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TOTAL VERSUS SINGLE POINT BLOW-UP
FOR A NONLOCAL GASEOUS IGNITION MODEL

STEPHEN BRICHER

ABSTRACT. In this paper we investigate an integro-
parabolic equation that may be considered as a mathemat-
ical model for the temperature within the ignition period of
a gaseous fuel. For radially symmetric, non-increasing ini-
tial data, we determine where classical solutions become un-
bounded in finite time as well as describe the asymptotic be-
havior of these hot-spots. The method of analysis is based on
maximum principle techniques and the method of stationary
states.

1. Introduction.

1.1 Statement of the problem: Gaseous ignition models. The
thermal combustion process in a solid fuel, where heat transfer by
conduction is constant and the reaction rate depends on temperature,
can be modeled [4] by the semi-linear parabolic equation

ut = ∆u+ f(u),

where typically f(u) is either exp(u) or up with p > 1.

For an ideal gaseous fuel in a bounded container, the motion caused
by the compressibility of the gas leads to the addition of a nonlocal
integral term that complicates the model. For example, the ignition
period of a thermal event can be described by the following integro-
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parabolic problem [4, Chapters 1 and 5]

ut = ∆u+ eu +
γ−1
|Ω|

∫
Ω

eu dy, (x, t) ∈ Ω× (0,∞)(1)

u(x, 0) = u0(x), x ∈ Ω(2)
u(x, t) = 0, x ∈ ∂Ω, t > 0,(3)

where Ω ⊂ Rn is a bounded open container, u is the temperature
perturbation of the gas, γ ≥ 1 is the gas parameter and |Ω| ≡ vol (Ω).

In this paper we concentrate on the case where γ > 1. We point
out that if γ = 1, which corresponds to a solid fuel, then (1) loses
its nonlocal dependence and we obtain the semi-linear equation ut =
∆u + exp(u) that has received much attention. See [3], [4] and [6]
as well as the references therein for a discussion of the behavior of
solutions to the solid fuel ignition model.

In addition to equation (1), the nonlocal parabolic equation

(4) ut = ∆u+ eu +
γ − 1
γ|Ω|

∫
Ω

ut dy

is used as a gaseous-diffusive ignition model [4, Chapter 5]. By
integrating (4) over Ω and applying Green’s first identity to

∫
Ω
∆u dy,

we observe that (4) is equivalent to

ut = ∆u+ eu +
γ − 1
|Ω|

[ ∫
∂Ω

∂u

∂n
dσ +

∫
Ω

eu dy

]
.

By deleting the nonlocal gradient term, we obtain (1). This suggests
that the gaseous ignition model (1) can be considered as a description of
the thermal behavior for a gaseous fuel whose flux of the temperature’s
spatial rate of change across the container’s boundary is negligible.

In this paper we are primarily concerned with analyzing the behavior
of the unique solution (see [5]) to IBVP (1) (3) in the radially sym-
metric case that we now identify. Let Ω = BR ≡ {x ∈ Rn : |x| < R}
and assume the initial temperature profile satisfies the compatibility
condition u0 = 0 for x ∈ ∂BR and is radially decreasing. Specifically,
we assume

(5)




u0 = u0(r) with r = |x|,
u′

0(0) = 0 u0(R) = 0
u′

0(r) < 0 for r > 0.
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At times, we also assume u0 is a lower solution of (1). That is,

(6) ∆u0 + eu0 +
γ − 1
|BR|

∫
Ω

eu0 dy ≥ 0.

It is possible to show that both models (1) and (4) satisfy an
invariance property with respect to radially symmetric, non-increasing
functions. Indeed, if u0 satisfies (5) and u solves IBVP (1) (3) or
IBVP (4), (2) (3), then u is radially symmetric and non-increasing in
r for all t in the maximal time interval of existence for the appropriate
problem. For a proof of this invariance property, see [1, Theorem 9] or
[4, Theorem 5.14].

Throughout we will assume that the initial data u0 satisfies (5) with
u0(0) = supBR

u(r) sufficiently large to guarantee finite time blow-up;
that is, there exists T < ∞ such that limt→T− supBR

u(x, t) = ∞. Such
an assumption is possible since the solution u of IBVP (1) (3) is an
upper solution to the semi-linear problem

wt = ∆w + ew, (x, t) ∈ BR × (0,∞)
w(x, 0) = u0(x), x ∈ BR

w(x, t) = 0, x ∈ ∂BR, t > 0,

which is known to have finite time blow-up when the initial data is
sufficiently large (see [4]). Hence, since u(x, t) ≥ w(x, t), the solution
u blows up in finite time as well. In fact, the corresponding maximal
times satisfy the inequality Tu < Tw. Thus, any comparison between
u and w for times t > Tu has no meaning. Because of this, it’s not
possible to use the known information about the asymptotic behavior
of w to gain a precise description of the blow-up behavior of u.

1.2 Main results. In this paper we determine the blow-up set for
IBVP (1) (3) with initial data satisfying (5), which is defined as

B(u0) ≡ {x ∈ BR : ∃{(xm, tm)} with (xm, tm) −→ (x, T )
and u(xm, tm) −→ ∞ as m −→ ∞}.

We find that the structure of the blow-up set depends on the spatial
dimension with n = 3 being the set’s bifurcation value. When n ≤ 2
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we observe total blow-up, and when n ≥ 3 with γ − 1 > 0 sufficiently
small, we observe single point blow-up. We precisely state our results
in the following two theorems, which are proven in Sections 4 and 3,
respectively.

Theorem 1.1 (Total blow-up for n ≤ 2). Let u be the solution
of IBVP (1) (3) with initial data satisfying (5) and (6). If n ≤ 2, then
the solution has total blow-up; that is, B(u0) = BR.

Theorem 1.2 (Single point blow-up for n ≥ 3). Let u be the
solution of IBVP (1) (3) with initial data satisfying (5) and (6). If
n ≥ 3, then there exists β > 0 such that 1 < γ < 1 + β implies the
solution has single point blow-up; that is, B(u0) = {0}.

It’s interesting to observe that, in the radially symmetric case (5),
the blow-up set when γ = 1, which corresponds to the solid fuel model,
is B(u0) = {0} for both the IBVP and CP in any dimension. Thus,
the bifurcation in the blow-up set for IBVP (1) (3) is a consequence
of its nonlocal structure. The proof when γ = 1 is based on maximum
principle techniques presented in [9], which also includes a discussion
of non-symmetric domains. See also [4] and [6], which includes the CP.

For the case n ≥ 3 with γ − 1 > 0 sufficiently small, we are able
to obtain an upper bound on the final-time profile and estimate the
asymptotic behavior near the blow-up point within the so-called hot-
spot variable domain. We state these results in the following two
theorems, which are proven in Section 3.

Theorem 1.3 (Final-time profile bound). Let u satisfy the
hypotheses of Theorem 1.2 with 1 < γ < 1 + β. Then the final-time
profile, u(r, T ), satisfies

u(r, T ) ≤ −2 log r + log | log r|+ C

for all 0 < r � 1.

Theorem 1.4 (Hot-spot behavior). Let u satisfy the hypotheses
of Theorem 1.2 with 1 < γ < 1 + β. Then

lim
t→T−

[u(x, t) + log(T − t)] = 0
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uniformly on sets of the form |x| ≤ C
√
T − t.

We point out that these estimates are precisely those observed for the
behavior of blow-up in the solid fuel model, where γ = 1 in equation
(1). See [3], [4] and [6]. Thus we may regard our results in Theorems
1.3 and 1.4 as statements on the stability of the asymptotic behavior
near blow-up with respect to certain nonlocal additive perturbations of
the elliptic operator ∆u+ exp(u).

1.3 Related work. Currently, gaseous ignition models as well as
other nonlocal problems are receiving attention. We briefly mention
some of the recent results related to problems considered in this paper.

Using comparison techniques for nonlocal problems, which are dis-
cussed in Section 2, the existence of a unique solution to IBVP (1) (3)
was proven in [5] for more general domains than the ball BR.

An investigation of steady-state solutions to IBVP (1) (3) was carried
out in [15] where the author’s main result is the following. If the initial
data is below the minimal steady-state solution us(x), then the solution
to the IBVP exists for all time and will converge to us(x).

In [17] the author considers, among other problems, the nonlocal
parabolic equation

ut −∆u =
∫

Ω

exp(u(y, t)) dy

and proves that

lim
t→T−

‖u(t)‖∞
| log(T − t)| = 1.

We observe similar behavior (Theorem 1.4) for equation (1), which
includes the same nonlocal term as well as the ignition term, exp(u).

Regarding IBVP (4), (2) (3) with u0(x) ≡ 0, the authors of [1] use
semi-group techniques to prove the solution is non-negative, radially
symmetric and non-decreasing on its maximal interval of existence.
The fact that the blow-up set is the origin for all n was established in
[2], and a proof that the solution satisfies the conclusions of Theorems
1.3 and 1.4 was given in [7].
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The outline of the remaining sections is as follows. In Section 2 we
briefly review comparison methods for nonlocal problems as discussed
in [5] and use them to obtain monotonicity results for a class of integro-
parabolic problems that includes (1) as well as a comparison result for
solutions to (1) and (4).

Section 3 is devoted to IBVP (1) (3) in the case n ≥ 3 with
γ − 1 > 0 sufficiently small, where single point blow-up (Theorem 1.2)
and estimates on the behavior near blow-up (Theorems 1.3 and 1.4)
are established using maximum principle techniques similar to [7] and
[9].

A proof of total blow-up for IBVP (1) (3) when n ≤ 2 (Theorem 1.1)
is given in Section 4. The proof is based on intersection comparison
techniques and the method of stationary states as discussed in [16,
Chapter VII].

2. Comparison methods for nonlocal problems. Before
reviewing comparison methods for nonlocal problems, we first identify
our notation. Let D be an open bounded domain in Rn whose
boundary is of class C2+α, 0 < α < 1. Let DT = D × (0, T ) and
BT = (∂D× [0, T ))∪ (D×{0}) denote the parabolic boundary for DT .

It is well-known that the standard definitions of lower and upper
solutions to an IBVP do not necessarily yield comparison techniques for
nonlocal problems. For a discussion that includes counterexamples, we
refer the reader to [5]. Thus we need to modify the definitions of lower
and upper solutions for applications to integro-parabolic problems. For
convenience, we include a summary of the ideas found in [5], which
we state for autonomous equations such as our gaseous models under
consideration.

Consider the parabolic functional IBVP

ut −∆u = F (x, u, φ(u)), (x, t) ∈ DT(7)
u(x, t) = Ψ(x, t), (x, t) ∈ BT ,(8)

where φ(u) denotes a nonlocal functional, for example, φ(u) =
a

∫
D
f(u) dy.

Let α, β ∈ C(DT ) with α(x, t) ≤ β(x, t). Relative to these functions,
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we define

Sα(x, t) ≡ {u ∈ C(DT ) : α(y, s) ≤ u(y, s) ≤ β(y, s)
for (y, s) ∈ DT with u(x, t) = α(x, t)}.

That is to say, functions in Sα(x, t) lie between α and β on DT and
equal α at the point (x, t). Similarly, we define Sβ(x, t). We are now
in a position to define our lower and upper solutions to IBVP (7) (8)
as in [5].

Definition 2.1. The functions α, β ∈ C2,1(DT ) are a lower-upper
solution pair for IBVP (7) (8) provided

α(x, t) ≤ Ψ(x, t) ≤ β(x, t), (x, t) ∈ BT

α(x, t) ≤ β(x, t), (x, t) ∈ DT

and, for each (x, t) ∈ DT ,

αt −∆α ≤ F (x, u(x, t), φ(u)) for all u ∈ Sα(x, t)
βt −∆β ≥ F (x, u(x, t), φ(u)) for all u ∈ Sβ(x, t).

The existence of such a lower-upper pair implies that a solution of
IBVP (7) (8) exists and lies between the pair, which is proven in [5,
Theorem 3].

If the righthand side of (7) satisfies a monotonicity property:

(9) u1 ≤ u2 implies F (x, u1, φ(u1)) ≤ F (x, u2, φ(u2)),

then we have the existence of maximum principle and comparison
techniques for solutions to the nonlocal IBVP (7) (8) via the lower-
upper solution pairs given in Definition 2.1. See [5] for the details.

Motivated by the gaseous ignition model (1) (3), we consider the
functional Dirichlet problem

ut −∆u = F (x, u, φ(u)), (x, t) ∈ D × (0,∞)(10)
u(x, 0) = u0(x), x ∈ D(11)
u(x, t) = 0, x ∈ ∂D, t > 0,(12)
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where F ≥ 0 satisfies (9). Observe that the righthand side of (1) is an
example of the functional

F = f(u) +
∫

D

g(u) dy,

where f and g are both non-decreasing, which satisfies (9). Hence the
following theorems regarding solutions to IBVP (10) (12) also hold for
IBVP (1) (3).

Theorem 2.1. Let u0 ≥ 0 satisfy −∆u0 ≤ F (x, u0, φ(u0)). Then
the solution u to IBVP (10) (12) satisfies u(x, t) ≥ u0(x).

Proof. Let α(x, t) = u0(x) which is a lower solution to IBVP (10) (12)
due to (9) and so, by comparison, u(x, t) ≥ u0(x).

Theorem 2.2. Let u and v be solutions to IBVP (10) (12) with
corresponding initial data u0 and v0 satisfying 0 ≤ u0 ≤ v0. Then
u(x, t) ≤ v(x, t) on their common interval of existence.

Proof. Let z(x, t) = v(x, t) − u(x, t). Then z satisfies the parabolic
functional IBVP

zt −∆z = F (x, z + u, φ(z + u))− F (x, u, φ(u)), (x, t) ∈ D × (0,∞)
z(x, 0) = z0(x) ≡ v0(x)− u0(x), x ∈ D,

z(x, t) = 0, x ∈ ∂D, t > 0.

It is not difficult to observe that α(x, t) ≡ 0 is a lower solution to the
above problem since F ≥ 0 satisfies the monotonicity property (9).
Hence, by comparison, z(x, t) ≥ 0.

Corollary 2.3 (Monotonicity in time). Let u0 ≥ 0 satisfy

−∆u0 ≤ F (x, u0, φ(u0))

and let u be the solution to IBVP (10) (12). Then ut ≥ 0.
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Proof. Let uδ(x, t) = u(x, t+ δ). Then uδ solves the problem

uδ
t −∆uδ = F (x, uδ, φ(uδ)), (x, t) ∈ D × (0,∞),
uδ(x, 0) = u(x, δ), x ∈ D,

uδ(x, t) = 0, x ∈ ∂D, t > 0.

By Theorem 2.1, uδ(x, 0) ≥ u0(x) and from Theorem 2.2 we may
conclude that uδ(x, t) ≥ u(x, t), which yields that ut ≥ 0.

There is a comparison property between solutions to models (1) and
(4) that we give in the following theorem, which is also discussed in [1].

Theorem 2.4. Let u0 satisfy (5) and u be the solution to IBVP
(1) (3), and let v be the solution to IBVP (4), (2) (3). Then u(x, t) ≥
v(x, t) on their common interval of existence.

Proof. As mentioned in Section 1.1, the solutions u and v are radially
symmetric and non-increasing. Thus, vr(r, t) ≤ 0. Hence, for any
w ≥ v we have that

vt −∆v = exp(v) +
γ − 1
γ|BR|

∫
BR

vt dy

= exp(v) +
γ − 1
|BR|

[ ∫
∂BR

∂v

∂n
dσ +

∫
BR

exp(v) dy
]

≤ exp(v) +
γ − 1
|BR|

∫
BR

exp(v) dy

≤ exp(w) +
γ − 1
|BR|

∫
BR

exp(w) dy.

Therefore, by Definition 2.1, we see that v is a lower solution of (1) and
so v(x, t) ≤ u(x, t) by comparison.

As mentioned in [1] and [4], not much is known about IBVP (4),
(2) (3) for nonzero initial data. However, because of Theorem 2.4,
we are able to use solutions to IBVP (1) (3) as upper estimates for
solutions to IBVP (4), (2) (3) on their common interval of existence.
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3. Behavior for n ≥ 3: Single point blow-up. In this section we
consider IBVP (1) (3) for the case n ≥ 3 and prove Theorems 1.2 1.4.
We will use the notation

(13) g(t) ≡ γ − 1
|Ω|

∫
Ω

exp(u) dy and G(t) ≡
∫ t

0

g(s) ds

throughout Sections 3 and 4.

Lemma 3.1. Let u be the solution to IBVP (1) (3) with initial data
satisfying (5) and (6). Then we have the following upper bound

(14) u(r, t) ≤ − 2
α
log r + C +G(t)

for any 0 < α < 1.

Proof. The proof is based on a maximum principle technique similar
to [2] and [9]. Let us define the following auxiliary function

J(r, t) ≡ rn−1ur(r, t) + εrn exp(α(u−G(t))).

Since ut ≥ 0 (Corollary 2.3) and ur < 0 (maximum principle) on
(0, R) × (0, T ), we are able to use a maximum principle argument to
show J ≤ 0 on (r, t) ∈ [0, R] × [0, T ) for any 0 < α < 1 and ε > 0
that’s sufficiently small. See [2], [3], [6] and [9] for an illustration of
the details. Estimate (14) then follows by integrating the inequality
J ≤ 0 from 0 to r. The constant C will depend on α and ε, but
not on γ. Specifically, C = −α−1 log(αε/2) for all 0 < α < 1 and
0 < ε < min{1/n, (1− α)/2α}.

Lemma 3.2. Let u be the solution to IBVP (1) (3) with initial data
satisfying (5) and (6). If n ≥ 3, then

(15) G(t) ≤ (γ − 1)TC exp(G(t)).

Proof. From estimate (14) we have that

exp(u) ≤ Cr−2/α exp(G(t)).



TOTAL VERSUS SINGLE POINT BLOW-UP 35

Since n ≥ 3, we may choose α ∈ (0, 1) such that 2/n < α < 1. Thus,
integrating over BR yields

(16) g(t) ≤ (γ − 1)C exp(G(t))

because the exponent for r will be n − 1 − 2/α > −1. Now estimate
(16) implies

G(t) =
∫ t

0

g(s) ds ≤ (γ − 1)C
∫ t

0

exp(G(s)) ds,

which yields inequality (15) since G is increasing.

Lemma 3.3. Let u satisfy the assumptions of Lemma 3.2 and assume
n ≥ 3. Then there exists β > 0 such that 1 < γ < 1 + β implies
g ∈ L1(0, T ).

Proof. By Lemma 3.2, we see that

(17) G(t) exp(−G(t)) ≤ (γ − 1)TC.

Now the function h(v) ≡ v exp(−v) attains its global maximum on the
interval 0 ≤ v < ∞ at v = 1. Specifically,

(18) h(v) ≤ h(1) = e−1 for 0 ≤ v < ∞.

Now the blow-up time T will depend on γ, and by our comparison
results we have the monotonicity result, γ1 ≤ γ2 implies T (γ2) ≤ T (γ1).
Therefore, γ > 1 implies T (γ) < T (1), and thus we may choose β > 0
sufficiently small so that

βCT = βCT (γ) ≤ βCT (1) < e−1,

where the constant C does not depend on γ as mentioned in the proof
of Lemma 3.1. Hence, by inequalities (17) and (18), we see that
0 < γ − 1 < β implies h(G(t)) does not attain its global maximum
since

(19) h(G(t)) = G(t) exp(−G(t)) ≤ βCT < e−1.
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Suppose, for the moment, that 1 < G(T ) ≤ ∞. Since G(t) is
increasing and G(0) = 0, there exists t0 ∈ (0, T ) such that G(t0) = 1
by continuity. Thus the function h(G(t)) attains its global maximum,
e−1, at time t = t0, which contradicts (19). Therefore, G(t) is bounded
for all 0 ≤ t ≤ T . In fact, G(t) ≤ G(T ) < 1, which yields the desired
result, g ∈ L1(0, T ).

Using these lemmas, we may prove Theorem 1.2. Indeed, Lemma 3.3
implies G(t) is bounded for all t ≤ T and so inequality (14) provides
the upper bound

u(r, T ) ≤ − 2
α
log r + C,

which implies the only blow-up point is the origin.

By modifying the choice of the auxiliary function J(r, t) in the proof
of Lemma 3.1, it is possible to obtain the upper bound on the final-time
profile

(20) u(r, T ) ≤ −2 log r + log | log r|+ C, 0 < r � 1

that is the conclusion of Theorem 1.3. For example, the choice

J(r, t) = rn−1ur(r, t) + εF (u, t),

where

F (u, t) =
1

a+ u
exp(u+ k(t)), k(t) =

∫ T

t

g(s) ds

in the proof of Lemma 3.1 will produce the estimate

∫ u(0,t)

u(r,t)

(a+ s) exp(−s) ds ≥ εr2

2
exp(k(t)),

from which the upper bound (20) can be obtained. See the references
[3] and [7] for details.

In addition to the final-time profile bound (20), we are able to obtain
important L∞ bounds on the rate of blow-up with respect to time.
Specifically, if u satisfies the hypotheses of Lemma 3.2 and we assume
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n ≥ 3 together with 1 < γ < 1 + ε, then, since g ∈ L1(0, T ) by
Lemma 3.3, we can show that

u(r, t) ≤ − log(T − t) + C(21)

u(0, t) ≥ | log(T − t)|
[
1 +

ε n exp(k(t))
| log(T − t)|2 (1 + o(1))

]
(22)

u2
r ≤ 2 exp(u(0, t)) [1 +G(t)](23)

for all (r, t) ∈ [0, R)× [0, T ). Proofs of these bounds for IBVP (1) (3)
are similar to those given in [7] and so we do not provide the details.
See also [3], [4] and [6] for similar L∞ bounds of solutions to quasilinear
parabolic problems with no functional dependence.

To begin our discussion of Theorem 1.4, we make the hot-spot change
of variables

{
τ = − log(T − t) y = x(T − t)−1/2,

w(y, τ ) = u(x, t) + log(T − t),

where w solves the parabolic equation

wτ = ∆w − 1
2
y · ∇w + ew − 1 + e−τg(T − e−τ )

on the set (y, τ ) ∈ B(τ ) × (τ0,∞) with B(τ ) ≡ {y ∈ Rn : |y| <
R exp(τ/2)}. The initial condition and moving boundary condition are
given by

w(y, τ0) ≡ w0(y) = u0(ye−τ/2), y ∈ B(τ )
w(y, τ ) = 0, (y, τ ) ∈ ∂B(τ )× (τ0,∞).

From the L∞ bounds in (21) (23), it follows that

(24)
{−c1 − c2|y| ≤ w ≤ c3, |∇w| ≤ c4,
|∆w| ≤ c5, |wτ | ≤ c6 + c7|y|.

We now use a stabilization technique [14] to show w → 0 as τ → ∞.
We do not provide the details as the proofs given in [3] and [6] can be
adapted to this problem, but we do outline the main argument for the
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readers’ convenience. Using the bounds in (24), we are able to use the
energy functional

E(t) =
∫

B√
τ

exp(−|y|2/4)
[
1
2
|∇w|2 + w − exp(w)

]
dy

to show that ∫ ∞

a

∫
Bδ

w2
τ exp(−|y|2/4) dy dτ < ∞

for any constants δ > 0 and a � 1. This will imply that the omega
limit set consists of solutions to a stationary problem. That is,

ω(w0) =
{
w ∈ C2 : ∆w − 1

2
y · ∇w + ew − 1 = 0

}
.

Finally, the only allowable function in the omega limit set satisfying
the bounds in (24) and that intersects the singular solution S(r) ≡
log(2(n − 2)/r2) exactly once is w ≡ 0. See [4] for details. Thus,
w(y, τ ) → 0 as τ → ∞ uniformly on compact subsets in y. Translating
back to the original variables (x, t) yields the conclusion of Theorem 1.4.

4. Behavior for n ≤ 2: Total blow-up. In this section we
consider IBVP (1) (3) with radially symmetric, non-increasing initial
data u0(r) that satisfies (5) for the case n ≤ 2. We prove Theorem 1.1
using the method of stationary states, which is described in the text
[16, Chapter VII]. See, for example, the references [10], [11] [12] and
[13] for additional applications of this method.

We begin by describing some important properties of stationary
solutions to (1) in the radially symmetric case. Let U = U(r;U0)
be a solution to the stationary nonlocal initial-value problem

r1−n(rn−1Ur)r + eU +
n(γ − 1)

Rn

∫ R

0

eUrn−1 dr = 0(25)

U(0) = U0(26)
U ′(0) = 0.(27)

By integrating (25) from 0 to r, it is easy to see that

(28) Ur ≥ −γr exp(U0)
n

and U(r;U0) ≥ U0

(
1− r2

r2
0

)
+

,
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where r2
0 = 2nU0 exp(−U0). In addition, let 0 < ε � 1, then

(29) Ur ≤ −r1−nc(ε),

for r ≥ ε, where c(ε) =
∫ ε

0
sn−1 exp(U(s)) ds.

Integrating (29) from ε to r and using the bound

c(ε) ≥ εn

n
exp(U(ε))

yields the upper bound

U(r) ≤ U(ε)− εn

n
exp(U(ε))

∫ r

ε

s1−n ds.

We observe that if U(ε) is sufficiently large, the righthand side of this
inequality is decreasing relative to the variable U(ε). The bounds in
(28) imply that U(ε) = U(ε;U0) ≥ U0(1−ε2/r2

0)+. Thus, when U0 � 1
and 0 < ε � 1, we obtain the estimate

(30) U(r;U0) ≤ U0(1−ε2/r2
0)+ − εn

n

∫ r

ε

s1−n ds exp(U0(1−ε2/r2
0)+)

for 0 < ε � 1 and U0 � 1.

We point out that, when U0 is sufficiently large, estimate (30) implies
that

suppU(r;U0) ⊂ [0, R)

for any n; hence, we conclude that steady-state solutions to IBVP
(1) (3) fail to exist when the initial data u0 satisfies (5) with u0(0)
sufficiently large.

We now recall a well-known property regarding the intersections
between the solution u(r, t) of IBVP (1) (3) with a stationary solution
U(r;U0) of IVP (25) (27).

Lemma 4.1. Let N(t;U0) denote the number of intersections of
the functions u(r, t) and U(r;U0). Then N(t;U0) is a non-increasing
function of t. In particular,

N(t;U0) ≤ N(0;U0)
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for all 0 ≤ t < T .

The proof of this lemma relies on maximum principle and comparison
techniques, which hold for our nonlocal problem as mentioned in
Section 2. We do not provide the details of the proof, which can be
found in the references [10] [13], but outline the argument. Indeed,
observe that the difference w ≡ u − U satisfies a linear parabolic
equation

wt = ∆w + b(x, t)w +
γ − 1
|BR|

∫
BR

b(y, t)w dy,

where b(x, t) =
∫ 1

0
exp(su + (1−s)U) ds. The number of intersections

between u and U is not more than the number of zeros of the difference
w. The lemma then follows from the well-known comparison property
that the number of sign changes of w is not more than the number of
sign changes of w on the parabolic boundary.

Using the properties of the stationary solutions mentioned in (28) (30),
we may use Lemma 4.1 to establish the following comparison between
the final-time profile u(r, T ) and stationary solutions U(r;U0). See
[16, pp. 421+] or the references [10] [13] for a proof as well as other
applications.

Lemma 4.2. Let u(r, t) be an unbounded solution to IBVP (1) (3)
with initial function u0(r) satisfying (5). Moreover, assume there exists
U∗

0 such that for all U0 > U∗
0 , the functions u0(r) and U(r;U0) intersect

at most one point. Then, for all sufficiently small r > 0, we have that

(31) u(r, T−) ≡ lim
t→T−

u(r, t) ≥ sup
U0≥U∗

0

U(r;U0).

Briefly, the idea of the proof is to use Lemma 4.1 to show that the
number of intersections, N(t;U0), between u and U(r;U0) is at most
one for U0 > U∗

0 and t ∈ (tU0 , T ). Since u becomes unbounded as t
approaches T , it is possible to rule out the case N(t;U0) = 1. Thus,
by comparison, u(r, t) ≥ U(r;U0) for all U0 > U∗

0 and t ∈ (tU0 , T ) from
which estimate (31) will follow.
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We observe that the hypothesis N(0;U0) ≤ 1 for large U0 is satisfied
due to the assumptions on u0(r) and properties (28) (30) for the
stationary solutions U(r;U0).

For our problem, it is possible to estimate the stationary-solution
envelope,

L(r) ≡ sup
U0≥U∗

0

U(r;U0).

Indeed, let K(r) satisfy

K(r) = U0 − γeU0r2

2n
and K ′ = −γeU0r

n
,

which imply, by eliminating the parameter U0, that K satisfies the
differential equation

(32) K = log
(−nK ′

γr

)
+

r

2
K ′.

By (28) we see that L(r) ≥ K(r). We are interested in monotone
decreasing solutions to (32) that satisfy K(r) → ∞ as r → 0+.
It is easy to verify that, for an appropriate choice of the constant,
K(r) = −2 log r+C is such a solution. Hence, we have from (31) that

(33) u(r, T−) ≥ − 2 log r + C for 0 < r � 1.

We now discuss how this lower bound on the final-time profile can be
used to show the solution u(r, t) of IBVP (1) (3) blows up everywhere
in BR. To begin, we observe that since r−2 /∈ L1(BR) when n ≤ 2,
estimate (33) implies that

(34) g(t) =
γ − 1
|BR|

∫
BR

exp(u) dy −→ ∞ as t → T−.

Suppose, for the moment, that g ∈ L1(0, T ). Then by an argument
similar to Section 3, we have single point blow-up at the origin. Let
b ∈ (0, R) then u(r, t) is bounded on the set [b, R]×[0, T ), which implies
that ∆u solves a linear parabolic PDE with bounded coefficients on
[b, R] × [0, T ); hence, by Schauder estimates [8], ∆u is bounded on
[b, R]× [0, T ). However, estimate (34) implies that

∆u(R, t) −→ −∞ as t → T−,
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which yields a contradiction. Therefore, it must be that g /∈ L1(0, T ).

Now, choose b ∈ (0, R) and let ρ = min{b, R − b}. On the ball
B(b; ρ) ≡ {x ∈ Rn : |x− b| < ρ}, consider the linear parabolic IBVP

wt = ∆w + g(t), (x, t) ∈ B(b; ρ)× (0, T )
w(x, 0) = 0, x ∈ B(b; ρ)
w(x, t) = 0, x ∈ ∂B(b; ρ), t > 0.

Using Green’s functions, the solution to this problem evaluated at x̄,
with |x̄| = b, can be written as

w(x̄, t) =
∫ t

0

∫
B(b;ρ)

G(x̄, y, t− s)g(s) dy ds

≥
∫ t

0

g(s)
∫

B(b;ρ)

G(x̄, y, T − 0) dy ds

≥ K(ρ)
∫ t

0

g(s) ds,(35)

where K(ρ) =
∫

B(b;ρ)
G(x̄, y, T ) dy. Since g /∈ L1(0, T ), inequality

(35) implies that w(x̄, t) → ∞ as t → T−. The solution u of IBVP
(1) (3) is an upper solution to the above linear problem and therefore
u(x̄, t) → ∞ as t → T− for any x̄ ∈ BR since the choice of b was
arbitrary. This proves we have total blow-up for n ≤ 2, which is the
conclusion of Theorem 1.1.

Acknowledgments. The author thanks the referee for corrections
and many helpful comments.
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