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FLUCTUATION OF SECTIONAL CURVATURE
FOR CLOSED HYPERSURFACES

MARIUS OVERHOLT

ABSTRACT. Liebmann proved in 1899 that the only closed
surfaces in Euclidean three-space that have constant Gauss
curvature are round spheres. Thus, if a closed surface in
three-space is not a topological sphere, its Gauss curvature
must fluctuate. We consider quantitative formulations of this
fact, also in higher dimensions.

0. Introduction. Consider a smooth closed manifold M of dimen-
sion n which has an immersion f : M → (Rn+1, can) as a hypersurface
in Euclidean space. The immersion pulls back the canonical Rieman-
nian metric on Rn+1 to a Riemannian metric on M , called the induced
metric, which we denote by f∗can. If M is not diffeomorphic to Sn,
the sectional curvature of f∗can must fluctuate. For if the sectional
curvature is constant, it must be positive. Then the shape operator
is everywhere definite, so the hypersurface is diffeomorphic to Sn by a
theorem of Hadamard.

We seek a lower bound for the amount of fluctuation of sectional cur-
vature, dependent on M , but independent of the particular immersion
f as far as possible. For any closed Riemannian manifold, the set of
values of the sectional curvature forms a closed bounded interval. The
task at hand is to give a lower bound for the length l(sec) of this in-
terval for the Riemannian metrics f∗can. Because of scaling, it is clear
that such a bound cannot depend on M alone, but must have some
dependence on the immersion f . It turns out that it is possible to give
a lower bound depending only on the topology of M and its volume
with respect to f∗can.

1. Fluctuation of sectional curvature. Let F be some fixed field,
and βj(M ;F ) = dimHj(M ;F ) the Betti numbers of M with respect
to the field F and β(M ;F ) their sum. Then l(sec) can be estimated
from below by vol (M) and β(M ;F ).
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Proposition 1.1. Suppose that M is a smooth closed manifold
of dimension n which is not diffeomorphic to Sn. For any smooth
immersion f : M → (Rn+1, can) of M , the length l(sec) of the range
of the sectional curvature of the induced metric f∗can satisfies

l(sec) >

(
vol (Sn)
vol (M)

· β

2

)2/n

,

where β is the sum of the Betti numbers of M over some field and
vol (M) is the volume of M with respect to the induced metric.

Proof. By shrinking a large round sphere until it touches f(M), we
see that there is a point where the sectional curvatures are positive. But
if all sectional curvatures are positive everywhere, the shape operator
is positive definite. Then M is diffeomorphic to Sn by Hadamard’s
theorem but this is excluded by assumption. Hence sec must take the
value zero.

The Gauss-Kronecker curvature G is the determinant of the shape
operator, so G = λ1λ2 · · ·λn where the λj are the principal curvatures.
If n is even, write

G = (λ1λ1) · · · (λn−1λn) = Kσ12Kσ23 · · ·Kσn−1n

and if n is odd, write

G2 = λ1λ2λ1λ3λ2λ3 · · ·λn−1λn = Kσ12Kσ13Kσ23 · · ·Kσn−1,n
,

where σij is a section spanned by principal directions for λi and λj

and Kσ is the sectional curvature for σ. Whether n is even or odd, the
assumption |sec| ≤ c yields |G| ≤ cn/2.

The Chern-Lashof inequality
∫

M

|G| d vol ≥ vol (Sn)
2

β

from [1] now yields the desired result, since if |G| ≤ cn/2, we get
cn/2vol (M) ≥ vol (Sn)β/2 while sec takes the value zero.

If M is an orientable surface of genus p ≥ 1 immersed in R3,
Proposition 1.1 yields the inequality area (M)l(K(M)) > 4π(p + 1).
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This bound has the correct order of magnitude for p → ∞, as one sees
by building a ladder-like surface consisting of p−1 identical pieces each
with one rung and two U -shaped endpieces. The surface has genus p,
the maximum and minimum of K on the surface is independent of p
for p ≥ 2, and the area grows linearly with p.

Using the Gauss-Bonnet theorem, this inequality can be improved.

Proposition 1.2. Let M be a smooth, closed surface of genus p ≥ 1
isometrically immersed in R3. Then

area (M)l(K(M)) > 4π(p+ 2
√

p + 1)

if M is orientable and

area (M)l(K(M)) > 2π(p+ 2
√

p + 2)

if M is non-orientable.

Proof. Assume that M is orientable; the non-orientable case involves
only inessential changes.

We use the Gauss-Bonnet theorem
∫

M

K dA = 2πχ(M) = 4π(1− p)

and the inequality ∫
K>0

K dA ≥ 4π

which is related to the surjectivity of the Gauss map. Splitting the left-
hand side of the Gauss-Bonnet theorem into contributions from the sets
where K > 0 and K ≤ 0 and using the inequality, we obtain

∫
K≤0

K dA ≤ −4πp.

Denote the area of the set where K > 0 by A+; then the area of the set
where K ≤ 0 is area (M)−A+. The interval K(M) contains a point to
the right of 4π/A+ since the average of K on that set is at least as large.
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In the same way it contains a point to the left of −4πp/(area (M)−A+).
Hence,

l(K(M)) > 4π
(

1
A+

+
p

area (M)− A+

)
,

and choosing the value of A+ that makes the right-hand side as small
as possible yields the desired inequality.

After imposing further topological restrictions, Heinz Hopf’s Gauss-
Bonnet theorem for hypersurfaces can be used to improve the inequality
in Proposition 1.1 along the same lines. Then the Chern-Lashof
inequality can be replaced by an appeal to the surjectivity of the Gauss
map as above.

For a torus T in R3, Proposition 1.2 yields an appreciable improve-
ment over Proposition 1.1. This suggests the problem of finding the
sharp lower bound for area (T )l(K(T )) where T is an arbitrary smooth
torus isometrically immersed in R3. Proposition 1.2 yields the lower
bound 16π for this quantity. For a torus immersed as a tube of con-
stant circular cross-section, it is easy to determine the sharp bound for
area (T )l(K(T )) by explicit calculation. The infimum is approached,
but not attained, by an anchor ring where the smaller radius tends
to zero while the larger stays fixed. Perhaps the resulting estimate
area (T )l(K(T )) > 8π2 holds in general. This estimate can also be ver-
ified for knotted tori. If T is knotted, an inequality of Langevin and
Rosenberg [2] yields the estimate area (T )l(K(T )) > 32π > 8π2 as in
the proof of Proposition 1.2.
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