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AN INVERSE TO THE
ASKEY-WILSON OPERATOR

MOURAD E.H. ISMAIL AND MIZAN RAHMAN

ABSTRACT. We study properties of the kernel of a right
inverse of the Askey-Wilson divided difference operator on L2

weighted with the weight function of the continuous q-Jacobi
polynomials. This operator is embedded in a one-parameter
family of integral operators, denoted by D−t

q whose kernel is

related to the Poisson kernel. It is shown that as t → 1−,
the t-commutator (DqD−t

q − tD−t
q Dq)f tends to the constant

term in the orthogonal expansion of f in continuous q-Jacobi
polynomials.

1. Introduction. Given a function f(x) with x = cos θ, then f(x)
can be viewed as a function of eiθ. Let

(1.1) f̆(eiθ) := f(x), x = cos θ.

In this notation the Askey-Wilson divided difference operator Dq [4] is
defined by

(1.2) (Dqf)(x) :=
f̆(q1/2eiθ) − f̆(q−1/2eiθ)
ĕ(q1/2eiθ) − ĕ(q−1/2eiθ)

,

where e(x) = x. It follows easily from (1.2) that

(1.3) (Dqf)(x) =
f̆(q1/2eiθ) − f̆(q−1/2eiθ)
i(q1/2 − q1/2) sin θ

.

The operator Dq was introduced in [4] and is a q-analogue of the
differentiation operator d/dx. Note that Dq remains invariant if q is
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replaced by 1/q. In this work we will avoid having q on the unit circle;
thus, there is no loss of generality in assuming |q| < 1.

The integral operator
∫ x

a
is a right inverse to d/dx. Recall that the

Chebyshev polynomials of the first and second kinds, respectively, are

(1.4) Tn(cos θ) = cosnθ, Un(cos θ) =
sin(n+ 1)θ

sin θ
.

Brown and Ismail utilized the fact

DqTn(x) = q−(n−1)/2 1 − qn
1 − q Un−1(x)

to define a right inverse to Dq on L2[−1, 1, (1 − x2)1/2] through the
action of the inverse operator on the Chebyshev polynomials of the
second kind, that is, they sought formal expansions of f and g, (f =
D−1

q g) in the form

(1.5) f(x) ∼
∞∑

n=0

fnTn(x), g(x) ∼
∞∑

n=1

gnUn−1(x),

so that

(1.6) fn = q(n−1)/2 1 − q
1 − qn gn, n > 0.

A straightforward calculation [6] gives the following expression

(1.7) D−1
q g(cos θ) =

1 − q
4πq1/2

∫ π

−π

ϑ′4((θ − φ)/2|q1/2)
ϑ4((θ − φ)2|q1/2)

g(cosφ) sinφ dφ,

where ϑ4 is the Jacobian theta function [15]

(1.8)

ϑ4(θ|q) = 1 + 2
∞∑

n=1

(−1)nqn
2

cos 2nθ

=
∞∏

n=0

(1 − q2n+2)(1 + 2q2n+1 cos 2θ + q4n+2).
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Brown, Evans and Ismail [7] defined a q-differentiable function f on
the space L2[(1 − x2)−1/2], |x| ≤ 1, as a function that has Fourier-
Chebyshev expansions f(x) ∼ ∑∞

n=0 fnTn(x) with the property that

(1.9)
∞∑

n=0

|q−n/2(1 − qn)fn|2 <∞,

and its q-derivative defined as

(1.10) Dqf(x) =
∞∑

n=1

q(n−1)/2 1 − qn
1 − q fnUn−1(x).

Clearly the polynomials form a dense subset of L2[(1 − x2)−1/2], and
their image under Dq is a dense subset of L2[(1 − x2)1/2].

In a later paper [12], Ismail and Zhang extended these results to
subsets of L2[wβ(x|q)] for Dq and of L2[wβq(x|q)] for D−1

q , where

(1.11) wβ(x|q) =
(e2iθ, e−2iθ; q)∞

(βe2iθ, βe−2iθ; q)∞
1√

1 − x2 , x = cos θ,

the infinite products above being defined through the q-shifted factori-
als. We shall follow the notation in [9] and [1].

In [12], the kernel of D−1
q was found to be

Kβ(x, y|q) =
(1 − q)(q, q2β2; q)∞

4π(β, βq; q)∞

(1.12)

×
∞∑

n=1

1 − βqn
(q2β2; q)n−1

(q; q)n−1q
(n−1)/2

× Cn(x;β|q)Cn−1(y;βq|q),
where
(1.13)

Cn(cos θ;β|q) =
n∑

k=0

(β; q)k(β; q)n−k

(q; q)k(q; q)n−k
ei(n−2k)θ

=
(β2; q)n

(q; q)n
β−n/2

4φ3

(
q−n, β2qn, β1/2eiθ, β1/2e−iθ

βq1/2,−β,−βq1/2

∣∣∣∣q, q
)
,
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are the continuous q-ultraspherical polynomials, see [2, 9] and r+1φr

is a basic hypergeometric series whose properties are stated in detail in
[9]. A further extension was made by Ismail, Rahman and Zhang [10]
by taking the operator Dq on the space L2[wα,β(x|q)], and the inverse
operator D−1

q on L2[wα+1,β+1(x|q)], where
(1.14)

wα,β(x|q2) =
(e2iθ, e−2iθ; q2)∞/ sin θ

(qα+1/2eiθ, qα+1/2e−iθ,−qβ+1/2eiθ,−qβ+1/2e−iθ; q)∞
,

0 ≤ θ ≤ π, is the weight function for the continuous q-Jacobi polyno-
mials of Askey and Wilson [9, 4]:

(1.15) P (α,β)
n (x|q)

=
(qα+1; q)n

(q; q)n
4φ3

(
q−n, qn+α+β+1, q(2α+1)/4eiθ, q(2α+1)/4e−iθ

qα+1,−q(α+β+1)/2,−q(α+β+2)/2

∣∣∣∣q, q
)
.

It was found in [10] that the kernel of the inverse operator is
(1.16)

Kα,β(x, y|q) =
∞∑

n=0

(1 − q)(1 + q(α+β+1)/2)(1 + q(α+β+2)/2)

2(1 − qα+β+n+2)h(α+1,β+1)
n (q)

qn−(2α+1)/2

× P (α,β)
n+1 (x|q)P (α+1,β+1)

n (y|q),

where

(1.17)
h(a,b)

n (q) =
2π(1 − qa+b+1)(q(a+b+2)/2; q1/2)∞

(q, qa+1, qb+1; q)∞(−q(a+b+1)/2; q1/2)∞

× (qa+1, qb+1,−q(a+b+3)/2; q)nq
n(2a+1)/2

(1 − q2n+a+b+1)(q, qa+b+1,−q(a+b+1)/2; q)n
,

are the normalization constants in the orthogonality relation

(1.18)
∫ 1

−1

P (a,b)
n (x|q)P (a,b)

m (x|q)wa,b(x|q) dx = h(a,b)
n (q)δm,n.

No attempt was made in [12], respectively [10], to compute the
sum on the righthand side of (1.12), respectively (1.16). Instead, the
problem of diagonalizing the inverse operators was studied in detail,
with eigenvalues and eigenvectors determined explicitly. However, a
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closed-form expression of the kernel was found quite useful in [6] in
proving the boundedness of the operator as well as its other analytic
properties. Also, the concept of an indefinite integral, or an anti-q-
derivative, was not dealt with to any degree of seriousness in any of the
previous papers. In particular, the analogue of the so-called “arbitrary
constant” in q-calculus was not discussed.

Furthermore, no attempt was made in either [12] or [10] to give a
proof of the essential property DqD−1

q = I. Our objective in this paper
is to address some of those questions. First of all, we will give in
Section 2 an exact evaluation of the kernel in (1.16):
(1.19)

Kα,β(cos θ, cosφ|q) =
(1 − q)(q, q; q)∞

4πcq1/2

× h(cos θ;−cq1/2 − q1/2/c)h(cosφ; aq1/2, aq,−cq1/2)
h(cosφ; q1/2eiθ, q1/2e−iθ,−1/c)

− Lα,β(cosφ|q), ac 	= 0,

where a = q(2α+1)/2, c = q(2β+1)/2, with

(1.20)

h(cos θ; a1, . . . , an) =
n∏

j=1

h(cos θ; aj),

h(cos θ; a) =
∞∏

j=0

(1 − 2aqj cos θ + a2q2j) = (aeiθ, ae−iθ; q)∞,

and
(1.21)

Lα,β(cosφ|q) =
(1 − q)(q, a2q3/2, c2q3/2; q)∞
4πcq1/2(qa2, acq1/2; q1/2)∞

× h(cosφ;−qa2c)
h(cosφ;−1/c)

(q1/2,−aq1/2/c; q)∞

× 8W7

(
a2; a2q1/2,−ac,−acq1/2,−e

iφ

c
,−e

−iφ

c
; q, q

)
.

In (1.21) the W function is a very well-poised series [1, 9]

(1.22) 2r+2W2r+1(a; b1, b2, . . . , b2r−1; q, z)

:= 2r+2φ2r+1

(
a, qa1/2,−qa1/2, b1, . . . , b2r−1

a1/2,−a1/2, aq/b1, . . . , aq/b2r−1

∣∣∣∣q, z
)
.
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It follows from the above considerations that an indefinite q-integral,
or an inverse to Dq, may be defined as
(1.23)

(D−1
q f)(cos θ) = F (cos θ)

=
∫ π

0

Kα,β(cos θ, cosφ|q)f(cosφ)wα+1,β+1(cosφ|q) dφ

=
(1 − q)(q, q; q)∞

4πcq1/2
h(cos θ;−cq1/2,−q1/2/c)

×
∫ π

0

(e2iϕ, e−2iϕ; q)∞f(cos θ) dθ
h(cosφ; q1/2eiθ, q1/2e−iθ)h(cosφ;−1/c,−cq)

−
∫ π

0

Lα,β(cosφ|q)f(cosφ)wα,β(cosφ|q) dφ.

The second integral on the righthand side of (1.23) may seem to be
troublesome but, in fact, it is a θ-independent constant that is absorbed
in the “constant of integration.” In the q-calculus, this constant need
not be an absolute constant, rather, a function whose q-derivative is
zero. A second point that may cause some concern is the appearance of
1/c in an h-function in the integrand of the first term on the righthand
side of (1.23). However, the apparent singularity that could arise if
c > 1 is neutralized by h(cosφ;−cq). All we really need to assume is
that a positive integer r exists such that cq < qr < c.

In Section 3 we shall discuss some other properties of the kernel in
(1.19) as well as show that

(1.24) lim
t→1−

DqD−t
q g(x) = g(x),

where 0 < t < 1 and the kernel of D−t
q is Kt

α,β(x, y|q) which we will
define to be almost the same as that in (1.16) except for a factor tn

inside the infinite series. There are many instances of kernels of this
type in the literature and the reader may consult [3] for interesting
examples. In Section 4 we shall prove that the derivative of the kernel
in the first integral on the righthand side of (1.23), with respect to
x = cos θ, is positive, thus establishing its monotonicity in cos θ.
In Section 5 we give an integral representation of the t-commutator
DqD−t

q − tD−t
q Dq and set up a general procedure for representing this

commutator in terms of Poisson kernels. The limiting value as t→ 1−
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is an analogue of

(1.25)
d

dx

∫ x

a

f(y) dy −
∫ x

a

df(y)
dy

dy = f(a).

The reason is that f(a) is the constant term in the expansion of f in
the basis {(x− a)n : n = 0, 1, . . . }, the Taylor series, while the limit of
(DqD−t

q −tD−t
q Dqf)(x) as t→ 1− is the constant term of the expansion

of f in a series of continuous q-Jacobi polynomials.

2. Computation of the kernel of D−1
q . Setting a = q(2α+1)/2 and

c = q(2β+1)/2 in (1.16), and using (1.15) and (1.17), we find that
(2.1)

Kα,β(x, y|q) =
(1 − q)(−ac,−acq1/2, q, a2q3/2, c2q3/2; q)∞

4πa(acq3/2, acq; q)∞
G(x, y),

where

(2.2) G(x, y)

=
∞∑

n=0

(1 + acq)(1 − a2c2q2n+2)(a2c2q2; q)n(a2q1/2; q)n+1a
−2n

(1 − a2c2q2)(1 + acqn+1)(q; q)n+1(c2q3/2; q)n(1 − ac2c2qn+1)

×pn+1(x; a, aq1/2,−c,−cq1/2|q)pn(y; aq1/2, aq,−cq1/2,−cq|q),
and

(2.3) pk(cos θ; a, b, c, d|q) = 4φ3

(
q−k, abcdqk−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣q, q
)
,

is an Askey-Wilson polynomial, see [4] and [9]. Ismail and Wilson [11]
applied the Sears transformation [9] to obtain the representation
(2.4)

pn(cos θ; a, b, c, d|q) =
an(q, cd; q)n

(ac, ad; q)n

n∑
k=0

(aeiθ, beiθ; q)k

(ab, q; q)k

× (ce−iθ, de−iθ; q)n−k

(q, cd; q)n−k
ei(n−2k)θ.

This shows that, for max{|a|, |b|, |c|, |d|} < 1, there is a constant C
which may depend on a, b, c, d and q but is independent of n such that

(2.5) |pn(x; a, b, c, d|q)| ≤ Cnan, x ∈ [−1, 1].



664 M.E.H. ISMAIL AND M. RAHMAN

By [9]

pn(cos θ; a, b, c, d|q)

=
(bc; q)n

A(θ)(ad; q)n

∫ qe−iθ/d

qeiθ/d

(dueiθ, due−iθ, abcdu/q; q)∞
(dau/q, dbu/q, dcu/q; q)∞

× (q/u; q)n

(abcdu/q; q)n
(adu/q)n dqu

where
(2.7)

A(θ; a, b, c, d) = − iq(1 − q)
2d

(q, ab, ac, bc; q)∞

× h(cos θ; d)w(cos θ; a, b, c, d|q),

(2.8) w(cos θ; a, b, c, d|q) :=
(e2iθ, e−2iθ; q)∞

h(cos θ; a, b, c, d|q)√1 − x2 ,

and the q-integral is defined by
∫ b

a

f(x) dqx =
∫ b

0

f(x) dqx−
∫ a

0

f(x) dqx,(2.9)

∫ a

0

f(x) dqx = a(1 − q)
∞∑

n=0

f(aqn)qn,(2.10)

provided the infinite series on the righthand side of (2.10) con-
verges. For the two Askey-Wilson polynomials in (2.2), we need to
make judicious choice of the parameters that simplify the calcula-
tions. To that end, we take (a, aq1/2,−cq1/2,−c) for (a, b, c, d) in
pn+1(x; a, aq1/2,−c,−cq1/2|q) and (aq1/2, aq,−cq1/2,−cq) for the same
quartet in pn(y; aq1/2, aq,−cq1/2,−cq|q). This gives

(2.11) pn+1(x; a, aq1/2,−c,−cq1/2|q)

=
(1 + acqn+1)
(1 + ac)B(θ)

×
∫ −qe−iθ/c

−qeiθ/c

(−cveiθ,−cve−iθ, a2c2v; q)∞
(−acv/q,−acvq−1/2, c2vq−1/2; q)∞

× (q/v; q)n+1

(a2c2v; q)n
(−acv/q)n+1 dqv
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and

(2.12) pn(y; aq1/2, aq,−cq1/2,−cq|q)

=
1
A(φ)

∫ −e−iφ/c

−eiφ/c

(−cqueiφ,−cque−iφ, a2c2q2u; q)∞
(−acq1/2u,−acqu, c2q1/2u; q)∞

× (q/u; q)n

(a2c2q2u; q)n
(−acuq1/2)n+1 dqu

where A(φ) = A(φ; aq1/2, aq,−cq1/2,−cq) and
B(θ) = A(θ; a, aq1/2,−cq,−cq1/2), that is,
(2.13)

A(φ) =
i(1 − q)

2c
(q,−acq,−acq3/2, a2q3/2; q)∞

× h(cosφ;−cq)w(cosφ; aq1/2, aq,−cq1/2,−cq|q),
(2.14)

B(θ) =
iq(1 − q)

2c
(q,−acq1/2,−acq, a2q1/2; q)∞

× h(cos θ;−c)w(cos θ; a, aq1/2,−c,−cq1/2|q).
The bound in (2.5) establishes the uniform convergence of the infinite
series in (2.2). Thus we find, after some simplifications, that

(2.15) A(φ)B(θ)G(cos θ, cosφ)

=
∫ −e−iφ/c

−eiφ/c

(−cqueiφ,−cque−iφ, a2c2q2u; q)∞
(−acq1/2u,−acqu, c2q1/2u; q)∞

×
∫ −qe−iθ/c

−qeiθ/c

(−cveiθ,−cve−iθ, a2c2v; q)∞
(−acv/q,−acq−1/2v, c2q−1/2v; q)∞

J(u, v) dqu dqv,

where
(2.16)

J(u, v) =
a(1 − c2q1/2)

cq1/2(1 + ac)(1 − qac)(1 − qa2c2)

×
{

(qa2c2, c2q1/2u, c2q−1/2v, a2c2uv, qu; q)∞
(c2q1/2, a2c2q2u, a2c2v, c2q−1/2uv, u; q)∞

− 1 − qa2c2u
1 − u

}
,

which is obtained by the use of the 6φ5-summation formula [9]. We
wish to remark here that this simplification would not be so easily
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possible if we did not choose the parameters as we did in (2.11) and
(2.12).

So we get

(2.17) G(x, y) = G1(x, y) −G2(x, y),

where

(2.18)

G1(x, y) =
aq−1/2

A(φ)B(θ)
(a2c2q2; q)∞/(1 + ac)
c(1 − qac)(c2q3/2; q)∞

×
∫ −e−iφ/c

−eiφ/c

(−cqueiφ,−cque−iφ, qu; q)∞
(−acq1/2u,−acqu, u; q)∞ dqu

×
∫ −e−iθ/c

−eiθ/c

(−cveiθ,−cve−iθ, a2c2uv; q)∞ dqv
(−acv/q,−acvq−1/2, c2uv/q; q)∞

,

and
(2.19)

G2(x, y) =
aq−1/2

A(φ)B(θ)
(1 − c2q1/2)/(1 + ac)
c(1 − qac)(1 − qa2c2)

×
∫ −e−iφ/c

−eiφ/c

(−cqueiφ,−cque−iφ, qa2c2u, qu; q)∞
(−acq1/2u,−acqu, c2q1/2u, u; q)∞

dqu

×
∫ −e−iθ/c

−eiθ/c

(−cveiθ,−cve−iθ, a2c2v; q)∞ dqv
(−acv/q),−acvq−1/2, c2q−1/2v; q∞

.

Using [9] twice we find that
(2.20)

G1(x, y) =
aq−1/2(q, a2c2q2; q)∞h(x;−cq1/2,−q1/2/c)

c(1 − qac)(−ac; q1/2)∞(a2q3/2, c2q3/2,−acq,−acq3/2; q)∞

× h(y; aq1/2, aq,−cq1/2)
h(y; q1/2eiθ, q1/2e−iθ,−1/c)

.

For G2(x, y) we see that the u and v integrals are decoupled and that
the v-integral is, clearly, B(θ), by [9] and (2.14). Also, by [9] the
u-integral is a simple 8W7 series that leads to
(2.21)

G2(x, y) =
aq−1/2(1 − c2q1/2)(q1/2,−aq1/2/c; q1/2)∞h(y;−a2cq)
c(1 − qac)(1 − acq1/2)(−ac, qa2; q1/2)∞h(y;−1/c)

× 8W7(a2; a2q1/2,−ac,−acq1/2,−eiφ/c,−e−iφ/c; q, q).
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Substituting (2.20) and (2.21) in (2.17) and (2.1) then simplifying the
coefficients, we finally obtain (1.19) and (1.21).

In order to analyze the limit in (1.20) we introduce the one-parameter
family of kernels

(2.22)
Kt

α,β(x, y|q) =
∞∑

n=0

(1 − q)(1 + q(α+β+1)/2)(1 + q(α+β+2)/2)

2(1 − qα+β+n+2)h(α+1,β+1)
n (q)

× qn−(2α+1)/2P
(α,β)
n+1 (x|q)P (α+1,β+1)

n (y|q)tn,

and the corresponding family of integral operators

(2.23)
(D−t

q f)(cos θ) =
∫ π

0

Kt
α,β(cos θ, cosφ|q)f(cosφ)

× wα+1,β+1(cosφ|q) sinφ dφ,

where h(a,b)
n (q) is as in (1.17).

3. Some limiting properties of the kernel. Using c = q(2β+1)/4,
the q-gamma function

(3.1) Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x, 0 < q < 1, x 	= 0,−1,−2, . . . ,

see [1] and the notation (a; q)α = (a; q)∞/(aqα; q)∞, for real α, one can
show that the first term on the extreme righthand side of (1.23) can be
written in the following form

Γ2
q(1/2)
2π

q−(2β+3)/4(−q(2β+3)/4eiθ,−q(2β+3)/4e−iθ; q)−(2β+1)/4

(3.2)

× (−q(1−2β)/4eiθ,−q−(2β+1)/4e−iθ; q)(2β+1)/4

×
∫ π

0

(e2iθ, e−2iθ; q2)1/2

(−q1/2eiφ,−q1/2e−iφ; q)(2β+3)/4

× M(cos θ, cosφ|q)g(cosφ) dφ
(−q1/2eiφ,−q1/2e−iφ; q)−(2β+3)/4

,
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where
(3.3)

M(cos θ, cosφ) =
(q1/2, q1/2eiφ, q1/2e−iφ,−q1/2eiθ,−q1/2e−iθ; q)2∞

2(q1/2ei(θ+φ), q1/2ei(θ−φ), q1/2ei(φ−θ), q1/2e−i(θ+φ); q)∞
.

It was shown in [14] that

(3.4) lim
q→1−

M(cos θ, cosφ) = H(cos θ − cosφ),

where H(t) is the Heaviside unit function. Since

(3.5)
lim

q→1−
(a; q)α = (1 − a)α, lim

q→1−
Γq(1/2) =

√
π,

lim
q→1−

(e2iφ, e−2iφ; q)1/2 = 2 sinφ,

we have that the limit of the expression in (3.2) as q → 1− is

(3.6)
∫ 1

−1

H(x− y)g(y) dy =
∫ x

−1

g(y) dy,

which is of course the indefinite integral of elementary calculus.

It is also of interest to compare the Chebyshev limits, that is, a→ 1−,
c → 1−, of (1.19) with the expression found in [6]. First of all, note
that [9] gives

(3.7) (−a2cqeiφ,−a2cqe−iφ; q)∞8W7(a2; a2q1/2,−ac,
− acq1/2,−eiφ/c,−e−iφ/c; q, q)

=
(qa2, q1/2, q1/2/c2, aqeiφ, aqe−iφ, aq1/2eiφ, aq1/2e−iφ, qa2c2; q)∞
(−aq/c,−aq1/2/c,−acq1/2,−acq,−q1/2eiφ/c,−q1/2e−iφ/c; q)∞

+
(qa2,−ac,−eiφ/c,−e−iφ/c,−a2cq3/2eiφ,−a2cq3/2e−iφ, q3/2,−aq3/2/c; q)∞

q−1/2(q1/2,−aq1/2/c,−acq, a2q2,−q1/2eiφ/c,−q1/2e−iφ/c; q)∞
× 8W7(qa2; a2q1/2,−acq1/2,−acq,−q1/2eiφ/c,−q1/2e−iφ/c; q, q).

Setting a = 1, c = 1 on the righthand side of (3.7), simplifying and
using Exercise 15 in [15, page 489], we find that

(3.8) lim
(a,c)→(1,1)

8W7(a2; a2q1/2,−ac,−acq1/2,−eiφ/c,−e−iφ/c; q, q)

=
[

(q1/2; q)∞
(−q1/2; q)∞

]2
h(cosφ; q1/2, q)
h(cos;−q1/2,−q)

− 1 + cosφ
sinφ

q1/2ϑ
′
3(φ

2 |q1/2)

ϑ3(φ
2 |q1/2)

,
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where ϑ3(x|q) = ϑ4(x + π/2|q), see [15] and (1.8). However, the
lefthand side of (3.8) is clearly

1 + 2
∞∑

n=1

(−eφ,−e−iφ; q)n

(−qeφ,−qe−iφ; q)n
qn(3.9)

= 1 − 1 + cosφ
sinφ

[
tan(

φ

2
) +
ϑ′2(φ

2 |q1/2)

ϑ2(φ
2 |q1/2)

]

= − cot(
φ

2
)
ϑ′2(φ

2 |q1/2)

ϑ2(φ
2 |q1/2)

.

In going from the second line to the third we used Exercise 15, [15,
page 489]. This leads to the following identity

(3.10) q1/2ϑ
′
3(φ

2 |q1/2)

ϑ3(φ
2 |q1/2)

− ϑ
′
2(φ

2 |q1/2)

ϑ2(φ
2 |q1/2)

=
[

(q1/2; q)∞
(−q1/2; q)∞

]2

tan(
φ

2
)
h(cosφ; q1/2, q)
h(cosφ;−q1/2,−q) ,

which seems to be new. Also in view of equations (2.5) and (2.8) of [6],
this results in another seemingly new identity, namely,

(3.11)
ϑ′4((θ + φ)/2|q1/2)
ϑ4((θ + φ)/2|q1/2)

− ϑ
′
4((θ − φ)/2|q1/2)
ϑ4((θ − φ)/2|q1/2)

= sinφ
(q; q)2∞h(cos θ;−q1/2,−q1/2)h(cosφ; q1/2, q,−q1/2)

h(cosφ; q1/2eiθ, q1/2e−iθ,−1)

− 1
(1 − q)1/2

ϑ′2((φ
2 |q1/2))

2ϑ2((φ
2 |q1/2))

.

Before considering the limit (1.24) we would like to point out
that it is not possible to obtain the q-Hermite limit (a, c → 0)
from (1.19) for the obvious reason that the representation (2.3) for
pn(x; a, aq1/2,−c,−cq1/2|q) is not valid in this limit. Brown and Ismail
[6] found the kernel for the q-Hermite case by a separate calculation.
The only hope of finding a general formula that will contain all the
special and limiting cases is to densely define the Dq operator on the
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larger space L2[−1, 1] weighted by w(x; a, b, c, d|q) where a, b, c, d are
only restricted by their absolute values being less than 1.

To prove (1.24) we first observe that
(3.12)

DqK
t
α,β(x, y|q) = Pt(x, y; aq1/2, aq,−cq1/2,−cq|q), 0 < t < 1,

where Pt is the Poisson kernel as defined in [13] and
(3.13)

Kt
α,β(x, y|q) =

∞∑
n=0

(1 − q)(1 + q(α+β+1)/2)(1 + q(α+β+2)/2)tn

2(1 − qα+β+n+2)h(α+1,β+1)
n (q)

qn−α−1/2

× P (α,β)
n+1 (x|q)P (α+1,β+1)

n (y|q),

with a = q(2α+1)/4, c = q(2β+1)/4. Thus we have
(3.14)
DqD

−t
q g(cos θ)

=
∫ π

0

Pt(cos θ, cosφ; aq1/2, aq,−cq1/2,−cq|q)wα+1,β+1(cosφ|q) dφ.

However, by [13],

(3.15) Pt(cos θ, cosφ; aq1/2, aq,−cq1/2,−cq|q)

=
(q, a2q3/2, c2q3/2,−acq,−acq3/2; q)∞

2π(acq3/2, acq2; q)∞

×
{

(1 − t2)(−acq3/2t; q)∞
(−tq−3/2/ac; q)∞

∞∑
n=0

(acq3/2, acq2,−cqeiθ,−cqe−iθ; q)n

(q, c2q3/2,−acq3/2,−cq3/2/a; q)n

× (−aceiφ,−ace−iφ; q)n

(−actq3/2,−acq3/2/t; q)n
qn

×10W9(−aq−n− 1
2 /c; q−n−1/2/c2,−q−n−1/(ac), q−n, aq1/2eiθ,

aq1/2e−iθ, aq1/2eiφ, aq1/2e−iφ; q, q)

+
(t,−at/c, a2c2q3; q)∞

(a2q3/2, tc2q3/2,−acq,−acq3/2,−acq2,−a/c,−acq3/2/t; q)∞

×h(cos θ; aq,−ctq1/2)h(cosφ; aq1/2,−ctq)
h(cosφ; teiθ, te−iθ)
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×
∞∑

n=0

(−t, tq1/2,−tq1/2, tc2q3/2; q)n

(q, qt2,−at/c,−tq−1/2/ac; q)n

∣∣∣∣ (tei(θ+φ), tei(θ−φ); q)n

(−ctq1/2eiθ,−ctqeiφ; q)n

∣∣∣∣
2

qn

×10W9(c2tqn+1/2; tqn,−ctqn/a,−actqn+1/2,−cqeiθ,−cqe−iθ,

−cq1/2eiφ,−cq1/2e−iφ; q, q)

+
(t,−ct/a, a2c2q3; q)∞

(c2q3/2, ta2q3/2,−acq,−acq3/2,−acq2,−c/a,−acq3/2/t; q)∞

×h(cos θ;−cq, atq1/2)h(cosφ;−cq1/2, atq)
h(cosφ; teiθ, te−iθ)

×
∞∑

n=0

(−t, tq1/2,−tq1/2, ta2q3/2; q)n

(q, qt2,−ct/a,−tq−1/2/ac; q)n

∣∣∣∣ (tei(θ+φ), tei(θ−φ); q)n

(atq1/2eiθ, atqeiφ; q)n

∣∣∣∣
2

qn

×10W9(a2tqn+1/2; tqn,−atqn/c,−actqn+1/2, aqeiθ, aqe−iθ,

aq1/2eiφ, aq1/2e−iφ; q, q)
}
.

In the above expressions it is assumed that all parameters and
variables are real. If |θ ± φ| 	= 0 or 2π, then

lim
t→1−

Pt(cos θ; cosφ; aq1/2, aq,−cq1/2,−cq|q) = 0.

On the other hand when |θ ± φ| = 0 or 2π, then the first term on the
righthand side of (3.15) vanishes as do all the terms but the n = 0 term
in both series on the righthand side, in the limit t → 1−. So we have,
after some simplification,
(3.16)

lim
t→1−

DqD−t
q g(cos θ) = lim

t→1−

1 − t2
2π sin θ

∫ π

−π

g(cosφ) sinφ dφ
1 − 2t cos(θ − φ) + t2

,

which is exactly the same expression that Brown and Ismail [6] had in
proving the limiting result limp→q+ DpD−1

q g(x) = g(x), t = q/p, at the
points of continuity of g.

4. Properties of q-indefinite integral. We shall follow the
notation for theta functions in Chapter 21 of Whittaker and Watson
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[15], namely,

ϑ1(z, q) =
∞∑
−∞

(−1)nq(n+1/2)2 sin(2n+ 1)z

= 2q1/4 sin z(q2, q2e2iz, q2e−2iz; q2)∞,

and

(4.2) ϑ2(z, q) = ϑ1(z + π/2, q), ϑ3(z, q) = ϑ4(z + π/2, q).

The main result in this section is Theorem 4.1 below.

Theorem 4.1. Let f(y) ≥ 0 and not be identically zero for all
y ∈ [−1, 1]. Then F (x) defined in (1.23) is an increasing function of x.

Proof. Let c = e−γ , with γ > 0. To prove the monotonicity of
Kα,β(x, y|q) in x, we need only to consider the θ-dependent part of the
expression on the righthand side of (1.19), namely, F(θ, φ),

(4.3) F(θ, φ) =
h(cos θ;−cq1/2,−q1/2/c)
h(cosφ; q1/2eiθ, q1/2e−iθ)

.

It follows that

(4.4) F(θ, φ) =
ϑ4((θ + ψ)/2,

√
q)ϑ4((θ − ψ)/2,

√
q)

ϑ4((θ + φ)/2,
√
q)ϑ4((θ − φ)/2,

√
q)
,

where

(4.5) ψ := γ + iπ.

Problem 18 of Chapter 21 in [15, page 490] asserts that

(4.6)
ϑ′4(y, q)
ϑ4(y, q)

+
ϑ′4(z, q)
ϑ4(z, q)

=
ϑ′4(y + z, q)
ϑ4(y + z, q)

+ ϑ2(0, q)ϑ3(0, q)

× ϑ1(y, q)ϑ1(z, q)ϑ1(y + z, q)
ϑ4(y, q)ϑ4(z, q)ϑ4(y + z, q)

.
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Therefore it follows that

(4.7)

∂θF(θ, φ)
F(θ, φ)

= ϑ2(0,
√
q)ϑ3(0,

√
q)
ϑ1(θ,

√
q)

ϑ4(θ,
√
q)

×
[
ϑ1((θ + ψ)/2,

√
q)ϑ1((θ − ψ)/2,

√
q)

ϑ4((θ + ψ)/2,
√
q)ϑ4((θ − ψ)/2,

√
q)

− ϑ1((θ + φ)/2,
√
q)ϑ1((θ − φ)/2,

√
q)

ϑ4((θ + φ)/2,
√
q)ϑ4((θ − φ)/2,

√
q)

]
.

Problem 1 of Chapter 21 in Whittaker and Watson [15, page 487] shows
that the numerator inside the square brackets in (4.7) satisfies

ϑ1

(θ + ψ
2
,
√
q)ϑ1

(θ − ψ
2
,
√
q
)
ϑ4

(θ + φ
2
,
√
q
)
ϑ4

(θ − φ
2
,
√
q
)

−ϑ4

(θ + ψ
2
,
√
q
)
ϑ4

(θ−ψ
2
,
√
q
)
ϑ1

(θ + φ
2
,
√
q
)
ϑ1

(θ−φ
2
,
√
q
)

=
[
ϑ2

1

(θ
2
,
√
q
)
ϑ2

4

(ψ
2
,
√
q
) − ϑ2

4

(θ
2
,
√
q
)
ϑ2

1

(ψ
2
,
√
q
)]

× [
ϑ2

4

(θ
2
,
√
q
)
ϑ2

4

(φ
2
,
√
q
) − ϑ2

1

(θ
2
,
√
q
)
ϑ2

1

(φ
2
,
√
q
)]
ϑ−4

4

(
0,
√
q
)

− [
ϑ2

4

(θ
2
,
√
q
)
ϑ2

4

(ψ
2
,
√
q
) − ϑ2

1

(θ
2
,
√
q
)
ϑ2

1

(ψ
2
,
√
q
)]

× [
ϑ2

1

(θ
2
,
√
q
)
ϑ2

4

(φ
2
,
√
q
) − ϑ2

4

(θ
2
,
√
q
)
ϑ2

4

(φ
2
,
√
q
)]
ϑ−4

4

(
0,
√
q
)
.

Upon the application of Exercises 1 on page 487 and 4 on page 488 in
[15] the above expression simplifies to

ϑ−4
4

(
0,
√
q
)[
ϑ4

1

(θ
2
,
√
q
) − ϑ4

4

(θ
2
,
√
q
)]

× [
ϑ2

4

(φ
2
,
√
q
)
ϑ2

1

(ψ
2
,
√
q
) − ϑ2

1

(φ
2
,
√
q
)
ϑ2

4

(ψ
2
,
√
q
)]

= ϑ4

(
0,
√
q
)
ϑ4

(
θ,
√
q
)
ϑ1

(φ+ ψ
2
,
√
q
)
ϑ1

(φ− ψ
2
,
√
q
)
.

Now we use formulas (1.8), (4.1) and (4.2) to find

ϑ1

(φ± ψ
2

)
,
√
q
)

= ϑ1

(φ± iγ
2

± π/2,√q) = ±ϑ2
φ± iγ

2
,
√
q
)
,

ϑ4

(φ± ψ
2

)
,
√
q
)

= ϑ4

(φ± iγ
2

± π/2,√q) = ϑ3

(φ± iγ
2
,
√
q
)
.
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These relationships imply (∂F(θ, φ)/∂θ) < 0, hence F(θ, φ) increases
with cos θ for θ ∈ [0, π]. This completes the proof of Theorem 4.1.

The case α = β = −1/2 of Theorem 3.1 was proved in [7].

5. Commutation relations. The main results of this section are
formulas (5.16) and (5.17) below. We need some material from [7],
which we now state. We shall use the inner product

(5.1) 〈f, g〉 :=
∫ 1

−1

f(x)g(x)
dx√

1 − x2 .

Observe that the definition (5.1) requires f̆(z) to be defined for
|q±1/2z| = 1 as well as for |z| = 1. In particular, Dq is well defined on
H1/2, where

(5.2) Hν := {f : f((z + 1/z)/2) is analytic for qν ≤ |z| ≤ q−ν}.

Theorem 5.1 (Integration by parts [5]). The Askey-Wilson operator
Dq satisfies

(5.3)

〈Dqf, g〉 =
π
√
q

1 − q [f((q1/2 + q−1/2)/2))g(1)

− f(−(q1/2 + q−1/2)/2))g(−1)]

− 〈f,
√

1 − x2Dq(g(x)(1 − x2)−1/2)〉,
for f, g ∈ H1/2.

The adjoint of Dq is D∗
q ,

(5.4) (D∗
qg)(x) = −

√
1 − x2Dq

(
g(x)√
1 − x2

)

which follows from applying the integration by parts formula (5.3), the
orthogonality (1.18), [5].

We shall also need
(5.5)

DqP
(α,β)
n (x|q) =

2q−n+ 2α+5
4 (1 − qα+β+n+1)

(1 + q
α+β+1

2 )(1 + q
α+β+2

2 )(1 − q)
P

(α+1,β+1)
n−1 (x|q),
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[9] and its adjoint relation

(5.6) Dq(wα+1,β+1(x|q)P (α+1,β+1)
n−1 (x|q))

=
2(1 − qn)
(q − 1)

(1 + q(α+β+1)/2)(1 + q(α+β+2)/2)

× q−(2α+1)/4wα,β(x|q)P (α,β)
n (x|q).

Instead of carrying out this calculation for the continuous q-Jacobi
polynomials, we shall outline a formal general procedure whose steps
can be easily justified in the case of continuous q-Jacobi polynomials.

Let {pn(x; a)} be a multi-parameter family of polynomials satisfying
the orthogonality relation

(5.7)
∫

E

pm(x; a)pn(x; a)w(x; a) dx = hn(a)δm,n,

where a stands for the multi-parameter vector (a1, . . . , ar). Assume
further that we have a lowering operator T so that

(5.8) Tpn(x; a) = un(a)pn−1(x; a + 1),

where a + 1 = (1 + a1, . . . , 1 + ar). Let T ∗ be the adjoint of T with
respect to the inner product

(5.9) 〈f, g〉 =
∫

E

f(x)g(x)
dx

v(x)
.

It is important that v does not depend on any of the a-parameters and
to assume that v ≥ 0 on E together with the finiteness of

∫
E
dx/v(x).

Now consider the inner product space of functions with norms
√〈f, f〉.

Thus (5.7) and (5.8) give

(5.10) hn−1(a + 1)δm,n

= 〈pm−1(.; a + 1), pn−1(.; a + 1)v(.)w(.; a + 1)〉
=

1
um(a)

〈Tpm(.; a), pn−1(.; a + 1)v(.)w(.; a + 1)〉

=
1

um(a)
〈pm(.; a), T ∗pn−1(.; a + 1)v(.)w(.; a + 1)〉.
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If the functions {√w(x; a)pn(x; a)} are complete in H, then T ∗ is a
raising operator in the sense
(5.11)

T ∗(v(x)w(x; a+1)pn−1(x; a+1)) =
hn−1(a + 1)
hn(a)

un(a)v(x)w(x; a)pn(x; a).

Sometimes (5.11) holds without the completeness assumption. In the
case of continuous q-Jacobi polynomials v(x) =

√
1 − x2 and T = Dq.

Hence un is as in (5.5). According to (5.1)

(T ∗f)(x) = −
√

1 − x2Dq(f(x)/
√

1 − x2).

This leads to (5.6).

In general the analogues of (2.22) and (2.23) are

(5.12) Kt(x, y; a) =
∞∑

n=0

pn+1(x; a)
hn(a + 1)

pn(y; a + 1)
un+1(a)

tn,

and

(5.13) (T−tf)(x) =
∫

E

Kt(x, y; a)w(y; a + 1)f(y) dy,

respectively. The general Poisson kernel is

(5.14) Pt(x, y; a) =
∞∑

n=0

pn(x; a)pn(y; a)
hn(a)

tn.

Recall that the t-commutator [A,B]t is AB − tBA. Therefore,

([T, T−t]tf)(x) = (TT−tf)(x)−t(T−tTf)(x)
(5.15)

=
∫

E

∞∑
n=0

pn(x; a+1)
hn(a+1)

pn(y; a+1)tnf(y)w(y; a+1) dy

−
∫

E

∞∑
n=0

pn+1(x; a)
hn(a+1)

pn(y; a+1)
un+1(a)

tn+1(Tf)(y)w(y; a+1) dy.
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The second term in the last equation is

−〈Tf,
∞∑

n=0

pn+1(x; a)
hn(a + 1)un+1(a)

tn+1pn(.; a + 1)v(.)w(.; a + 1)〉

=−〈f,
∞∑

n=0

pn+1(x; a)
hn(a + 1)un+1(a)

tn+1T ∗pn(·; a + 1)v(.)w(.; a + 1)〉

=−
∫

E

∞∑
n=0

pn+1(x; a)pn+1(y; a)
hn+1(a)

tn+1w(y; a)f(y) dy.

Thus (5.15) becomes

([T, T−t]tf)(x)
(5.16)

=
∫

E

[
P 2

0 (x; a)
h0(a)

w(y; a) + Pt(x, y; a + 1)w(y; a + 1)

− Pt(x, y; a)w(y; a)
]
f(y) dy.

As t → 1−, one would expect
∫

E
Pt(x, y; a)w(y; a) dy to converge to

f(x) for all admissible a. Thus with P0(x; a) = 1 for all a we expect
(5.16) to yield

(5.17) lim
t→1−

([T, T−t]tf)(x) =
1
h0(a)

∫
E

w(y; a)f(y) dy.

The analysis in Section 3 proves (5.17) for the continuous q-Jacobi
polynomials.
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