, for any x ∈ F , the values V (x) and A(x) represent respectively
the volume and the surface area of region R(x).

We will call such a family an n-parameter smooth family.

Example 4.1. The class of all parallelograms in R2 can be regarded
as a three-parameter smooth family of compact figures, which can
be parameterized by side lengths x1 > 0 and x2 > 0, and an angle
x3 ∈ (0, π). In this case the corresponding area and perimeter functions
are respectively given by

A(x) = x1x2 sin x3 and P (x) = 2x1 + 2x2.

In this section we investigate the following problem. Given an n-
parameter family C as defined above, find homogeneous subfamilies, if
any.

More formally, we are searching for differentiable curves

(8) x : E → F,

with an appropriate open real interval E, such that the one-parameter
family

{R[x(s)] | s ∈ E}
is smooth and homogeneous.

Clearly, smoothness is ensured as soon as the function V [x(s)] is
strictly monotone in E. According to Proposition 3.1, homogeneity is
ensured if, see equation (7),

Q[x(s)] = k, s ∈ E

for some k > 0, where Q(x) := A(x)d/V (x)d−1. This means that the
equation

Q(x) = k, x ∈ F
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represents a level hypersurface in F and each differentiable curve (8)
along that hypersurface represents a homogeneous family associated
with the constant k.

The admissible values of k are given by the well-known d-dimensional
isoperimetric inequality, see e.g., [2, 7, 8], which states that if R is a
compact domain in Rd with piecewise smooth boundary, then

(9)
Ad

V d−1
� dd κd

where V and A are respectively the volume and the area of R and

κd :=
πd/2

Γ(d/2 + 1)

is the volume of the d-dimensional unit ball. Here the equality sign in
(9) holds if and only if R is the d-dimensional unit ball.

Thus, the constant k is bounded below by dd κd. For example, for
d = 2 and d = 3, this lower bound is given by 4π and 36π, respectively.

For a particular n-parameter smooth family C of regions in Rd, we
have to refine the lower bound of constant k by calculating

kmin(C) = inf
x∈F

Q(x)

which, of course, does not depend on the parameterization of family C.

For example, if C is the class of all n-gons in R2, we have

kmin(C) = 4n tan(π/n)

and this bound is achieved for the regular n-gons. In other words, the
isoperimetric inequality for n-gons R in R2 is

P 2

A
� 4n tan(π/n)

with equality if and only if R is regular. In Table 1 we list results
for some other examples. See also Florian [12] and Mitrinović et al.
[17, Chapter 20] for recent surveys on isoperimetric inequalities for
polytopes.
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TABLE 1. Isoperimetric ratios for various regions.

d Class C Optimal regions kmin(C)

2 triangles equilateral triangles 12
√

3

2 right triangles isosceles triangles 2(2+
√

2)2

2 n-gons regular n-gons 4n tan(π/n)

3 rectangular parallelepipeds cubes 216

3 right circular cylinders height = diameter 54π

3 right circular cones height =
√

2 × diameter 72π

3 right square pyramids height =
√

2 × side 288

3 regular tori apples with r1 = r2 16π2

Example 4.2. Coming back to Example 4.2 with the class C of all
parallelograms in R2, we have kmin(C) = 16. For example, if we fix
k = 32, x1(s) =

√
s and x2(s) = s −√

s, then the third function x3(s)
must be given by

x3(s) = arcsin
s/8√
s − 1

throughout the open interval E = (24−16
√

2, 24+16
√

2). Interestingly,
we observe that in this case

A[x(s)] = s2/8 and P [x(s)] = 2s

are homogeneous functions.

Let us now investigate an interesting case. Let m be an integer such
that 1 � m � n and suppose that the volume and area functions
associated with the family C are homogeneous of degrees d and d − 1
in the first m variables, i.e., they fulfill the functional equations

V (tx1, . . . , txm, xm+1, . . . , xn)
= tdV (x1, . . . , xm, xm+1, . . . , xn)(10)

A(tx1, . . . , txm, xm+1, . . . , xn)
= td−1A(x1, . . . , xm, xm+1, . . . , xn)(11)

for all t ∈ R+ and all x ∈ F , where F1 = · · · = Fm = R+. For example,
the first m variables x1, . . . , xm might represent linear dimensions and
the remaining variables xm+1, . . . , xn might represent angles.
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Note that these functions are necessarily of the form, see e.g., Aczél
and Dhombres [1, Chapter 20],

V (x1, . . . , xm, xm+1, . . . , xn) = xd
1 f

(
x2

x1
, . . . ,

xm

x1
, xm+1, . . . , xn

)

A(x1, . . . , xm, xm+1, . . . , xn) = xd−1
1 g

(
x2

x1
, . . . ,

xm

x1
, xm+1, . . . , xn

)

where f : F2×· · ·×Fn → R+ and g : F2×· · ·×Fn → R+ are arbitrary
continuous functions (constants if n = 1).

Now, by using equations (10) and (11) with t = 1/x1, we immediately
see that the homogeneity condition

Q[x(s)] = k, s ∈ E,

which must hold for some k � kmin(C), is equivalent to the condition

(12) Q[z(s)] = k, s ∈ E,

where

zi(s) :=

⎧⎨
⎩

xi(s)
x1(s)

if i � m,

xi(s) else.

Thus the homogeneity condition is ensured whenever we can find a
differentiable curve z : E → F , with z1(s) = 1, fulfilling (12). Note
that when n = 2, (12) becomes

Q[1, z2(s)] = k, s ∈ E

and, if the left-hand side is constant in no open subinterval of E then
z2(s) generally takes on a finite number of possible values.

Example 4.3. Consider the two-parameter class of rectangles in R2.
They can be parameterized, e.g., either by the length x1 ∈ R+ and the
width x2 ∈ R+, or by the half-diagonal x1 ∈ R+ and the angle between
the diagonals x2 ∈ (0, π/2). In either case, the homogeneity condition
leads to considering only similar rectangles.
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Remark. As the searching of homogeneous subfamilies is based
only on the volume and area functions, they do not depend on the
parameterization used to describe the n-parameter family.

5. Geometric interpretations of the inradius function. As
we already observed in Example 2.2, a geometric meaning of the
variable of differentiation r is not always apparent. However, for some
homogeneous families, where r(s) is the inradius function, given by
equation (6), interpretations can be found.

For example, Emert and Nelson [11] proved that, for any family of
similar circumscribing polytopes, the variable r represents the radius
of the inscribed sphere, that is, the inradius. For an earlier work on
regular polytopes, see Miller [16].

Interestingly, Cohen [9] showed that, for any d-dimensional circum-
scribing polytope of inradius r and area A, its volume is given by

V =
r

d
A

which corresponds to Tong formula for similar circumscribing poly-
topes.

Other examples have been discussed recently by Dorff and Hall [10].
Among these, we have the following remarkable result, that was shown
for families of similar regions in R2 and R3. We state this result in
Rd and for homogeneous families. Also, equation (13) was previously
unknown.

Proposition 5.1. Let F be a homogeneous family of n-faced poly-
hedra R(s) that are star-like with respect to a point T (s) in the interior
of R(s). Let Pi(s) be the pyramid whose base is the ith facet of R(s)
and whose vertex is T (s). Then

r(s) =
n∑

i=1

Ai(s)
A(s)

ri(s)(13)

and

1
r(s)

=
n∑

i=1

Vi(s)
V (s)

1
ri(s)

(14)
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where Vi(s), Ai(s) and ri(s) are respectively the volume of Pi(s), the
surface area of the base of Pi(s) and the altitude from T (s) of Pi(s).

Proof. Since Pi(s) is a d-dimensional pyramid, we have

Vi(s) =
1
d

Ai(s)ri(s).

Then, as the family is homogeneous, we have, by (6),

r(s) = d
V (s)
A(s)

= d

n∑
i=1

Vi(s)
A(s)

=
n∑

i=1

Ai(s)
A(s)

ri(s),

which proves (13) and

1
r(s)

=
1
d

A(s)
V (s)

=
1
d

n∑
i=1

Ai(s)
V (s)

=
n∑

i=1

Vi(s)
V (s)

1
ri(s)

,

which proves (14).

Equation (13) simply means that the variable of differentiation r(s)
is the arithmetic mean of the altitudes from T (s) of the pyramids Pi(s),
weighted by the relative areas of the corresponding facets. Similarly,
equation (14) means that r(s) is the harmonic mean of the altitudes
from T (s) of the pyramids Pi(s), weighted by the relative volumes of
these pyramids. Particularly, these both means do not depend upon
the choice of T (s).

Clearly, Proposition 5.1 generalizes Emert and Nelson’s result and
gives an interpretation of the Tong inradius (6) as an average inradius
for non-circumscribing star-like regions. In some sense this justifies the
terminology “inradius function.”

For convex polytopes, equation (13) can be generalized as follows.
Let R ⊆ Rd be an n-faced convex polytope, and let hR : Rd → R be
its support function:

hR(u) = max{x · u | x ∈ R},
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where · denotes the standard inner product on Rd. Then, assuming
that R has facet unit normals u1, . . . , un and corresponding facet areas
A1, . . . , An, we have, see e.g., Leichtweiß [15, p. 22],

VR =
1
d

n∑
i=1

Ai hR(ui).

Considering a homogeneous family of polytopes, we have immediately

r(s) =
n∑

i=1

Ai(s)
A(s)

hR(s)[ui(s)],

showing that r(s) is the weighted arithmetic mean of the functions
hR(s)[ui(s)].

Notice that any compact star-like set K can be approximated ar-
bitrarily closely by star-like polyhedra {Pi} so that the volume and
surface of the Pi tend in the limit to the volume and area of K. So the
above results of this section can be easily extended to compact star-like
sets.

The harmonic mean is also encountered when considering a right
cylinder in Rd obtained by appropriately lifting a region embedded in
Rd−1.

Proposition 5.2. Let Fd−1 be a homogeneous family of compact
regions in Rd−1 with inradius function rd−1(s). Consider the homoge-
neous family Fd of right cylinders in Rd obtained by orthogonally lifting
each region of Fd−1 to a height of 2r(s). Then the inradius function of
Fd is given by

rd(s) = Hd[rd−1(s), . . . , rd−1(s), r(s)],

where Hd is the d-variable symmetric harmonic mean.

Proof. The result immediately follows from the equalities

Vd(s) = 2 Vd−1(s) r(s)
Ad(s) = 2 Vd−1(s) + 2Ad−1(s) r(s)

= 2 Vd−1(s) + 2(d − 1)
Vd−1(s)
rd−1(s)

r(s),
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where Vd−1(s), Ad−1(s), Vd(s) and Ad(s) denote the volume and area
functions of Fd−1 and Fd, respectively.

Remark. It can be easily proved that the function A(s) of a one-
parameter smooth family F is constant if and only if

r(s) =
V (s)
A(s)

+ C.

When C = 0, the function r(s) identifies with one dth of the inradius
function and the elasticity eV,r(s) is one. If, moreover, the regions are
star-like n-faced polyhedra as in Proposition 5.1, then equations (13)
and (14) become respectively

r(s) =
1
d

n∑
i=1

Ai(s)
A(s)

ri(s)

and

1
r(s)

= d

n∑
i=1

Vi(s)
V (s)

1
ri(s)

Example 2.4 illustrates these latter two formulas.

6. Bonnesen-style inequalities with Tong inradius. Let R be
any compact plane figure in R2 with piecewise smooth boundary. De-
note by P and A its perimeter and area, respectively. The isoperimetric
inequality (9) ensures that the quantity

P 2 − 4 πA,

known as the isoperimetric deficit of R, is nonnegative. Bonnesen [3, 4,
5, 13] found lower bounds for the isoperimetric deficit by establishing
the following inequalities:

P 2 − 4 πA � (P − 2 πr)2,

P 2 − 4 πA �
(

A

r
− πr

)2

,
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where r is the radius of any circle inscribed in R. Interestingly,
Osserman [18] proved that these inequalities are each algebraically
equivalent to

rP � A + πr2.

It is a simple routine that all these inequalities still hold when r is
the Tong inradius r = 2(A/P ).

For a general dimension d, we have the following result.

Proposition 6.1. Let R be a compact domain in Rp with piecewise
smooth boundary. Denote by A and V its area and volume, respectively,
and let r = d (V/A) be its Tong inradius. Then we have

Ad − dd κdV
d−1 � (A − d κd rd−1)d,(15)

Ad − dd κdV
d−1 �

(
V

r
− κd rd−1

)d

,(16)

and

(17) rA � V + (d − 1) κd rd.

Proof. Inequality (15) is immediate if we observe that the right-hand
side writes

(
A − dd κd

V d−1

Ad−1

)d

=
1

Ad(d−1)

(
Ad − dd κd V d−1

)d

.

The other inequalities are routine.

7. Conclusion. We have explored the idea of the derivative of
the volume of a region in Rd with respect to some variable r equaling
its surface area for homogeneous families. This area of investigation
is intriguing and appears not to have been previously studied. We
have just skimmed the surface, and there are a lot of questions to be
answered. For example, what other geometric interpretations are there
for the inradius function?
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