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NORMAL HYPERBOLICITY FOR FLOWS
AND NUMERICAL METHODS

MING-CHIA LI

ABSTRACT. In this paper we prove that normally hyper-
bolic invariant manifolds persist between flows and numerical
methods in both directions. This means that normal hyper-
bolicity of flows is preserved under numerical methods and
that normally hyperbolicity for numerical methods is inher-
ited by flows.

1. Definitions and statement of theorems. Let M be a
smooth complete Riemannian manifold with a distance d arising from
the Riemannian metric and Diff (M) be the set of diffeomorphisms
on M with the strong topology and distance dci. A flow is a map
¢ : RxM — M that satisfies the group property: ¢*(¢'(x)) = i (z).

Definition 1. For p > 1, let ¢ be a CP*! flow on M. A CP*! function
N :Rx M — M is called a numerical method of order p for ¢! if there
are positive constants K and hg such that d(¢"(x), N*(z)) < KhP*!,
for all h € [0, ho] and x € M. Here h stands for a stepsize of N. We
denote the i-th iterate of N"(x) by (N")¥(z).

Numerical methods arise from computer simulation and numerical
approximation. For instance, both explicit and implicit Runge-Kutta
methods satisfy the above conditions (see [1]).

It is well known that the time-h map of the flow and the numerical
method of stepsize h are C! close polynomially in terms of h.

Lemma 1 [6]. Let N be a numerical method of order p for a CP*1
flow ¢ on a compact manifold M. Then there is a constant Ki such
that dea (9", N?) < K hP for all sufficiently small h. Moreover, given
T > 0, there is a constant Ky such that dei (o, (NT/")") < Kon'~P
for all large positive integers n.
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We formulate normal hyperbolicity by making an adaptation of the
cone-field argument used in [17].

Definition 2. We say that A is a compact invariant manifold of a
diffeomorphism f on M if it is a C'* compact boundaryless submanifold
of M satisfying f(A) = A. We say that A is normally hyperbolic for f
if there exists a splitting TM | A = ES®TA® E" and constants « > 0,
K >0and 0 < pu <1< Asuch that, for all z € A and n € N,

dim (E3), dim (T,A), and dim (E}Y) are constants,
Df;HC3) € Cayyy DEACE) C Cyy,
|IDfiv| < Ku™v|, forallveCs,
|[Df;"v| < KA\™"v|, forallveCy,

where

Co = {(v*,v™") € E x (TyA x EY) : [v*¢| < alv®|},
C¥ ={(v°¢,v") € (B x TA) x E¥ : |[v*¢| < afv*|}.

Let ¢' be a flow on M and A, be a compact invariant manifold of
the time-T map 7 of the flow. We say that ¢! is normally hyperbolic
on A, if ©T" is normally hyperbolic on Ag.

Let N be a numerical method for a flow on M satisfying that N"
has a compact invariant manifold Ay for all sufficiently small A > 0.
We say that N is normally hyperbolic on {A} if each individual N*
is normally hyperbolic on A, with respect to the constants o, K, u and
A independent of h. We say that {An} is isolated if there exists a
neighborhood U, independent of h, of Ay, such that A, C int (U) and
A = S (NP)P (D).

The following proposition derives general conditions for a closed
submanifold to be normally hyperbolic for numerical methods.

Proposition 1. Let A be a normally hyperbolic invariant manifold
for a diffeomorphism f on M. Then, for each x € A, there ezist
unique subspaces E3 C C2 and EY C CY such that the splitting
T.M | A = ES & T,A ®EY is Df-invariant and varies continuously
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with x, and for all n > 0,
|IDf™ | B3| < Kp",  |Df " |EY| < KA,
D" [EZ |- [[Df™" | ThnaAll < K™,
D" TEZ - (1Df™ | Ty Al < KA.

For a proof of the proposition, refer to [17] and [18].

The following theorem states normally hyperbolic invariant manifold
of flows persists under numerical methods.

Theorem 1. Let p > 2, ¢! be a CP*! flow on M, and N be a
numerical method of order p for '. If ©' has a C' compact normally
hyperbolic invariant manifold A, then for all sufficiently small h > 0,
there exists a normally hyperbolic invariant manifold Ay, for N".

The persistence of hyperbolic periodic orbits is shown early in [3], and
later in [2] and [5] for one-step methods, in [4] for multistep methods,
and in [19] for general numerical methods. The case of stable normally
hyperbolic tori is investigated in [14]. Our theorem is a generalized
version of the above results.

For many local properties of flows persisted by numerical methods,
refer to the extensive volume of Stuart and Humphries [22] and the
long bibliography therein. For structural stability results of flows under
numerical methods, see our previous works [10], [11], [12] and [13].

Next, we consider the converse of Theorem 1, that is, normal hyper-
bolicity of a numerical method is inherited by the flow.

Theorem 2. Let p > 2, ¢! be a CPT' flow on M, and let N be a
numerical method of order p for ot. If N* has a C' compact invariant
manifold Ay, for all sufficiently small h > 0, N is normally hyperbolic
on {Ap}, and {An} is isolated with respect to a common neighborhood
U. Then there is a normally hyperbolic invariant manifold A, for *.

In [7], Hagen assumes that a numerical method has a smooth compact
normally hyperbolic invariant manifold A independent of stepsize h
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and showed the existence of a compact invariant manifold for the
flow. In our result, we allow the invariant manifolds for the numerical
method varies with the stepsize, which is more practical for numerical
computations.

2. Proof of Theorem 1. The proof presented here relies on the
proof of the stable manifold theorem. We make modifications from the
method developed by Conley as given in McGehee [15] and Moser [16]
for the two-dimensional case, the approach given in Hirsch and Pugh
[8] for the high dimensional case, and the proof given in Hirsch, Pugh
and Shub [9] for normal hyperbolicity. See also [21].

Because A, is normally hyperbolic, the tangent bundle of M along
A, splits as the sum of three bundles TM | A, = E* & TA, ® E*.
We want the normal bundle n of ¢! to be smooth. It is no loss
of generality to make a convenient choice of n: let n° and n“ be
smooth subbundles of TM | A, with approximating E® and E* so
that TM | A, = n° ® TA, ® n*, and choose n = 7n® & n*. Let
n’(r) = {v en®:|v] <r}, for § = s,u, be the r disk bundles and
n(r) =n°(r) ®@n*(r). Let 7° : n — n® be a projection along n* onto n®
and 7 :n — n" be a projection along 1° onto n™.

We want to view a tubular neighborhood of A, as a bundle not
over A,, but over some higher dimensional manifold. Let exp be
the exponential map from tangent space to the manifold and set
X = expn®(rp), where ro >0 is small enough so that X (r) is a manifold
(with boundary). It is clear that TX | A, = n® @ n°. For every point
x € A, affinely translate n%(r) from the origin to all points in nS.
Therefore we have an extension of 7%(r) to X near A, still denoting it
n*“. Exponentiating the extension down to the manifold gives a tubular
neighborhood Y (r) of X in M. Let 1®¢ be a differentiable extension of
TX to the neighborhood Y (r) of A,,.

For convenience, we change the Riemannian norm of M so that the
time-T map ¢? of the flow is normally hyperbolic with respect to
the constants « = K = 1. For x € Y (r), let C% = {(v*¢,v") €
N3¢ x ¥ o |v*e] < |v¥|}. If r > 0 is small enough, then for all z € Y (r),
Dy (Cy) C Cf -

For x € X, let DY = exp(n¥). Then let D§ be a disk in the tubular
neighborhood Y (r) satisfying: (i) Dy has the same dimension as n¥,
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(ii) the tangent space T, Dy is contained in the cone C¥, (iii) the
boundary of Dy is in the boundary of Y (r), and (iv) Dy goes all the
way across Y (r). In local coordinates we could assume that D{ is the
graph of a function form 7Y into 73°. Because of the invariance of the
bundles under 7', (¢T)*(D¥)NY (r) is a disk with the same properties
as above for all n > 0. And D¥ = (7)) ((¢1)*(D¥) N Y (r)) C D¥
is a nested set of disks which converges to a single point. This point
is the unique point in DY which stays in Y (r) for all forward iterates.

Let
w2 = ()™ (") (exp(n)) N Y (r).
zeX n>0

Then the stable manifold W% consists of all points whose forward
oT orbits never leave Y (r). Applying this result to ¢ =7 produces the
unstable manifold W}*¢. Thus A, = W*?(A,) NWE¥9(Ay).

By Lemma 1, we have (N7/?)" — ¢T in the C' topology as n — 0.

Take n sufficiently large so that DNIT/n(Cg) C C}QT/,L(I). If DN is a

disk of the same type as above, then N,>o(NT/™)="((NT/™)"(DyN) N
Y (r)) is a single point. Thus the set

W= [ (YT (N exp(n)) N Y (r)

xeX n>0

consists of all points which stays in Y (r) for all forward NT/-iterates.
Similarly, we can get the unstable manifold W*~ when applying this
result to (N7/")=". The stable and unstable manifolds, WV and
WuN - are of C' and transverse to each other; therefore there exists
Aryn = WEN N WEN which is N7/"-invariant and is of C. Consider
T/n = h, then A is N"-invariant. By the C! persistence of D¢"-
invariant splitting T, M | A, = E; ® T, A, ® EY, there exists a DN"-
invariant splitting T, M = ESN @ T, A, ® EXY of which N" is normally
hyperbolicity.

3. Proof of Theorem 2. We shall apply the abstract invariant
manifold theorems in Theorem 4.1 of [9] and Theorem 3.1 of [20] to
construct the local unstable and stable manifolds for points in Aj,. Then
consider the time-h map of the flow as a C' perturbation of N, and
construct its local unstable and stable manifolds. The graph transform
method is essential.
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By Proposition 1, A, has normally hyperbolic DN"-invariant split-
ting TM | A, = E® TA, @ E*. For r > 0, let X(r) = expE“(r).
Fix ro > 0 so small that X(rg) C U is a compact manifold. Let
n* and n°* be smooth and trivial subbundles of TM | X (ry) with ap-
proximating E* and E® so that TM | X(r9) = n* & TA, & n®, and
choose n = n* @ n°. Set n(r) = n*(r) ® n°(r). For § = u,s, let
n’(r) = {v € n° : |v] <r}and 7° : n — n° be a natural projec-
tion. If o : n*(r) — n is a section, then we can define the slope of
o at v, € n"(r) to be limsup,, _, ([s(vz) = s(vy)|s/du(vs, vy)), where
o(vg) = (v, 8(vg)) € ™ x n®, |-]s is the norm on n° and d,, is the
Finsler metric on n*. Let X(1,r) = {section o : n*(r) — n(r) such that
slope (o) < 1} be a complete metric space with the C° sup norm.

For r > 0 small, z € X(r) and v, € n(r), we define a bundle map F
by
F(v,) = exp;[i(z) oN" o expv,.

Then F is a C'! bundle map on 7(r). One can take 0 < r; < 1o small so
that, for o€ ¥(1,71) and x€ X (r1), 70 Fo o : 0" (7) |x(r)— 1" |x(r1)
is invertible. We denote its inverse by g : *(r)|x () — n*. We define
a graph transform Fy of F over X (r1) by

Fy(o)y =Fooog, forxze X(r).

Then Fy is a contraction on 3(1,r1) and has a unique fixed point
o"N" e %(1, 7). For 0< r<ry, let WoN"(z) = exp oY (n(r)). Simi-
larly, we get stable manifolds for N by WsN" (z) =WuN" (z, (N")~1).
Let WoN"(Ap) = Ugen, WoN"(z) for 0 = u,s. Then A, =
WV (An) TN (An).

By Lemma 1, we have that " is O(hP)-close to N in the C! topology
with p > 2. By Theorem 4.1 of [9], see also Theorem 2 of [19], one
can take h > 0 sufficiently small so that the bundle map G}, defined
by Gp(vz) = exp;\,},/ @) o o exp v, has a well-defined graph transform
Gry = Gpooog', where ¢’ is a right inverse of 7 o Gj, o 0. Moreover,
Gh# is a contraction of X(1,r), so has a fixed point o*¥. That is, we
can construct for " a manifold W? = ¢%#(X(r)). These results when
applied to the inverse of ¢" produce W3®. Let Ay, =W NWi*. By
backward and forward invariance of W% and W%, A, is ¢"-invariant.
Since Ay, is normally hyperbolic and isolated, one can take A > 0 small



NORMAL HYPERBOLICITY 355

enough so that " is normally hyperbolic on A, and Ay is locally
mazimal in the sense that there is a neighborhood V' of A, such that
any @/-invariant set contained entirely in V is a subset of A,. By
uniqueness, we have that ¢' is normally hyperbolic on A.,.
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