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ON LINEAR MEANS
OF MULTIPLE FOURIER INTEGRALS

DEFINED BY SPECIAL DOMAINS

E. LIFLYAND AND A. NAKHMAN

ABSTRACT. Weak and strong estimates in weighted Lp

spaces are obtained for linear means of Fourier integrals de-
fined by a single function with support in a specially organized
set.

Introduction. For a function f integrable on the n-dimensional
Euclidean space Rn, written f ∈ L1(Rn), its Fourier transform is well
defined

f̂(x) =
∫
Rn

f(u)e−ixu du,

where x = (x1, x2, . . . , xn), u = (u1, u2, . . . , un) ∈ Rn and xu =
x1u1 + x2u2 + · · ·+ xnun. Let∫

D

f̂(x)eiux dx

be the partial Fourier integral defined by a set D. The behavior of
partial Fourier integrals with respect to a specifically organized family
of such sets characterizes approximation properties of f . It is natural
to define such a family as a sequence of dilations of a fixed set D. This
has been extensively studied when D is the cube (cubic case)

D = {x ∈ Rn : |xj | ≤ 1, j = 1, 2, . . . , n},
or the ball (spherical case)

D = {x ∈ Rn : |x| = (x2
1 + x2

2 + · · ·+ x2
n)

1/2 ≤ 1}.
Their R-dilations are

RD = {x ∈ Rn : |xj | ≤ R, j = 1, 2, . . . , n}
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and
RD = {x ∈ Rn : |x| ≤ R},

respectively. The other example of a family of sets is the family of
rectangles

{x ∈ Rn : |xj | ≤ Rj , Rj > 0, j = 1, 2, . . . , n}

that cannot be expressed as a family of dilations of a fixed set. Numer-
ous results on these (as well as references) may be found, e.g., in [12,
Chapter 17] or [11], where similar problems are studied for multiple
Fourier series as well.

In this paper we consider linear means of multiple Fourier integrals
rather than partial sums. We define them by the family of dilations of
a set D from some special class. The latter is closer to the spherical
case rather than to the other ones. The estimates are obtained for the
weighted Lp spaces.

The outline of the paper is as follows. In Section 1 we give necessary
preliminaries and formulate main results. In Section 2 auxiliary results
are given. In Section 3 we prove the main results. In the next section
we give some concluding remarks and commentaries.

1. Notation and main results. Given functions u(x) ≥ 0,
ω(x) ≥ 0 measurable on each cube Π(θ, 0) = {x : |xj | ≤ θ, θ > 0, j =
1, 2, . . . , n} and a set G of either finite or infinite Lebesgue measure,
associate with them the measure

µ(G) =
∫

G

u(x) dx

and the numbers

Au,ω
p (G) = µ(G)

(∫
G

ω−1/(p−1)(x) dx
)p−1

, p > 1,

and

Au,ω
1 (G) = µ(G)ess sup

x∈G

1
ω(x)

.
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Define the weighted Lp
ω space, p ≥ 1, as the space of functions g

endowed with the norm

‖g‖p,ω =
( ∫

Rn

|g(x)|pω(x) dx
)1/p

< ∞.

As in [5], we take 0 · ∞ = 0. If ω ≡ 1, we obtain Lp
ω = Lp, the usual

Lp space.

Let D be a convex domain with nowhere vanishing principal curva-
tures of its boundary ∂D. Let D have compact closure with ∂D being
a Ck-smooth hypersurface, k ≥ 1.

Set
E = E(M,x) = {u : x− u ∈ MD}.

We write (u, ω) ∈ Ap, p ≥ 1, if a constant C > 0 exists such that for
any E = E(M,x)

(1) Au,ω
p (E) ≤ C|E|p,

and ω ∈ Ap for u = ω; here and in what follows |E| means the Lebesgue
measure of E.

Throughout the paper we denote by C various constants, which are
independent of functions f and parameters R,M, k (all of which will be
introduced in the course of the work). We use subindices to emphasize
the dependence of such constants on certain parameters, say Cp, Cη,
etc.

A condition of type (1) was first introduced by Muckenhoupt [5] for
weighted estimates of Hardy maximal functions.

Let λ be a function whose support is the closure of D and that is
Ck-smooth inside D, of the form

(2) λ(x) = ρ(x)αϕ(x),

where ϕ ∈ Ck(Rn) and does not vanish on ∂D and ρ is a regularized
distance to the boundary (see [10, Chapter 6, Theorem 2]), that is,
ρ ∈ C∞ outside ∂D and

C1dist (x, ∂D) ≤ ρ(x) ≤ C2dist (x, ∂D)
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for some positive constants C1 and C2. In addition, assume that
ρ(x) = 0 when x /∈ D.

Define the linear means of the Fourier integral

(3) σR(f ;x) = σR(f ;x;λ) = (2π)−n

∫
Rn

f(x− s)Rnλ̂(−Rs) ds.

Indeed, for f smooth enough we have, by Fubini’s theorem,

σR(f ;x) = (2π)−n

∫
Rn

f(x− s)Rnλ̂(−Rs) ds

= (2π)−n

∫
Rn

f(x− s)Rn

∫
Rn

λ(v)eiRsv dv ds

= (2π)−n

∫
Rn

f(x− s)
∫
Rn

λ(v/R)eivs dv ds

= (2π)−n

∫
Rn

λ(v/R)eixv dv

∫
Rn

f(s)e−ivs ds

= (2π)−n

∫
Rn

λ(v/R)f̂(v)eixv dv,

that is, the linear means are defined in a usual (multiplier) way. We
see that they are defined by means of the function λ that, in turn,
strongly depends on geometric properties of D. We will write σR(f) if
the argument is of no importance for us. The representation (3) is a
usual way to avoid problems of definition of the Fourier transform of
f .

In this paper we are going to restrict ourselves to the case α >
(n − 1)/2. By this (3) is a generalization of the Bochner-Riesz means
of order greater than critical one, (n−1)/2. They were first introduced
in the celebrated Bochner’s paper [1]. In our notation this is the case
when D = {x : |x| ≤ 1} and λ(x) = (1− |x|2)α+.
Also we fix arbitrary k which satisfies k > α+(n−1)/2. We need the

following notation convenient for presentation of weak type estimates:

Sg = Sg(ξ) = {x : |g(x)| > ξ > 0}.

We will prove the following results. Set

σ∗(f ;x) = sup
R>0

|σR(f ;x)|.
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Theorem 1. Let ω ∈ Ap. Then

i) µ(Ss∗ ≤ Cξ−p‖f‖p
p,ω , p ≥ 1;

ii) ‖σ∗(f)‖p,ω ≤ C‖f‖p,ω, p > 1.

iii) If we have in addition

(4) λ(0) = 1

then
lim

R→∞
σR(f ;x) = f(x)

µ-almost everywhere for each f ∈ Lp
ω, p ≥ 1.

Theorem 2. Let (u, ω) ∈ Ap, p ≥ 1; then

(5) ‖σR(f)‖p,u ≤ C‖f‖p,ω, p > 1.

If, in addition, (4) and Au,ω
p (Rn) < ∞ are satisfied, then for every

f ∈ Lp
u ∩ Lp

ω the estimate (5) is equivalent to

(6) lim
R→∞

‖σR(f)− f‖p,u = 0.

2. Auxiliary results. First let us give the following asymptotic
estimate for λ (see [4, Theorem 3] or [9]).

Theorem A. Let α > 0, k > max(1, (n − 1)/2 + α), η ∈ Rn be a
unit vector and x+(η) and x−(η) be the (uniquely defined) points of ∂D
at which the function ηx = η1x1 + · · · + ηnxn attains maximum and
minimum on ∂D, respectively. Then, for t → ∞,

λ̂(tη) = t−α−(n+1)/2[eitx+(η)ηΞ+
+ eitx−(η)ηξ−

+ o(1)],

where

Ξ± = e±πi(2α+n+1)/4ϕ(x±)(κ±)−1/2(2π)(n−1)/2Γ(α+ 1),

the remainder term is small uniformly in η, and κ
± are the Gaussian

curvatures of ∂D at the points x±, respectively.
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Observe that for α > (n− 1)/2 the Fourier transform λ̂ is integrable
on Rn; we also have k > α + (n − 1)/2 which justifies the above
specification.

Set
fM (x) =

1
|E(M,x)|

∫
E(M,x)

|f(u)| du,

and
f∗(x) = sup

M>0
fM (x).

Lemma 1. The following inequality

σ∗(f ;x) ≤ Cn,αf
∗(x)

holds.

Proof. For R|s| small enough, it suffices to make use of the following
inequality

(7)
∣∣∣∣
∫
Rn

λ(u)eiRsu du

∣∣∣∣ =
∣∣∣∣
∫

D

λ(u)eiRsu du

∣∣∣∣ ≤ C,

while for R|s| large enough, Theorem A yields

(8)
∣∣∣∣
∫
Rn

λ(u)eiRsu du

∣∣∣∣ ≤ C(R|s|)−α−(n+1)/2.

We have

(9)

σR(f ;x) = (2π)−n

∫
E(2M /R,0)

f(x− s)Rnλ̂(−Rs) ds

+ (2π)−n
∞∑

k=M

∫
Dk(R)

f(x− s)Rnλ̂(−Rs) ds

where Dk(R) = E(2k+1/R, 0) \E(2k/R, 0) and M is such that x− s ∈
E(2M/R, 0). For the first integral on the righthand side of (9) we have
by (7)

(10)
∣∣∣∣
∫

E(2M /R,0)

f(x− s) dsRnλ̂(−Rs)
∣∣∣∣

≤ C
1

|E(2M/R, 0)|
∫

E(2M /R,0)

|f(x− s)| ds ≤ Cf2M /R(x).
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Furthermore, by (8),

(11)
∣∣∣∣
∫
Dk(R)

f(x− s) dsRnλ̂(−Rs)
∣∣∣∣

≤ R(n−1)/2−α

∫
Dk(R)

|f(x− s)||s|−a−(n+1)/2 ds

≤ CR(n−1)/2−α(2k/R)−α−(n+1)/2

∫
E(2k+1/R,0)

|f(x− s)| ds

≤ CRn2−k(α+(n+1)/2)

∫
E(2k+1/R,0)

|f(x− s)| ds

≤ CRn2−k(α+(n+1)/2)(2k+1/R)n
1

|E(2k+1/R, 0)|
·
∫

E(2k+1/R,0)

|f(x− s)| ds

≤ C2k((n−1)/2−α)f2k+1/R(x).

It follows from the representation (9) and estimates (10) and (11)

(12) σ∗(f, x) ≤ C

{
1 +

∞∑
k=M

2k((n−1)/2−α)

}
f∗(x) ≤ Cn,αf

∗(x),

since the series in (12) converges just for α > (n− 1)/2. The lemma is
proved.

Lemma 2. Let ω ∈ Ap.

i) If p ≥ 1, then

(13) µ(Sf∗) ≤ Cξ−p‖f‖p
p,ω

ii) For p > 1,

(14) ‖f∗‖p,ω ≤ Cp‖f‖p,ω.

Proof. This assertion is proved in [3] with f∗ and Ap defined by
means of the cubes

(15) Π(M,x) = {u ∈ Rn : |uj − xj | ≤ M, j = 1, 2, . . . , n}.
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It remains to observe that two positive constants C1 and C2 exist,
C1 < C2, such that

(16) C1 ≤ |Π(M,x)|/|E(M,x)| ≤ C2.

Lemma 3. Let (u, ω) ∈ Ap, p ≥ 1. Then

‖fM‖p,u ≤ C‖f‖p,ω.

Proof. If fM (x) and Ap are defined by means of the cubes (15)
provided that f is a periodic function, this assertion is proved in [7] (as
an extension of the corresponding one-dimensional assertion proved in
[6]). This proof remains valid for the nonperiodic case as well. The
results follows now from relation (16).

Observe that in Lemmas 2 and 3 as well as in what follows, if (u, ω) ∈
Ap, we have f ∈ L1 on each cube Π(θ, 0). Indeed, |f | = |f |ω1/pω−1/p,
and it follows by Hölder’s inequality that

(17)
∫

Π(θ,0)

|f(x)| dx ≤ ‖f‖p,ω

( ∫
Π(θ,0)

ω−1/(p−1)(x) dx
)(p−1)/p

.

The integral on the right-hand side of (17) is finite; otherwise, by the
Ap condition, we have u ∼ 0 and the assertions of Lemma 3 and below
are trivial.

3. Proofs of the main results.

Proof of Theorem 1. The assertions i) and ii) immediately follow
from Lemma 1 and (13), (14), respectively. To prove iii), a standard
argument is used. First, observe that the integral

(2π)−n

∫
Rn

Rnλ̂(−Rs) ds = (2π)−n

∫
Rn

λ̂(−s) ds = 1,
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because of the condition (4). Since the Fourier transform of λ is
integrable, the Lebesgue constants are uniformly bounded, and by
Theorem 1.18 from [11]

(18) ess sup
x∈Rn

|g(x)− σR(g;x)| = o(1),

as R → ∞, for any continuous function g with compact support.
Approximating f by such functions g in Lp

ω-norm and denoting φ =
f − g, we arrive at the estimate

|σR(f, x)− f(x)| ≤ o(1) + σ∗(φ, x) + |φ(x)|

which holds almost everywhere. By i) and Chebyshev’s inequality, the
sum σ∗(φ, x) + |φ(x)| is small up to a set of small µ-measure. This
completes the proof of Theorem 1.

Proof of Theorem 2. The assertion (5) follows from Lemma 3,
representation (9), estimates (10), (11) and Minkowski’s inequality for
integrals.

Now let f ∈ Lp
u ∩ Lp

ω. If we approximate f in the Lp
u norm by a

continuous function g with compact support, then by (18)

(19) ‖σR(f, x)− f(x)‖p,u ≤ o(1)
( ∫

Rn

u(x) dx
)1/p

+ ‖σR(φ)‖p,u + ‖φ‖p,u.

The integral
∫
Rn u(x) dx is finite provided Au,ω

p (Rn) < ∞. Indeed,
otherwise ω = ∞ almost everywhere, and thus f ∈ Lp

ω leads to the
trivial case f = 0 almost everywhere; the second assertion of Theorem 2
is trivial in this case. The additional assumption of Theorem 2 yields

(20) ‖f‖p,u ≤ C‖f‖p,ω.

This inequality was proved in [7] for f ∈ Lp
u ∩ Lp

ω with support in
Π(θ, 0); here θ is arbitrary and C does not depend on f . Then we
obtain (20) as θ → ∞. To obtain (6), it now remains now to combine
(5), (19) and (20).
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The converse implication (6) ⇒ (5) is provided by the Banach-
Steinhaus theorem since, for each R, the operator σR taking Lp

ω into
Lp

u is bounded. Indeed, as in the proof of Lemma 1,

‖σR(f)‖p
p,u ≤ C

∫
Rn

[ ∫
Rn

|f(x− s)|Rn|λ̂(−Rs)| ds
]p

u(x) dx

≤ CRnpµ(Rn)
( ∫

Rn

|f(s)| ds
)p

,

and by Hölder’s inequality,

‖σR(f)‖p
p,u ≤ CRnpµ(Rn)

[ ∫
Rn

|f(s)|pω(s) ds
]

·
[ ∫

Rn

ω−1/(p−1)(s) ds
]p−1

≤ CRnpAu,ω
p (Rn)‖f‖p

p,ω,

which completes the proof.

4. Concluding remarks.

Remark 1. Of course, the case u = ω ≡ 1, that is, Lp
ω = Lp, is of

special interest. Note that Theorem 1 is true for ω ≡ 1 as well. As
for (6), the condition Au,ω

p (Rn) < ∞ is no longer valid for u = ω ≡ 1;
nevertheless, (6) follows from (5) by the same Theorem 1.18 from [11].

Remark 2. Similar results are true for the linear means of multiple
Fourier series defined by λ:∑

k∈Zn

λ(k/R)f̂(k)eikx,

where f is a 2π-periodic function in each variable, and

f̂(k) = (2π)−n

∫
Tn

f(x)e−ikx dx,

T = (−π, π], is its kth Fourier coefficient. The same tools can be
involved with the help of the Poisson summation formula (see, e.g.,
[11, Chapter 7]).
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We mention that in the case of L1-space, precise estimates from above
were obtained in [2] and from below in [4].

Remark 3. For dimension 2 in a special case when D is an ellipse
and λ is elliptically symmetric, more subtle estimates were obtained
in [8]. The point is that Theorem A gives estimates of the Fourier
transform only in power scale, while in the special case considered in
[8] less restrictive assumptions were posed on λ. Any improvement
of Theorem A will lead to an immediate extension of Theorem 1 to a
wider class of linear means defined by λ.

Remark 4. The “strong” two-weighted norm estimate

‖σ∗(f)‖p,u ≤ C‖f‖p,ω

does not follow from (u, ω) ∈ Ap, u �= ω. The same fact was mentioned
by Muckenhoupt [5] for maximal function f∗(x), where f ≥ 0 and
f∗(x) and the Ap-condition are defined by means of the cubes Π(M,x).
Hence, to prove our assertion, it remains to establish the equivalence
(two-sided estimate)

σ∗(f, x)*
�

f∗(x)

for some λ and D. Consider D = {x ∈ Rn : |x| ≤ 1} and the Bochner-
Riesz means

λ(x) = (1− |x|2)α+, α >
n− 1
2

.

In view of Lemma 1, it suffices to prove only the estimate

(21) σ∗(f, x) ≥ Cf∗(x), C > 0.

Apply the relations (see, e.g., [11, Chapter 4, Theorem 4.15]):

(22) λ̂(s) ≥ Cα|s|−(n/2+α)Jn/2+α(2π|s|), Cα > 0,

where Jk(s) are the Bessel functions and Jk(s) ≥ Csk for s small
enough, k ≥ 0. The estimate (22) holds for λ̂(−Rs), s ∈ E(M,x),
if R = C/M . Hence, for every f(s) > 0 with support in E(M, 0), we
obtain

σ∗(f, x) ≥ |σR(f, x)| > (2π)−n

∫
E(M,0)

f(s)Rnλ̂(−R(x− s)) dx

> CfM (x).
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This inequality yields (21).
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