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ABSTRACT. Following the earlier works on Inversion tech-
niques and combinatorial identities, the duplicate form of the
Gould-Hsu [18] inversion theorem is constructed. As applica-
tions, several terminating balanced hypergeometric formulas
are demonstrated, including those due to Andrews [3], which
have been the primary stimulation to the present research.
Encouraged by the recent work of Standon [23], we establish
two higher hypergeometric evaluations with three additional
parameters, which specialize further to over two hundred hy-
pergeometric identities.

For a complex c and a natural number n, denote the rising shifted-
factorial by

(0.1a) (c)0 = 1, (c)n = c(c+ 1) · · · (c+ n− 1), n = 1, 2, . . . .

Following Bailey [8], the hypergeometric series, for an indeterminate z
and two nonnegative integers m and n, is defined by

(0.1b) 1+nFm

[
a0, a1, · · · , an

b1, · · · , bm
; z

]
=

∞∑
k=0

(a0)k(a1)k · · · (an)k
k!(b1)k · · · (bm)k zk,

where {ai} and {bj} are complex parameters such that no zero factors
appear in the denominators of the summands on the righthand side.
When the variable z = 1, it will be omitted from the hypergeometric
notation. If one of the numerator parameters {ak} is a negative integer,
then the series becomes terminating, which reduces to a polynomial in
z.
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Whenm = n and 1+
∑
ak =

∑
bk, we say that the series is balanced.

Recently, Andrews [3] discovered the following balanced summation
formulae:
(0.2)

5F4

[−1− 2n, 1 + x+ n, x, z, 1
2 + x− z

(x− n)/2, (1 + x− n)/2, 2z, 1 + 2x− 2z
]
≡ 0,

which have an important application to the plane partition enumer-
ation, (see Andrews and Stanton [7]). Up to now, there have been
three proofs which appeared. The first one is due to Andrews [3] him-
self. To prove this result, he had to prove 20 identities simultaneously
through recurrence relation method. The second proof is produced by
Zeilberger [14] through the “infamous” WZ-method. The third one is
due to Stanton [23], based on one of Bailey’s cubic transformations.
By means of inversion techniques, the fourth proof will be included in
this paper.

In the development of inversion techniques [9, 10, 11], the author has
demonstrated that most of the terminating hypergeometric identities
are dual formulas of only three hypergeometric summation theorems,
named after Chu-Vandermonde-Gauss, Pfaff-Saalschütz and Dougall-
Dixon-Kummer. Continuing with our exploration to the power of in-
version techniques, we will show that a large class of balanced hyper-
geometric evaluations, including (0.2) are dual relations of one due
to Gessel and Stanton [17]. The last identity is in turn dual to the
Dougall-Dixon formula, cf. Chu [11]. This fact has further strength-
ened my conviction that in the competition of identity-proving, the in-
version techniques would open up “La Terza Via” (the third approach)
between the classical series transformations (Pfaff-method) [2, 3, 4, 5]
and the modern technological WZ-method [14, 24, 25].

In order to simplify the notation, the balanced hypergeometric series
that appeared in Andrews’ work [3, 4, 5] will be slightly modified and
denoted by

H(δ)[a, b; c, d, e] = H(δ)[a, b; c, d, e | n, x, z]
(0.3a)

= 5F4

[
−δ−2n, a+x+n, b+x, z, 1

2
+x−z

d+2z, e+2x−2z c+x−n
2

, 1+c+x−n−2δ
2

,

]
,(0.3b)

where δ = 0 or 1 corresponds to the finite hypergeometric sums of
even and odd terms, respectively. The advantage of this notation is
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that it expresses the balanced condition for the hypergeometric series
as 1+ a+ b = c+ d+ e. In addition, it possesses the following obvious,
but useful property:

(0.4) H(δ)[a, b; c, d, e]|z→ 1
2+x−z =⇒ H(δ)[a, b; c, e− 1, 1 + d].

Then the Andrews’ identity may be translated intoH(1)[1, 0; 1, 0.1] = 0.

As the fundamentals of the inversion techniques, the first section will
introduce the Gould-Hsu inverse series relations and then construct
their duplicate analogue. By means of the duplicate inversions, Sec-
tion 2 will derive several balanced hypergeometric evaluations as dual
formulas of the Gessel-Stanton identity [17]. The higher hypergeo-
metric evaluations with additional parameters will be established in
Section 3, where the other related topics will be discussed briefly.

1. Inverse series relations. For two complex variables x, y
and four complex sequences {ak, bk, ck, dk}k≥0, define two polynomial
sequences by

φ(x; 0) ≡ 1, φ(x;m) =
m−1∏
i=0

(ai + xbi), m = 1, 2, . . .

(1.1a)

ψ(y; 0) ≡ 1, ψ(y;n) =
n−1∏
j=0

(cj + ydj), n = 1, 2, . . . .

(1.1b)

Then there is a celebrated pair of inverse series relations and its
generalization.

Lemma 1 [18].

f(m) =
m∑
k=0

(−1)k
(
m
k

)
φ(k;m)g(k)(1.2a)

g(m) =
m∑
k=0

(−1)k
(
m
k

)
ak + kbk

φ(m; k + 1)
f(k).(1.2b)
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Lemma 2 [9, 11, 19].

F (m) =
m∑
k=0

(−1)k
(
m
k

)
φ(λ+k;m)φ(−k;m) λ+2k

(λ+m)k+1
G(k)

(1.3a)

G(m) =
m∑
k=0

(−1)k
(
m
k

)
ak+(λ+k)bk
φ(λ+m; 1+k)

ak−kbk
φ(−m; k+1)(λ+k)mF (k).

(1.3b)

Their applications to combinatorial identities and hypergeometric
evaluations may be found in [9, 10, 11].

In order to adapt the Gould-Hsu inversions to the balanced hyper-
geometric series (0.3a) (0.3b), here we present its duplicate form as
follows.

Theorem 3 (Duplicate inverse series relations). With φ and ψ-
polynomials defined respectively by (1.1a) and (1.1b), the system of
equations

Ωn =
∑
k≥0

(
n
2k

)
ck + 2kdk

φ(n; k)ψ(n; k + 1)
f(k)

(1.4a)

−
∑
k≥0

(
n

1 + 2k

)
ak + (1 + 2k)bk

φ(n; 1 + k)ψ(n; k + 1)
g(k)(1.4b)

is equivalent to the system of equations

f(n) =
2n∑
k=0

(−1)k
(
2n
k

)
φ(k;n)ψ(k;n)Ωk

(1.5a)

g(n) =
1+2n∑
k=0

(−1)k
(
1 + 2n
k

)
φ(k;n)ψ(k;n+ 1)Ωk.

(1.5b)
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Proof. For an inverse pair of infinite upper triangular matrices

A = (aij)0≤i≤j<∞
B = (bij)0≤i≤j<∞

the system of equations

F (m) =
m∑
j=0

ajmG(j), m = 0, 1, 2, . . .

is equivalent to the system

G(m) =
m∑
j=0

bjmF (j), m = 0, 1, 2, . . . .

Therefore, to prove the equivalence between two systems of equations,
it suffices to substitute one system into another and then verify the
desired result.

Now substituting (1.4a) and (1.4b) into the righthand side of (1.5a),
we have

Sf (n)− Sg(n) =
2n∑
k=0

(−1)k
(
2n
k

)
φ(k;n)ψ(k;n)Ωk

where

Sf (n) =
2n∑
k=0

(−1)k
(
2n
k

)
φ(k;n)ψ(k;n)

×
∑
m

(
k
2m

)
cm + 2mdm

φ(k;m)ψ(k;m+ 1)
f(m)

Sg(n) =
2n∑
k=0

(−1)k
(
2n
k

)
φ(k;n)ψ(k;n)

×
∑
m

(
k

1 + 2m

)
am + (1 + 2m)bm

φ(k; 1 +m)ψ(k;m+ 1)
g(m).

The resulting double sums Sf (n)− Sg(n) should reduce to f(n). This
can be accomplished by means of the finite difference method.
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For Sf (n), we may rewrite it by interchanging the summation order
as

Sf (n) =
n∑

m=0

(
2n
2m

)
{cm + 2mdm}f(m)

×
2n∑

k=2m

(−1)k
(
2n− 2m
k − 2m

)
φ(k;n)ψ(k;n)

φ(k;m)ψ(k;m+ 1)
.

When n > m, the fraction φ(k;n)ψ(k;n)/φ(k;m)ψ(k;m+1) is in fact a
polynomial of degree 2n− 1− 2m in k. Therefore its divided difference
of order 2(n−m) vanishes. This implies that the last sum with respect
to k equals zero except for m = n, and so Sf (n) ≡ f(n).

Following the same procedure, we assert that

Sg(n) =
n−1∑
m=0

(
2n

1 + 2m

)
{am + (1 + 2m)bm}g(m)

×
2n∑

k=1+2m

(−1)k
(
2n− 1− 2m
k − 1− 2m

)
φ(k;n)ψ(k;n)

φ(k; 1 +m)ψ(k;m+ 1)

is identical with zero, i.e., Sg(n) ≡ 0. In conclusion, we have Sf (n) −
Sg(n) ≡ f(n).

Similarly, replacing Ωk in (1.5b) by (1.4a) and (1.4b), we can demon-
strate that the resulting double sums reduce to g(n):

Theorem 4 (the third relation). For f, g and Ω defined in Theo-
rem 3, let

(1.6a) h(n) = f(n)
(1 + 2n){andn − bncn}

cn + dn(1 + 2n)
+ g(n)

an + bn(1 + 2n)
cn + dn(1 + 2n)

.

Then we have a third relation

(1.6b) h(n) =
1+2n∑
k=0

(−1)k
(
1 + 2n
k

)
φ(k; 1 + n)ψ(k;n)Ωk
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and the corresponding dual formulae

Ωn =
∑
k≥0

(
n
2k

)
ak + 2kbk

φ(n; 1 + k)ψ(n; k)
f(k)

(1.7a)

−
∑
k≥0

(
n

1 + 2k

)
ck + (1 + 2k)dk

φ(n; 1 + k)ψ(n; k + 1)
h(k).(1.7b)

Proof. Substituting (1.5a) (1.5b) into (1.6a), we can manipulate the
result as follows:

h(n) = f(n)
(1+2n){andn−bncn}

cn+dn(1+2n)
+g(n)

an+bn(1+2n)
cn+dn(1+2n)

=
(1+2n){andn−bncn}

cn+dn(1+2n)

2n∑
k=0

(−1)k
(
2n
k

)
φ(k;n)ψ(k;n)Ωk

+
an+bn(1+2n)
cn+dn(1+2n)

1+2n∑
k=0

(−1)k
(
1+2n
k

)
φ(k;n)ψ(k;n+1)Ωk

=
1+2n∑
k=0

(−1)k
(
1+2n
k

)
φ(k;n)ψ(k;n)Ωk

/
{cn+dn(1+2n)}

× {{andn−bncn}(1+2n−k)+{an+bn(1+2n)}(cn+kdn)}.

Then the trivial factorization of the last line into (an + kbn){cn +
dn(1 + 2n)} leads us to (1.6b). The relation (1.4a) (1.4b) becomes
(1.7a) (1.7b) under the exchange between φ(x;m) and ψ(y;n).

From Theorems 3 and 4, if a known binomial relation fits into one of
the two equation system (1.4a) (1.4b) and (1.7a) (1.7b), then we can
invert it to get three dual relations determined by (1.5a), (1.5b) and
(1.6b). That is the philosophy of inversion techniques [9, 10, 11]. Next
it will be developed for obtaining terminating balanced hypergeometric
summation formulas.

2. Gessel-Stanton and dual formulas. Denote the
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factorial-fractions by

ω(δ)
n [a, b, c, d, e] =

( 12 + δ)n(a+ x− 2z)n(b− x+ 2z)n
(c− x)n( 12 + d+ z)n(e+ x− z)n

(2.1a)

Ωn[a, b; c, d, e] =
(a+ x)n(b+ x)n(z)n( 12 + x− z)n

( c+x2 )n( 1+c+x2 )n(d+ 2z)n(e+ 2x− 2z)n
.

(2.1b)

In Theorems 3 and 4, putting

φ(τ ;m) = (a+ x+ τ )m(2.2a)
ψ(τ ;m) = (1− c− x− 2τ )m,(2.2b)

then the solutions of the system of equations

Ωn[a, b; c, d, e] =
∑
k≥0

(
n

2k

)
(1− c− x− 3k)× f(k)

(a+ x+ n)k(1− c− x− 2n)k+1

(2.3a)

−
∑
k≥0

(
n

1 + 2k

)
(1 + a+ x+ 3k)× g(k)

(a+ x+ n)1+k(1− c− x− 2n)k+1
(2.3b)

or the system

Ωn[a, b; c, d, e] =
∑
k≥0

(
n

2k

)
(a+ x+ 3k)× f(k)

(a+ x+ n)1+k(1− c− x− 2n)k

(2.4a)

+
∑
k≥0

(
n

1 + 2k

)
(1 + c+ x+ 3k)× h(k)

(a+ x+ n)1+k(1− c− x− 2n)k+1
,(2.4b)
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are given by the following binomial summations

f(n) =
2n∑
k=0

(−1)k
(
2n
k

)
(a+ x+ k)n(2.5a)

× (1− c− x− 2k)nΩk[a, b; c, d, e]

g(n) =
1+2n∑
k=0

(−1)k
(
1 + 2n
k

)
(a+ x+ k)n(2.5b)

× (1− c− x− 2k)n+1[a, b; c, d, e]

h(n) =
1+2n∑
k=0

(−1)k
(
1 + 2n
k

)
(a+ x+ k)1+n(2.5c)

× (1− c− x− 2k)nΩk[a, b; c, d, e].

In terms of hypergeometric series, we may reformulate them as

(2.6a) H(0)[a, b; c, d, e] = H(0)[a, b; c, d, e | n, x, z] = f(n)
(a+x)n(1−c−x)n

(2.6b) = 5F4

[
−2n, a + x + n, b + x, z, 1

2
+ x − z

c+x−n
2

, c+1+x−n
2

, d + 2z e + 2x − 2z

]

H(1)[a, b; c, d, e] = H(1)[a, b; c, d, e | n, x, z]
=

g(n)
(a+ x)n(1− c− x)n+1

(2.6c)

(2.6d) = 5F4

[
−1− 2n, a + x + n, b + x, z, 1

2
+ x − z

c+x−n
2

, c−1+x−n
2

, d + 2z, e + 2x − 2z

]

H(1)[1 + a, b; 1 + c, d, e] = H(1)[1 + a, b; 1 + c, d, e | n, x, z]
=

h(n)
(a+ x)1+n(1− c− x)n

(2.6e)
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(2.6f) = 5F4

[
−1− 2n, 1 + a + x + n, b + x, z, 1

2
+ x − z

c+x−n
2

, 1+c+x−n
2

, d + 2z, e + 2x − 2z

]

where, with reference to (1.6a), the following three term relation holds
(2.7)

h(n) = f(n)
(1 + 2n)(1 + 2a− c+ x+ 3n)

1 + c+ x+ 3n
− g(n)

1 + a+ x+ 3n
1 + c+ x+ 3n

.

If a binomial relation matching with (2.3a), (2.3b) or (2.4a), (2.4b)
exists, we can get three dual identities through (2.6a), (2.6c) and (2.6e).
Fortunately, one hypergeometric formula due to Gessel and Stanton
[17] fits into our scheme. We may reproduce it, (see also [11]), as
(2.8a)

7F6

[
1 + 2a

3 , 2a, 2b, 1− 2b, a− d, 1
2 + a+ d+m,−m

2a
3 , 1 + a− b, 1

2 + a+ b, 1 + 2d, 1 + 2a+ 2m,−2d− 2m
]

(2.8b) =
(1 + 2a)2m
(1 + 2d)2m

(1 + d− b)m( 12 + d+ b)m
(1 + a− b)m( 12 + a+ b)m

,

whose reformulation, under parameter replacements a → x/2,
b→ z − x/2 and d → y − 2m− x/2, reads as
(2.9a)

7F6

[
1+ 2

3 , 1+x−2z, 2z−x, x−y+2m, 1
2+y−m, x,−m

x
3 , 1+x−z, 1

2+z, x−2y+2m, 1+x+2m, 1−x+2y−4m
]

(2.9b) =
(x− 2y)2m(1 + x)2m(z − y)2m( 12 + x− y − z)2m

(x− 2y)4m( 12 + z)m(z − y)m(1 + x− z)m( 12 + x− y − z)m
.

With y → −δ and then δ + 2m→ n, we may further specify it to
(2.10a)

6F5

[
x, 1+ x

3 , 1+x−2z, 2z−x, −n2 , 1−n
2

x
3 , 1+x−z, 1

2+z, 1+x+n, 1−x−2n
]
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(2.10b) =
(1 + x)n(x)n(z)n( 12 + x− z)n
(x2 )n(

1+x
2 )n(2z)n(1 + 2x− 2z)n

which can be expressed in terms of (2.3a) (2.3b) as a binomial identity
(2.11a)∑

k

(
n

2k

) −x(x+ 3k)
(x+ n)k+1(−x− 2n)1+k

1
2k
(x)k(1 + x− 2z)k(2z − x)k
( 12 + z)k(1 + x− z)k

(2.11b) =
(x)n(x)n(z)n( 12 + x− z)n

( 1+x2 )n( 2+x2 )n(2z)n(1 + 2x− 2z)n
.

This will be our starting point for attacking the balanced hypergeo-
metric series.

2.1 Case [10101]. It is obvious that (2.11a) (2.11b) reads also as

Ωn[1, 0; 1, 0, 1] =
∑
k

(
n
2k

) −(x+ 3k)× (x)k(−x)k
(x+ n)k(−x− 2n)k+1

ω
(0)
k [1, 0, 0, 0, 1],

which is the case a = c = e = 1 and b = d = 0 of (2.3a) (2.3b) with

f(n) = ω(0)
n [1, 0, 0, 0, 1]× (x)n(−x)n

g(n) = 0

h(n) = ω(1)
n [1, 0, 0, 0, 1]× (x)n(−x)n,

where the last evaluation is derived from the first two via (2.7). In view
of (2.6a), (2.6c) and (2.6e), we may write down directly the following
dual formulas:

H(0)[1, 0; 1, 0, 1] =
x

x+ n
ω(0)
n [1, 0, 0, 0, 1](2.12a)

H(1)[1, 0; 1, 0, 1] = 0, [Andrews 3, (4.2)](2.12b)

H(1)[2, 0; 2, 0, 1] =
x

x+ n

ω
(1)
n [1, 0, 0, 0, 1]
1 + x+ n

.(2.12c)
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2.2 Case [00101]. Splitting the factor

x+ 3k = (x+ n+ k)− (n− 2k)

we may restate (2.11a) (2.11b) as

Ωn[0, 0; 1, 0, 1] =
∑
k

(
n
2k

) −(x+ 3k)× f(k)
(x+ n)k(−x− 2n)k+1

−
∑
k

(
n

1 + 2k

)
(1 + x+ 3k)× g(k)

(x+ n)1+k(−x− 2n)k+1
,

which corresponds to the case a = b = d = 0 and c = e = 1 of
(2.3a) (2.3b) with

f(n) = x
(x)n(−x)n
x+ 3n

ω(0)
n [1, 0, 0, 0, 1](2.13a)

g(n) = −x (x)n(−x)n
1 + x+ 3n

ω(1)
n [1, 0, 0, 0, 1](2.13b)

h(n) = 2x
(x)n(−x)n
2 + x+ 3n

ω(1)
n [1, 0, 0, 0, 1],(2.13c)

where the last evaluation is obtained from the first two via (2.7).
In view of (2.6a), (2.6c) and (2.6e), we may have the following two-
balanced formulas:

H(0)[0, 0; 1, 0, 1] =
x

x+ 3n
ω(0)
n [1, 0, 0, 0, 1]

(2.14a)

H(1)[0, 0; 1, 0, 1] =
1

1 + x+ 3n
ω(1)
n [1, 0, 1, 0, 1]

(2.14b)

H(1)[1, 0; 2, 0, 1] =
2x

2 + x+ 3n
ω

(1)
n [1, 0, 0, 0, 1]
(x+ n)

.

(2.14c)

2.3 Case [01101]. According to the factor-splitting

x+ 3k =
x+ 2k
x+ n

{x+ n+ k}+ k

x+ n
{n− 2k},
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the relation (2.11a) (2.11b) may be expressed as

Ωn[0, 1; 1, 0, 1] =
∑
k

(
n
2k

) −(x+ 3k)× f(k)
(x+ n)k(−x− 2n)k+1

−
∑
k

(
n

1 + 2k

)
(1 + x+ 3k)× g(k)

(x+ n)1+k(−x− 2n)k+1
,

which corresponds to the case a = d = 0 and b = c = e = 1 of
(2.3a) (2.3b) with

f(n) =
x+ 2n
x+ 3n

ω(0)
n [1, 0, 0, 0, 1](x)n(−x)n

(2.15a)

g(n) =
n

1 + x+ 3n
ω(1)
n [1, 0, 0, 0, 1](x)n(−x)n

(2.15b)

h(n) =
x+ n

2 + x+ 3n
ω(1)
n [1, 0, 0, 0, 1](x)n(−x)n,

(2.15c)

where the last evaluation is obtained from the first two via (2.7). In
view of (2.6a), (2.6c) and (2.6e), we may have the following balanced
formulas:

H(0)[0, 1; 1, 0, 1] =
x+ 2n
x+ 3n

ω(0)
n [1, 0, 0, 0, 1]

(2.16a)

H(1)[0, 1; 1, 0, 1] =
−n/x

1 + x+ 3n
ω(1)
n [1, 0, 1, 0, 1]

(2.16b)

H(1)[1, 1; 2, 0, 1] =
1

2 + x+ 3n
ω(1)
n [1, 0, 0, 0, 1].

(2.16c)

2.4 Case [00001]. By means of the factor-splitting

x+ 3k = − x− 1 + 3k
1− x− 2n+ k

{x+ n+ k} − x+ 1 + 3
1− x− 2n+ k

{n− 2k},
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we may rewrite (2.11a) (2.11b) as follows:

Ωn[0, 0; 0, 0, 1] =
∑
k

(
n
2k

)
(1− x− 3k)× f(k)

(x+ n)k(1− x− 2n)k+1

−
∑
k

(
n

1 + 2k

)
(1 + x+ 3k)× g(k)

(x+ n)1+k(1− x− 2n)k+1
,

which corresponds to the case a = b = c = d = 0 and e = 1 of
(2.3a) (2.3b) with

f(n) = ω(0)
n [1, 0, 0, 0, 1]× (x)n(−x)n

g(n) = ω(1)
n [1, 0, 0, 0, 1]× (x)n(−x)n.

In view of (2.6a) and (2.6c), we may have the following balanced
formulas:

H(0)[0, 0; 0, 0, 1] = ω(0)
n [1, 0, 1, 0, 1], [3]

(2.17a)

H(1)[0, 0; 0, 0, 1] = ω(1)
n [1, 0, 2, 0, 1]/(1− x),

(2.17b)

where the evaluation derived from the third relation (2.6e) is identical
with (2.12b) and so has been omitted.

2.5 Stanton [23]. Now we consider a more general case. For a complex
number α, the factor-splitting

x+ 3k =
α+ 2k
α+ n

{x+ n+ k} − α− x− k

α+ n
{n− 2k}

leads us to reformulating the relation (2.11a) (2.11b) as

α+ n

α
Ωn[0, 0; 1, 0, 1] =

∑
k

(
n
2k

) −(x+ 3k)× f(k)
(x+ n)k(−x− 2n)k+1

(2.18a)

−
∑
k

(
n

1 + 2k

)
(1 + x+ 3k)× g(k)

(x+ n)1+k(−x− 2n)k+1
,(2.18b)
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with

(2.19a) f(n) =
x(α+ 2n)
α(x+ 3n)

ω(0)
n [1, 0, 0, 0, 1](x)n(−x)n

(2.19b) g(n) =
x(x− α+ n)
α(1 + x+ 3n)

ω(1)
n [1, 0, 0, 0, 1](x)n(−x)n.

Comparing (2.18a) (2.18b) with (1.4a) (1.4b), we may derive from
(1.5a) (1.5b) the dual relations:

f(n) =
2n∑
k=0

(−1)k
(
2n
k

)
(x+ k)n(−x− 2k)nα+ k

α
Ωk[0, 0; 1, 0, 1]

(2.20a)

g(n) =
1+2n∑
k=0

(−1)k
(
1+2n
k

)
(x+k)n(−x−2k)n+1

α+k
α

Ωk[0, 0; 1, 0, 1].

(2.20b)

According to Corollary 4, we also get the third relation as follows:

h(n) =
x(2α− x+ n)
α(2 + x+ 3n)

(x)n(−x)nω(1)
n [1, 0, 0, 0, 1]

(2.21a)

=
1+2n∑
k=0

(−1)k
(
1 + 2n
k

)
(x+ k)1+n(−x− 2k)nα+ k

α
Ωk[0, 0; 1, 0, 1].

(2.21b)

Then (2.19a) = (2.20a), (2.19b) = (2.20b) and (2.21a) = (2.21b) read
respectively as the following hypergeometric identities due to Stanton
[23, Theorem 1]:

(2.22a) 6F5

[
−2n, 1 + α, x + n, x, z, 1

2
+ x − z

α, 1+x−n
2

, 2+x−n
2

, 2z, 1 + 2x − 2z

]

(2.22b) = ω(0)
n [1, 0, 0, 0, 1]× x(α+ 2n)

α(x+ 3n)
[23]
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(2.22c) 6F5

[
−1− 2n, 1 + α, x + n, x, z, 1

2
+ x − z

α, x−n
2

, 1+x−n
2

, 2z, 1 + 2x − 2z

]

(2.22d) = ω(1)
n [1, 0, 1, 0, 1]× α− x− n

α(1 + x+ 3n)
[23, A2]

(2.22e) 6F5

[
−1− 2n, 1 + α, 1 + x + n, x, z, 1

2
+ x − z

α, 1+x−n
2

, 2+x−n
2

, 2z, 1 + 2x − 2z

]

(2.22f) =
ω

(1)
n [1, 0, 0, 0, 1]

x+ n
× x(2α− x+ n)
α(2 + x+ 3n)

[23, A3],

which may be considered as linear combinations of any two cases
among [10101], [01101], [00101] and [00001] demonstrated previously.

As indicated by Stanton, they include nine hypergeometric identities
as their limiting cases. Among them, the first four cases have been
demonstrated in detail.

α = x+ n =⇒ [10101] : (see Case 2.1)
α → ∞ =⇒ [00101] : (see Case 2.2)
α = x =⇒ [01101] : (see Case 2.3)

α =
x− n

2
=⇒ [00001] : (see Case 2.4).

The remaining five cases may be displayed as follows:

2.6 Case [00100]. α = 2x− 2z:

H(0)[0, 0; 1, 0, 0] =
x

x+ 3n
ω(0)
n [1, 0, 0, 0, 0]

(2.23a)

H(1)[0, 0; 1, 0, 0] =
x− 2z

1 + x+ 3n
ω

(1)
n [1, 1, 1, 0, 1]
2(x− z)

(2.23b)

H(1)[1, 0; 2, 0, 0] =
x(3x− 4z + n)
2 + x+ 3n

ω
(1)
n [1, 0, 0, 0, 1]
2(x+ n)(x− z)

.

(2.23c)
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The identity (2.23b) in the middle was discovered by Andrews [3].

2.7 Case [001-11]. α = 2z − 1:

(2.24a) H(0)[0, 0; 1,−1, 1] = x

x+ 3n
ω(0)
n [1, 0, 0,−1, 1]

(2.24b) H(1)[0, 0; 1,−1, 1] = 1 + x− 2z
1 + x+ 3n

ω
(1)
n [2, 0, 1, 0, 1]
1− 2z

(2.24c) H(1)[1, 0; 2,−1, 1] = x(2 + x− 4z − n)
2 + x+ 3n

ω
(1)
n [1, 0, 0, 0, 1]
(1− 2z)(x+ n)

.

The identity (2.24b) in the middle is due to Andrews [3].

2.8 Case [-1-100-1]. α = 1/2 + x− z | x→ x− 1:

H(0)[−1,−1; 0, 0,−1] = ω(0)
n [0, 1, 1, 0, 0]× (x− 1)(1− 2x+ 2z − 4n)

(x− 1 + 3n)(1− 2x+ 2z)

(2.25a)

H(1)[−1,−1; 0, 0,−1] = ω(1)
n [0, 1, 2, 0, 0]× (2z − 1 + 2n)

(2z + 1− 2x)(x+ 3n)

(2.25b)

H(1)[0,−1; 1, 0,−1] = ω
(1)
n [1, 1, 1, 0, 0]
x− 1 + n

× 2(1− x)(x− 2z)
(1 + x+ 3n)(1− 2x+ 2z) ,

(2.25c)

where the last identity (2.25c) is due to Andrews [3].

2.9 Case [-1-10-21]. α = z | x→ x− 1, z → z − 1:

H(0)[−1,−1; 0,−2, 1] = ω(0)
n [2,−1, 1,−1, 1]× (1− x)(z − 1 + 2n)

(1− z)(x− 1 + 3n)

(2.26a)

H(1)[−1,−1; 0,−2, 1] = ω(1)
n [2,−1, 2,−1, 0]× x− z

(1− z)(x+ 3n)

(2.26b)

H(1)[0,−1; 1,−2, 1] = ω
(1)
n [2, 0, 1,−1, 1]
1− x− n

× (1− x)(1 + x− 2z)
(1− z)(1 + x+ 3n)

.

(2.26c)
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2.10 Case [-1-10-10] and [0-11-10]. α → 0 | x→ x− 2, z → z − 1:

H(0)[−1,−1; 0,−1, 0] = ω(0)
n [1, 0, 1,−1, 0]× x−1

x−1+3n

(2.27a)

H(0)[0,−1; 1,−1, 0] = ω(0)
n [1,0,0,−1,0]

x+3n × x(1−x)(2−x+n)
(1−x−n)(2−x−n)

(2.27b)

H(1)[0,−1; 1,−1, 0] = ω(1)
n [2,1,1,0,1]
1+x+3n × (1−x)(x−2z)(1+x−2z)

(1−x−n)(x−z)(1−2z)

(2.27c)

H(1)[−1,−1; 0,−1, 0] = ω(1)
n [1, 0, 2, 0, 1]

×

{
(1 + x− 2z + n)(x− 2z − n)
−(x− z + n)(1− 2z − 2n)

}

(1− 2z)(x− z)(x+ 3n)
(2.27d)

H(1)[1,−1; 2,−1, 0] = ω(1)
n [1, 0, 0, 0, 1]× x(1−x)

2+x+3n

(2.27e)

×

{
(x− z + n)(1− 2z − 2n)(3x+ n− 6)
(1− x− n)(2− x− n)(x+ 3n)

}

(1− 2z)(x− z)(−x− n)3
(2.27f)

Among the identities just displayed, (2.27a) and (2.27c) are in the list
of 20 identities by Andrews [3].

Besides these nine cases, there is the tenth case, which specifies
α = −δ − 2n. However, the resulting identities are included in
Section 2.1 and 2.4.

3. Further development. Let α, β and γ be three complex
parameters. Similar to (0.3a), (0.3b), further hypergeometric series
with additional parameters are denoted as follows:

H(δ)
α [a, b; c, d, e] = H(δ)

α [a, b; c, d, e | n, x, z]
(3.1a)

= 6F5

[
−δ−2n, 1+α, a+x+n, b+x, z, 1

2
+x−z

α, c+x−n
2

, 1+c+x−n−2δ
2

d+2z, e+2x−2z ,

](3.1b)
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H(δ)
αγ [a, b; c, d, e] = H(δ)

αγ [a, b; c, d, e | n, x, z]
(3.2a)

= 7F6

[
−δ−2n, 1+α, 1+γ, a+x+n, b+x, z, 1

2
+x−z

α, γ, c+x−n
2

, 1+c+x−n−2δ
2

d+2z, e+2x−2z,

](3.2b)

H
(δ)
αβγ [a, b; c, d, e] = H

(δ)
αβγ [a, b; c, d, e | n, x, z]

(3.3a)

= 8F7

[−δ−2n, 1+α, 1+β, 1+γ, a+x+n, b+x, z, 1
2 +x−z

α, β, γ, c+x−n
2 , 1+c+x−n−2δ

2 , d+2z, e+2x−2z

](3.3b)

3.1 Hypergeometric evaluations with three additional parameters. The
hypergeometric series H(δ)

αβγ [a, b; c, d, e] may be considered as a function

in α, β and γ. Then it is easy to see that (αβγ)H(δ)
αβγ [a, b; c, d, e] is

symmetric in α, β, γ and linear with respect to each of them. Therefore,
there is a linear function

L(α, β, γ) = H
(δ)
αβγ [a, b; c, d, e] = A+ B

αβγ + C α+β+γ
αβγ +Dαβ+αγ+βγ

αβγ

with A,B,C,D to be determined.

By means of contiguous recurrence relations satisfied by hyperge-
ometric series, Stanton [23, Theorem 2] derived an expression for
H

(1)
αβγ [1, 0; 2, 2, 1] in terms of lower hypergeometrics. Here we will es-

tablish two explicit 8F7-formulas:

Theorem 5 (Two 8F7-summation formulas).

[A] H
(0)
αβγ [0, 0; 1, 1, 2] =

2nxz(1+2x−2z)ω(0)
n [0,−1,0,0,1]

αβγ(x+3n)(x−2z)2(1+x−2z)2 U(α, β, γ)
[B] H

(1)
αβγ [1, 1; 2, 2, 2] =

z(1+x+n)(1+2x−2z)ω(1)
n [0,0,0,1,2]

2αβγ(1+z)(1+x−z)(2+x+3n)(x−2z)2V(α, β, γ)
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where U and V are symmetric polynomials in α, β and γ given,
respectively, by

U(α, β, γ)
= αβγ

n

{
(1+x)(x+3n)(x−2z+n)(1+x−2z−n)

2z(1+2x−2z) − (x− 2z)(1 + x− 2z)
}

− (αβ + αγ + βγ){(x+ n)(3 + 2x− 3n)− 4z(1 + 2x− 2z)}
+ (α+ β + γ){x(x+ n)(2 + x− 3n)− 2z(x− n)(1 + 2x− 2z)}
+ {x(x+ n)(n− x+ 4nx)− 2nz(1 + 2x− 2z)(3x+ n)}

and

V(α, β, γ)
=

2αβγ
1 + x+ n

{
(2x−3z)(x−2z+n)(1+x+n)(2+x+3n)

2z(1+2x−2z) − (1 + z)(x− 2z)
}

− (αβ + αγ + βγ){(x− 2z)(x− 2z + 3n) + n(2 + x+ 3n)}
+ (α+ β + γ){(1 + 2z)(x− 2z + n)(2 + x+ 3n)
− 2(1 + z)(x− 2z)(1 + x+ n)}+ {(1 + 2n)(x− 2z)

× (2z − x+ n+ 4nz)− n(1 + 2z)(1 + 2x− 2z)(2 + x+ 3n)}.

Proof. For H(0)
αβγ [0, 0, 1, 1, 2], we have the following specific examples

L(x+n, 2z, 1+2x−2z) = H(0)[1, 0; 1, 0, 1 | n, x, z]
L(−2n, 2z, 1+2x−2z) = H(1)[1, 0; 1, 0, 1 | n−1, x, z]

lim
α→0

αL(α, x,−2n) = H(0)[0, 0; 0, 0, 1 | n−1, 2+x, 1+z]

× (1−2n)z(1+x)(x+n)(1+2x−2z)
(1+x−n)(2+x−n)(1+2z)(1+x−z)

lim
α→0

αL(−α, x,∞) = H(1)[0, 0; 1, 0, 1 | n−1, 2+x, 1+z]

× 2nz(1+x)(x+n)(1+2x−2z)
(1+x−n)(2+x−n)(1+2z)(1+x−z) .

Replacing the right members by their explicit expressions and then
resolving the system of equations, we get the first hypergeometric
identity stated in the theorem.
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Similarly, we may specify H(1)
αβγ [1, 1; 2, 2, 2] to the previously estab-

lished hypergeometric evaluations as follows:

L(2z, 1 + 2z, 1 + 2x− 2z) = H(1)[1, 1; 2, 0, 1 | n, x, z]
L(2z, 1 + 2z, x− z + 1/2) = H(1)[0, 0; 1, 0, 0 | n, 1 + x, z]

L(−1− 2n, z, 1 + 2x− 2z) = H(0)[0, 0; 0, 0, 1 | n, 1 + x, 1 + z]

L(1 + x+ n, z, 1 + 2x− 2z) = H(1)[1, 0; 1, 0, 1 | n, 1 + x, 1 + z],

whose solution leads us to the second formulae stated in the theorem.

From Theorem 5 we can derive 20 = 2
(

10

1

)
hypergeometric evalua-

tions for 7F6-series with two additional parameters; 110 = 2
(

11

2

)
for

6F5-series with one additional parameter; and 440 = 2
(

12

3

)
for 5F4-

series. For the limit of space, one selection about two hundreds of such
identities will appear elsewhere.

3.2 Null q-analogue. With φ and ψ-polynomials defined respectively
by (1.1a) and (1.1b), we can establish, by means of finite q-differences,
the q-analogues of Theorem 3.

Theorem 6 (q-duplicate inverse series relations). The system of
equations

ω(n) =
∑
k≥0

[
n
2k

]
ck + q2kdk

φ(qn; k)ψ(qn; k + 1)
f(k)(3.4)

−
∑
k≥0

[
n

1 + 2k

]
ak + q1+2kbk

φ(qn; 1 + k)ψ(qn; k + 1)
g(k)(3.5)
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is equivalent to the system

f(n) =
2n∑
k=0

(−1)k
[
2n
k

]
q

(
2n− k
2

)
φ(qk;n)ψ(qk;n)ω(k)

(3.6)

g(n) =
1+2n∑
k=0

(−1)k
[
1 + 2n
k

]
q

(
1 + 2n− k

2

)
φ(qk;n)ψ(qk;n+ 1)ω(k).

(3.7)

Replacing q by its inverse, we may reformulate the theorem as:

Theorem 7 (q-duplicate inverse series relations). The system of
equations

Ω(n) =
∑
k≥0

q

(
n− 2k
2

) [
n
2k

]
ck+q−2kdk

φ(q−n;k)ψ(q−n;k+1)F (k)

(3.8)

−
∑
k≥0

q

(
n− 1− 2k

2

) [
n

1 + 2k

]
ak+q−1−2kbk

φ(q−n;1+k)ψ(q−n;k+1)G(k)

(3.9)

is equivalent to the system

F (n) =
2n∑
k=0

(−1)k
[
2n
k

]
φ(q−k;n)ψ(q−k;n)Ω(k)

(3.10)

G(n) =
1+2n∑
k=0

(−1)k
[
1 + 2n
k

]
φ(q−k;n)ψ(q−k;n+ 1)Ω(k).

(3.11)
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Unfortunately, we have not found the q-counterpart of Gessel-Stanton
(2.8a) (2.8b) which fits in our q-inverse series relations.

3.3 Multiplicate inversions. Based on the double sections of natural
numbers, we derived the duplicate inversion Theroem 3. It may be
extended to the multi-sections of natural numbers. For this reason, let

{Aij | Bij}, i = 0, 1, 2, . . . , l; j = 0, 1, 2, . . . ,

be complex sequences, and define the corresponding polynomials

(3.12) φi(x; 0) ≡ 1, φi(x;n) =
n−1∏
k=0

(Aik + xBik), n = 1, 2, . . . ,

with more compact notation

Φ(x;n) =
l∏
i=0

φi(x; [(i+ n)/(1 + l)])(3.13)

ε(k) = Al−k (mod 1+l),[k/(1+l)](3.14)
+ Bl−k (mod 1+l),[k/(1+l)],(3.15)

where [x] denotes the integer part for a real number x.

Then, the same approach to Theorem 3 may be used to demonstrate
the following multiplicate inversion formulas:

Theorem 8 (Multiplicate inverse series relations).

Ξ(n) =
n∑
k=0

(−1)k
(
n
k

)
Φ(k;n)Θ(k)(3.16)

Θ(n) =
n∑
k=0

(−1)k
(
n
k

)
ε(k)

Φ(n; k + 1)
Ξ(k).(3.17)

Up to now, we have not found any applications to hypergeometric
identities.
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3.4 Hypergeometric reversals. Reversing the summation order of
hypergeometric series (0.3a) (0.3b) and then performing parameter
replacements

x −→ 1− c− δ − u− 3n

and

z −→ 1
2
− δ − u+ v − 2n,

we may simplify the result as the following:

Theorem 9 (The reversal of H(δ)[a, b; c, d, e | n, x, z]).

5F4

[
−δ−2n, u

2
, 1+u

2
, 2c−δ−e+2v, δ−d+2u−2v+2n

c−a+u, c−b+u+n, c−δ+v−n, 1
2
+u−v

](3.18)

= (−1)δH(δ)[a, b; c, d, e | n, 1−c−δ−u−3n, 1
2
−δ−u+v−2n]

(3.19)

× (u2 )δ+2n( 1+u2 )δ+2n(2c−δ−e+2v)δ+2n(δ−d+2u−2v+2n)δ+2n

(c−a+u)δ+2n(c−b+u+n)δ+2n(c−δ+v−n)δ+2n( 12+u−v)δ+2n

.

(3.20)

Two examples from (2.12a) and (2.12b) may be displayed respectively
as

(3.21) 5F4

[−2n, u
2 ,

1+u
2 , 1 + 2v, 2u− 2v + 2n

u, 1 + u+ n, 1 + v − n, 1
2 + u− v

]

(3.22) =
1
2n
(u− 2v)n(u− 2v + n)n

( 12 + u− v)n(1 + u+ n)n(−v)n

(3.23)

5F4

[−1−2n, u
2 ,

1+u
2 , 2v, 1+2u−2v+2n

u, 1+u+n, v−n, 1
2+u−v

]
= 0,
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In the same way all the hypergeometric formulas established in this
paper can be transformed to another large class of identities.

3.5 Gessel-Stanton [17]. To make the paper self-contained, here we
reproduce a proof of Gessel-Stanton formulae (2.8a) (2.8b) by means
of inversion machinery, cf., Chu [11].

For a nonnegative integer m and complex numbers b, c, d, e with
1 + a + 2m = b + c + d + e, the Dougall theorem [8, Section 5.1]
states that

7F6

[
a, 1 + (a/2), b, c, d, e, −m

(a/2), 1 + a − b, 1 + a − c, 1 + a − d, 1 + a − e, 1 + a + m

](3.24)

=
(1 + a)m(1 + a− b− c)m(1 + a− b− d)m(1 + a− c− d)m
(1 + a− b)m(1 + a− c)m(1 + a− d)m(1 + a− b− c− d)m

,

(3.25)

which may be specified as

7F6

[
a + d + 1

2
, 3+a+d

4
, b + d + 1

2
, 1 + d − b, a + m

2
, a + 1+m

2
,−m

1+a+d
4

, 1 + a − b, a + b + 1
2
, d − 3−m

2
, d − 2−m

2
, a + d + m + 3

2

]

=
(2b)m(1− 2b)m(a− d)m(a+ d+ 3/2)m

(2 + 2d)m(−1− 2d)m(1 + a− b)m(a+ b+ 1/2)m
.

It may be restated in terms of (1.3a) as

(2a)m(2b)m(1− 2b)m(a− d)m(a+ d+ 1/2)m
(1 + a− b)m(a+ b+ 1/2)m(2 + 2d)m

=
m∑
k=0

(−1)k
(
m
k

)
(2a+ 2k)m(−1− 2d− 2k)m 2k+a+d+1/2

(m+a+d+1/2)k+1

× (a)k(a+ 1/2)k(a+ d+ 1/2)k(b+ d+ 1/2)k(1 + d− b)k
(1 + d)k(d+ 3/2)k(a+ b+ 1/2)k(1 + a− b)k

,

with

λ = a+ d+ 1/2, φ(x;n) = (2x− 1− 2d)n
F (k) =

(2a)k(2b)k(1− 2b)k(a− d)k(a+ d+ 1/2)k
(1 + a− b)k(a+ b+ 1/2)k(2 + 2d)k

G(m) =
(a)m(a+ 1/2)m(a+ d+ 1/2)m(b+ d+ 1/2)m(1 + d− b)m

(1 + d)m(d+ 3/2)m(a+ b+ 1/2)m(1 + a− b)m
.
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Then the corresponding dual relation (1.3b) reads as

(a)m(a+ 1/2)m(a+ d+ 1/2)m(b+ d+ 1/2)m(1 + d− b)m
(1 + d)m(d+ 3/2)m(a+ b+ 1/2)m(1 + a− b)m

(3.26)

=
m∑
k=0

(−1)k
(
m
k

)
2a+3k

(2a+2m)1+k

−1−2d−k
(−1−2d−2m)k+1

(k + a+ d+ 1/2)m

(3.27)

× (2a)k(2b)k(1− 2b)k(a− d)k(a+ d+ 1/2)k
(1 + a− b)k(a+ b+ 1/2)k(2 + 2d)k

,

(3.28)

whose reformulation in terms of hypergeometric series leads us to
(2.8a) (2.8b), due to Gessel-Stanton [17].
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