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ON FUNCTIONAL REPRESENTATION OF
COMMUTATIVE LOCALLY A-CONVEX ALGEBRAS

JORMA ARHIPPAINEN

ABSTRACT. We shall give a Gelfand type of representa-
tion of commutative locally A-convex algebras by using a cer-
tain family of seminorms defined on the carrier space of this
algebra. By using this representation we give a generalization
of locally convex uniform algebras.

1. Introduction. Let (A, T ) be a commutative algebra over the
complex numbers equipped with a topology T . If A has unit element it
will be denoted by e. In this paper we assume that the topology T on
A has been given by means of a family P = {pλ | λ ∈ Λ} of seminorms
on A. This topology will be denoted by T (P). We assume that T (P)
is a Hausdorff topology (i.e., from the condition pλ(x) = 0, x ∈ A,
for all λ ∈ Λ it follows that x = 0). Suppose further that P has the
following property. If λ and µ ∈ Λ then max{pλ, pµ} ∈ P, i.e., P is
directed. This property is needed in some place, but it is not necessary
in general. We shall say that (A, T (P)) is a locally A-convex algebra if
for each x ∈ A and λ ∈ Λ there is some constantM(x,λ) > 0 (depending
on x and λ) such that

(1) pλ(xy) ≤ M(x,y)pλ(y) for all y ∈ A.

If the above M(x,λ) does not depend on λ, i.e., (1) holds for all λ ∈ Λ
for some constant Mx > 0 depending only on x, then we say that
(A, T (P)) is a locally uniformly A-convex algebra. Furthermore, we
say that (A, T (P)) is locally m-convex if pλ(xy) ≤ pλ(x)pλ(y) for all x
and y ∈ A and λ ∈ Λ. Obviously a locally m-convex algebra is locally
A-convex. Note that the multiplication in locally A-convex algebra is
in general only separately continuous and in locally m-convex algebra
jointly continuous. The concepts of A-convex and uniformly A-convex
algebras were introduced in [13], [14] and [15]. See also [9], [21],
[22], [23] and [24]. A standard example of uniformly locally A-convex
algebra is an algebra of bounded continuous complex-valued functions
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defined on some completely regular space equipped with so-called strict
topology. See [14]. So we can say that in the theory of locally A-convex
algebras we give an abstract form for the function algebras equipped
with a certain type of weighted topology. Note that there are also
noncommutative locally A-convex algebras.

For a topological space X denote by C(X) (correspondingly Cb(X))
the set of all continuous (correspondingly bounded) complex valued
functions on X. If X is locally compact we denote by C0(X) the set of
all continuous complex-valued functions vanishing at infinity.

Let ∆(A, T (P)) be the set of all nontrivial continuous complex ho-
momorphisms on A. Note that it may happen that the set ∆(A, T (P))
is empty even if A has unit. Let (A, T (P)) be a locally A-convex al-
gebra with a nonempty set of continuous complex homomorphisms.
Let x ∈ A be given. Then we can define a complex-valued func-
tion x̂ on ∆(A, T (P)) by x̂(τ ) = τ (x), τ ∈ ∆(A, T (P)). We shall
equip ∆(A, T (P)) with the weak topology generated by the functions
Â = {x̂ | x ∈ A}. We shall call ∆(A, T (P)) with this topology the
carrier space of (A, T (P)). So we have Â ⊂ C(∆(A, T (P)). Clearly the
carrier space ∆(A, T (P)) is completely regular.
The history of functional representation (Gelfand representation) of
locally m-convex algebras dates back to the papers of Arens [3] and
Michael [19]. Since then this subject has been considered in many
papers. See, for example, [5], [10], [11], [17], [19] and [20]. Since
a locally A-convex algebra is a generalization of a locally m-convex
algebra it is a natural problem to study the Gelfand representation of
such algebras. For uniformly locally A-convex algebras can be given
so-called Gelfand representation by using a type of weight functions
defined on the corresponding carrier space of this algebra. This has
been done in [9], [14] and [24]. For locally A-convex algebras a
corresponding representation has been studied in [23]. In this paper we
shall study this type of representation for locally A-convex algebras and
by using this representation we shall define and study a type of locally
A-convex algebra which appears to be a generalization of locally convex
uniform algebra. As was mentioned earlier each locally m-convex
algebra is locally A-convex, and for locally m-convex algebras the
corresponding representation has been studied in [5] and [10] (without
using weight functions). Note that also in a locally m-convex case the
use of weight functions sometimes gives a more exact description of this
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algebra by using Gelfand representation.

2. Basic results. Let (A, T (P)) be a commutative A-convex
algebra. Let x ∈ A and λ ∈ Λ be given. Now for each y ∈ A there is
some constant M(x,λ) such that

(2) pλ(xy) ≤ M(x,λ)pλ(y).

Let p̃λ(x) be infimum of all numbers M(x,λ) satisfying the inequality
(2) for all y ∈ A. Now it can be shown that p̃λ(x), x ∈ A, defines
a submultiplicative seminorm on A. See [9] and [13]. Let T (P̃ ) be a
topology defined on A by the family P̃ = {p̃λ | λ ∈ Λ}. It can also be
shown that

(3) p̃λ(x) = sup{pλ(xy) | pλ(y) ≤ 1}.

p̃λ is sometimes called the operator seminorm connected with pλ.
From the definition we immediately get that in the case A has unit
pλ(x) ≤ pλ(e)p̃λ(x) for all x ∈ A and λ ∈ Λ. Thus if A has unit and we
denote P̃ = {p̃λ | λ ∈ Λ}, then we have ∆(A, T (P)) ⊂ ∆(A, T (P̃)). It
can be shown that T (P̃) is the weakest locally m-convex topology on A
which is stronger than T (P). See [21]. If pλ(e) �= 1 then the normalized
seminorm qλ = (1/pλ(e))pλ is an A-convex seminorm on A which
satisfies qλ(e) = 1. Note that qλ is not necessarily submultiplicative
even if pλ is. However the topologies T (P) and T (Q) are always
equivalent. In general we also have qλ(x) ≤ p̃λ(x) for all x ∈ A and
λ ∈ Λ. Furthermore, if pλ is submultiplicative, then p̃λ(x) ≤ pλ(x) for
all x ∈ A.

If (A, T (P)) is a locally A-convex algebra, then for all λ ∈ Λ the set
Nλ = {x ∈ A | pλ(x) = 0} is a closed ideal of (A, T (P)). Let h(Nλ) =
{τ ∈ ∆(A, T (P)) | x̂(τ ) = 0 for all x ∈ Nλ}, the hull of Nλ. Note
that h(Nλ) is just the set of all pλ-continuous elements of ∆(A, T (P)).
The quotient algebra A/Nλ is an A-normed algebra with the A-norm
defined by ṗλ(x + Nλ) = pλ(x) for x + Nλ ∈ A/Nλ. Note that
∆(A/Nλ) = ∆(A/Nλ, T ({ṗλ})) is homeomorphic to h(Nλ). See [18, p.
339]. If pλ is an A-norm for some λ ∈ Λ, then h(Nλ) is homeomorphic
to ∆(A, T ({pλ})), since A/Nλ is in this case isometrically isomorphic
to (A, T ({pλ})).
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We shall now give an example of locally A-convex algebra which is
not uniformly A-convex and not m-convex.

Example 1. Let X = the set of real numbers equipped with its
usual topology. We shall define a family {gn | n ∈ N} of functions on
X as follows

g1(t) =



2|t| if |t| ≤ 1

2
,

2− 2|t| if 1
2
≤ |t| ≤ 1,

0 otherwise,
and recursively if n ∈ N, n ≥ 2, then

gn(t) =




gn−1(t) if t ∈ [−n+ 1, n − 1],
2|t| − 2n+ 2 if n − 1 ≤ |t| ≤ 2n − 1

2
,

2n − 2|t| if
2n − 1
2

≤ |t| ≤ n,

0 otherwise.

For n ∈ N, let pn be a seminorm on C(X) defined by

pn(x) = sup
t∈[−n,n]

gn(t)|x(t)|, x ∈ C(X).

Denote by P = {pn | n ∈ N} and T (P) the topology on C(X) defined
by the seminorms of P. Then (C(X), T (P)) is a locally A-convex
algebra which is not m-convex and not uniformly A-convex. Note
that (C(X), T (P)) is not complete. Furthermore, for (C(X), T (P)),
we have the following. For each n ∈ N, p̃n(x) = supt∈[−n,n] |x(t)|,
x ∈ C(X). Denote by P̃ = {p̃n | n ∈ N}. Since we have pn(e) = 1 for
all n ∈ N there is no locallym-convex topology on C(X) between T (P)
and T (P̃). See [16]. Furthermore, ∆(C(X), T (P)) = {τt | t ∈ R\Z}
and ∆(C(X), T (P̃)) = {τt | t ∈ R} where τt is a point evaluation
at t. Obviously h(Nn) = {τt | t ∈ [−n, n]\{0,±1,±2, . . . ,±n}} and
h(Ñn) = {τt | t ∈ [−n, n]}. (Here Nn = ker pn and Ñn = ker p̃n,
n ∈ N.) Note that the multiplication in this algebra is not jointly
continuous.

It may also happen that (A, T (P)) is locally m-convex algebra even
if each pλ ∈ P is A-convex but not submultiplicative as the following
example shows.
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Example 2. Let A be as in Example 1. For each n ∈ N, let gn be
a function defined by

gn(t) =

{
− 1

n
|t|+ 1 if |t| ≤ n,

0 otherwise.

Let T (P) be a topology on A defined by the seminorms pn, n ∈
N, where pn(x) = supt∈[−n,n] gn(t)|x(t)|, x ∈ A. Then p̃n =
supt∈[−n,n] |x(t)| for all x ∈ A. Now each seminorm pn, n ∈ N, is A-
convex, but not submultiplicative. However, since p̃n(x)/2 ≤ p2n(x) ≤
p̃2n(x) for all x ∈ A and n ∈ N we can see that the topologies T (P)
and T (P̃) are equivalent. So (A, T (P)) is a locally m-convex algebra.

Example 3. The above-mentioned examples are special cases for
the more general case where X is a completely regular space. K is a
compact cover of X and A = C(X). Let B ⊂ C(X) where g(t) ≥ 0 for
all g ∈ B and t ∈ X. For K ∈ K and g ∈ B we shall define a seminorm
p(K,g) on C(X) by

p(K,g)(x) = sup
t∈K

g(t)|x(t)|, x ∈ C(X).

Denote by P this family of seminorms. Now (C(X), T (P)) is a locally
A-convex algebra. This type of algebra has been studied in [16]. There
is also a rich literature of so-called Nachbin algebras (see, e.g. [22]
where this type of structure has been considered). Now if p̃(K,g) is
an operator-seminorm seminorm that corresponds with p(K,g), then we
clearly have p̃(K,g)(x)= supt∈K\Z(g) |x(t)| for all x∈C(X) where Z(g)
is the zeroset of g so that p̃(K,g) does not depend on the function g.
If g(t) > 0 for all t ∈ K, then it is easy to see that p(K,g) and p̃(K,g)

are equivalent seminorms. Thus if for all K ∈K there is a g ∈B such
that g(t) > 0 for all t ∈ K, then the topologies T (P) and T (P̃ ) are
equivalent and thus (A, T (P)) is a locally m-convex algebra, see [16].
Furthermore, it is easy to see that h(N(K,g)) = {τt | t ∈K\Z(g)} and
Z(g) is the zeroset of g and ∆(A, T (P))={τt | t∈X\Z(B)} where Z(B)
is the zeroset of B. On the other hand, if we assume that T (P) is a
Hausdorff-topology (as we always do) then this condition is valid only
if cl (X\Z(B))=X. If K ∈K and g∈B then p̃(K,g)(x)= supt∈K |x(t)|,
∆((C(X), T (P)) = {τt | t ∈ X\Z(B)}, ∆(C(X), T (P̃)) = {τt | t ∈ X},
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h(N(K,g)) = {τt | t ∈ K\Z(g)} and h(Ñ(K,g)) = {τt | t ∈ K}. The
multiplication in this algebra is jointly continuous if the set B is
closed under taking square roots of its elements. Note that the weight
functions do not necessarily have to be continuous.

Example 4. Let A = C(X) where X is the set of reals with its usual
topology. For x ∈ A and n ∈ N define a seminorm pn(x) =

∫ n

−n
|x(t)|.

Then (A, T (P)) is a locally A-convex algebra for which ∆(A, T (P)) is
empty and p̃n(x) = supt∈[−n,n] |x(t)| for all x ∈ A and n ∈ N. Thus
∆(A, T (P̃)) = {τt | t ∈ X}.

Next we shall give some general properties of A-convex seminorms.
Let p be an A-convex seminorm on A. We shall say that p is weakly
regular if there is a constant m > 0 such that

(4) p(x) ≤ mp̃(x) for all x ∈ A.

Letmp be the infimum of all constants satisfying (4). If p = pλ for some
index λ we shall denote mpλ

= mλ. Now we also have p(x) ≤ mpp̃(x)
for all x ∈ A. We shall say that p is regular if p̃ = p. Clearly p can
be regular only if it is submultiplicative. We shall say that a topology
T (P) is weakly regular if pλ is weakly regular for all λ ∈ Λ. For weakly
regular T (P) we naturally have ∆(A, T (P)) ⊂ ∆(A, T (P̃)) and it also
holds that T (P̃ ) is the weakest locally m-convex topology for A which
is stronger than T (P). See [21].
In the following lemmas A is a commutative algebra and p is an A-
convex seminorm on A.

Lemma 1. If A has unit, then p(e) = mp.

Proof. Since A has unit the inequality p(x) ≤ p(e)p̃(x) holds for all
x ∈ A. So we havemp ≤ p(e). On the other hand, p(e) ≤ mpp̃(e) = mp.
So p(e) = mp.

Lemma 2. If m > 0, then (mp)∼ = p̃.

Proof. This follows directly from the definition of p̃.
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Lemma 3. p is regular if and only if it is weakly regular, submulti-
plicative and mp = 1.

Lemma 4. If A has unit or if p is regular, then ˜̃p = p̃.

Proof. If p is regular, then the result is obvious. Suppose that A has
unit. Since p̃ is submultiplicative, we have ˜̃p(x) ≤ p̃(x) for all x ∈ A.
On the other hand p̃(x) ≤ p̃(e) ˜̃p(x) = ˜̃p(x) for all x ∈ A from which
the result follows.

Lemma 5. If p is weakly regular, then ker p = ker p̃.

Proof. From the assumption we get that ker p̃ ⊂ ker p. The inclusion
to the other direction follows from the fact that ker p is an ideal of A.

In some cases there may be in A such a nonzero element x for which
the annihilator is A. For such an x we clearly have p̃(x) = 0. So in
such a case there can be an element x ∈ A for which p̃(x) < p(x). To
avoid this we can define a new seminorm p′ on A by defining p′(x) =
max{p(x), p̃(x)}, x ∈ A, see [21]. This seminorm is submultiplicative,
and we have p(x) ≤ p′(x) for all x ∈ A. If p is regular, then p′ = p̃.
Furthermore, if p is weakly regular, then p′ and p̃ are equivalent.

Example 5. A seminorm p is called subquadrative if p(x2) ≤ p(x)2

for all x ∈ A. (This type of seminorm has been studied in [4].) We shall
show that a weakly regular subquadrative seminorm p is equivalent with
p̃. Namely, if p is subquadrative, then p(xy) ≤ 2p(x)p(y) for all x and
y in A. Thus if we take q = 2p, then q is a submultiplicative weakly
regular seminorm on A. By Lemma 2.2 q̃ = p̃. Thus we have

p̃(x) = q̃(x) ≤ q(x) ≤ mq q̃(x) = 2mpp̃(x) for all x ∈ A

so that (p̃(x)/2) ≤ p(x) ≤ mpp̃(x) for all x ∈ A.

3. Gelfand representation of (A, T (P)). Next we shall give some
properties of the carrier space ∆(A, T (P)).
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If we assume that T (P) is weakly regular, then pλ(x) ≤ mλp̃λ(x)
for all x ∈ A and λ ∈ Λ. Thus we have by Lemma 5 Ñλ = Nλ. If
we now define h(Ñλ) = {τ ∈ ∆(A, T (P̃)) | x̂(τ ) = 0 for all x ∈ Ñλ},
then h(Nλ) ⊂ h(Ñλ) for all λ ∈ Λ. Since each p̃λ is submultiplicative
it follows that h(Ñ) is locally compact for all λ ∈ Λ. See [10].
Furthermore the restricted function x̂|h(Ñλ) ∈ C0(h(Ñλ)) for all λ ∈
Λ. We also have ∆(A, T (P̃ )) = ∪λ∈Λh(Ñλ) (see [10]). If pλ is
submultiplicative, then obviously pλ = p̃λ and in this case h(Nλ) is
locally compact.

Lemma 6. Let (A, T (P)) be a locally A-convex algebra. Suppose
that T (P) is weakly regular. Then

(i) ∆(A, T (P)) = ∪λ∈Λh(Nλ)

(ii) x̂|h(Nλ) ∈ Cb(h(Nλ)).

Proof. Let τ ∈ ∆(A, T (P)) be given. By the continuity of τ there
is λ ∈ Λ and some constant M > 0 such that |τ (x)| ≤ Mpλ(x) for all
x ∈ A. From this we get part (i). Part (ii) follows from the facts that
h(Nλ) ⊂ h(Ñ) for all λ ∈ Λ and x̂|h(Ñλ) ∈ C0(h(Ñλ)).

So we can see that each x ∈ A determines a continuous complex-
valued function x̂ both on ∆(A, T (P)) and ∆(A, T (P̃)). Furthermore,
for each x̂ we have x̂|h(Nλ) ∈ Cb(h(Nλ)) and x̂|h(Ñλ) ∈ C0(h(Ñλ)).
Since ∆(A, T (P)) ⊂ ∆(A, T (P̃ )) each x̂ ∈ C(∆(A, T (P̃ ))) is an exten-
sion of the corresponding x̂ ∈ C(∆(A, T (P))). We shall now give a
type of Gelfand representation of locally A-convex algebras by using
the weight functions defined on the carrier space of this algebra. First
we shall construct these weight functions. So let (A, T (P)) be a locally
A-convex algebra. Let τ ∈ ∆(A, T (P)) be given. By the continuity of
τ there is some λ ∈ Λ and constant M(τ,λ) > 0 (depending on τ and λ)
such that

(5) |x̂(τ )| ≤ M(τ,λ)pλ(x) for all x ∈ A.

LetM(τ,λ) be the set of all constants satisfying inequality (5). We shall
now define a function gλ on ∆(A, T (P)) by

(6) gλ(τ ) = [inf {M | M ∈ M(τ,λ)}]−1,
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if τ ∈ h(Nλ) and otherwise we define gλ(τ ) = 0. Suppose that A has
unit. If τ ∈ h(Nλ), then 1 = |τ (e)| ≤ Mpλ(e) for allM ∈ M(τ,λ) which
implies that gλ is bounded on h(Nλ). If τ ∈ ∆(A, T (P))\h(Nλ), then
τ is not pλ continuous, and thus in this case M(τ,λ) is empty and, as
is known for emptyset, we can define inf∅ = ∞. Thus we can define
gλ(τ ) = 0 if τ ∈ ∆(A, T (P))\h(Nλ). It is easy to see that gλ can also
be defined as

(7) gλ(τ ) = sup{M | M ≥ 0 and M |x̂(τ )| ≤ pλ(x) for all x ∈ A}.

There is still another form for gλ. Namely it can be shown that

gλ(τ ) =
[
sup

pλ(x)≤1

|x̂(τ )|
]−1

, τ ∈ ∆(A, T (P)),

if this supremum is finite and otherwise gλ(τ ) = 0. For this form of gλ,
see [9] and [14]. From the definition we immediately get that

gλ(τ )|x̂(τ )| ≤ pλ(x) for all x ∈ A and τ ∈ h(Nλ).

Lemma 7. Suppose that λ and µ ∈ Λ. Let pm = max{pλ, pµ}.
Then gm = max{gλ, gµ} and h(Nm) = h(Nλ) ∪ h(Nµ). Further, if
pλ(x) ≤ pµ(x) for all x ∈ A, then gλ(τ ) ≤ gµ(τ ) for all τ ∈ ∆(A, T (P)).

Proof. This follows directly from the definition of gλ and gµ.

For λ ∈ Λ, denote by g̃λ the weight function corresponding to the
seminorm p̃λ.

Lemma 8. Suppose that A has unit. Then g̃λ = χ
h(Ñλ) is a

characteristic function of h(Ñλ).

Proof. Now for any τ ∈ h(Ñλ) we have |x̂(τ )| ≤ p̃λ(x) for all x ∈ A.
So we have g̃λ(τ ) ≥ 1 for all τ ∈ h(Ñλ). On the other hand, if in the
definition (6) of gλ we take x = e, we can see that M ≤ p̃λ(e) = 1 and
thus also the supremum of those constants must be less than or equal
to 1. So g̃λ(τ ) ≤ 1 for all τ ∈ h(Ñλ). Thus g̃λ = χ

h(Ñλ).
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Note that if T (P) is weakly regular then each gλ is bounded and
since it vanishes outside h(Nλ) we can see that gλ|h(Nλ) is a bounded
positive-valued function.

Lemma 9. Suppose that T (P) is weakly regular. Then 0 <
gλ(τ ) ≤ mλ for all τ ∈ h(Nλ). In particular, if A has unit, then
0 < gλ(τ ) ≤ pλ(e) for all τ ∈ h(Nλ).

Proof. This result follows directly from the definition of gλ.

We shall now define a family P = {p̂λ | λ ∈ Λ} of seminorms on Â by

p̂λ(x̂) = sup
τ∈h(Nλ)

gλ(τ )|x̂(τ )|, x ∈ A.

Denote by T (P̂) the topology on Â defined by these seminorms. From
the definition it follows that p̂λ(x̂) ≤ pλ(x) for all x ∈ A and λ ∈ Λ.
Furthermore,

p̂λ(x̂ŷ) ≤
(
sup

τ∈h(Nλ)

|x̂(τ )|
)

p̂λ(ŷ) for all x and y ∈ A and λ ∈ Λ.

This shows that each p̂λ is an A-convex seminorm on Â and thus T (P̂)
is a locally A-convex topology on Â.

As was pointed out in [23], the necessary condition which guarantees
that A is imbedded algebraically into C(∆(A, T (P)) is the assumption
that (A, T (P)) is strongly semi-simple; i.e., from the condition x̂(τ ) = 0
for all τ ∈ ∆(A, T (P)) it follows that x = 0. This condition implies
that A is necessarily commutative as was noted in [24].

Theorem 1. Let (A, T (P)) be a strong semi-simple locally A-convex
algebra. Suppose that T (P) is weakly regular. Then the mapping
(Gelfand mapping) x �→ x̂, x ∈ A, is a continuous homomorphism
from (A, T (P)) onto (Â, T (P̂ )).

The advantage we get here (compared with a standard use of the
compact-open topology) is that the topology T (P̂) is of the same type
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as the original topology T (P) and the Gelfand mapping is automatically
continuous. Next we shall study an m-convex case.

Theorem 2. Let (A, T (P)) be a locally m-convex algebra with unit
and suppose that pλ(e) = 1 for all λ ∈ Λ. Then gλ = χh(Nλ) for all
λ ∈ Λ.

Proof. If (A, T (P)) is locally m-convex and with unit, then each pλ

is regular, by Lemmas 1 and 3. Thus, by Lemma 8, gλ = χh(Nλ) for all
λ ∈ Λ. gλ = χh(Nλ).

Note that Theorem 2 is valid without an assumption of strong semi-
simplicity.

Corollary 1. If (A, T (P)) is a locally m-convex algebra with unit
and pλ(e) = 1 for all λ ∈ Λ, then p̂λ(x̂) = supλ∈h(Nλ) |x̂(τ )| for all
x ∈ A and λ ∈ Λ.

Theorem 3. Suppose that (A, T (P)) is a locally m-convex algebra.
If T (P) is weakly regular, then 1 ≤ gλ(τ ) ≤ mλ for all τ ∈ h(Nλ) =
h(Ñλ).

Proof. Since each pλ is by the assumption submultiplicative, we
clearly have h(Nλ) = h(Ñλ) for all λ ∈ Λ, and we also have |τ (x)| ≤
pλ(x) for all τ ∈ h(Nλ) and x ∈ A. This implies that gλ(τ ) ≥ 1 for
all τ ∈ h(Nλ). From the weak regularity of each pλ it follows that
gλ(τ )|x̂(τ )| ≤ pλ(x) ≤ mλp̃λ(x) for all x ∈ A and τ ∈ h(Nλ). So we
can see that 1 ≤ gλ(τ ) ≤ mλ for all τ ∈ h(Nλ).

Corollary 2. If (A, T (P)) is m-convex with T (P) weakly regular,
then also T (P̂) is m-convex topology on Â.

Example 5. Consider the algebra (C(X), T (P)) of Example 1. Let
ĝn be the weight function on ∆(C(X), T (P)) that corresponds to the
weight function gn. If τ ∈ ∆(C(X), T (P)), then τ is of the form
τ = τt for some t ∈ R\Z. Suppose that t ∈ R\Z. If t ∈ R\[−n, n],
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then τt /∈ h(Nn) which implies that ĝn(τt) = 0. If t ∈ [−n, n], then
τt ∈ h(Nn) and ĝn(τt) = sup{M | M ≥ 0, M |x(t)| ≤ pn(x) for all x ∈
C(X)}. Since gn(t)|x(t)| ≤ pn(x) for all x ∈ C(X) we can see that
gn(t) ≤ ĝn(τt). Suppose that ĝn(τt) > gn(t). Now there is some
x ∈ C(X) for which gn(t)|x(t)| = pn(x). But for this x we have
p̂n(x̂) ≥ ĝn(τt)|x̂(τt)| > gn(t)|x(t)| = pn(x), which is a contradiction.
Thus we must have ĝn(τt) = gn(t). So we can see that ĝn(τt) = gn(t)
for all t ∈ R\Z. We can also see that the functions of C(X)∧ can be
considered as a continuous function on R\Z and clearly C(X)∧ can be
identified with the algebra C(Y ) where Y = R\Z.
It is known from the theory of Banach algebra that for each algebra
norm ‖ ‖ on an algebra A with unit there is an equivalent norm
‖ ‖0 such that ‖e‖0 = 1. As a matter of fact, we can choose
‖x‖0 = sup‖y‖≤1 ‖xy‖. This is actually a regularization of the original
norm, see [25]. Therefore it can always be assumed that the original
norm of the algebra has this property. If we look at what influence this
assumption has on the Gelfand representation of the algebra (A, ‖ ‖),
we can see that the weight function defined above is in this case the
characteristic function on ∆(A, ‖ ‖). If this regularization assumption
is not valid, then we know that the weight function has property
1 ≤ g(τ ) ≤ ‖e‖ for all τ ∈ ∆(A, ‖ ‖). But in case A has no unit,
we do not even know whether this weight function is bounded or not.
This has, of course, the influence on the Gelfand representation of
(A, ‖ ‖). In the first place, in order that the operator norm ‖ ‖0 could be
equivalent to ‖ ‖ we must assume that ‖ ‖ is weakly regular and then the
assumption ‖e‖ = 1 in case A has unit corresponding with the condition
m‖ ‖ = 1 where m‖ ‖ = inf {m | ‖x‖ ≤ m‖x‖0 for all x ∈ A}. It looks,
however, that in the literature of normed algebras these considerations
have been omitted.

Remark. If (A, T (P)) is a commutative locally convex algebra for
which pλ(x2) = pλ(x)2 for all x ∈ A and λ ∈ Λ, then it is automatically
locally m-convex and thus also locally A-convex algebra. An algebra
with this property will be called a locally convex square algebra or
a locally convex uniform algebra, see [18]. It can be shown that
(A, T (P)) is a locally convex square algebra if and only if pλ(x) =
supτ∈h(Nλ) |x̂(τ )| for all x ∈ A and λ ∈ Λ. See [6], [7] and [8]. So, for
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a locally m-convex case, the assumption

(8) p̂λ(x̂) = pλ(x) for all x ∈ A and λ ∈ Λ

is equivalent to the assumption that (A, T (P)) is a locally convex square
algebra. We shall now study an algebra with the property defined in
(8). It must be noted that algebras of this type are generalizations of
locally uniform algebras. Namely, for locally uniform algebra (A, T (P))
we have gλ = χh(Nλ) for all λ ∈ Λ. We shall call an algebra with the
property (8) a locally A-uniform algebra. It follows from the Hausdorff
condition that a locally A-uniform algebra is automatically strongly
semi-simple. If (A, T (P)) is a locally A-uniform algebra, then the
algebras (A, T (P)) and (Â, T (P̂)) can be identified and thus (A, T (P))
is just a function algebra with a topology given by means of some family
of weight functions defined on ∆(A, T (P)), and these weight functions
depend on some cover of the space ∆(A, T (P)).

Theorem 4. Let (A, T (P)) be a locally A-uniform algebra. Then

p̃λ(x) = sup
τ∈h(Nλ)

|x̂(τ )| = sup
τ∈h(Ñλ)

|x̂(τ )|

for all x ∈ A and λ ∈ Λ.

Proof. Let x ∈ A and λ ∈ Λ be given. Now, for all y ∈ A, we have

pλ(xy) = p̂λ((xy)∧) = p̂λ(x̂ŷ) = sup
τ∈h(Nλ)

gλ(τ )|x̂(τ )||ŷ(τ )|

≤ sup
τ∈h(Nλ)

|x̂(τ )| sup
τ∈h(Nλ)

gλ(τ )|ŷ(τ )| =
(
sup

τ∈h(Nλ)

|x̂(τ )|
)
p̂λ(ŷ)

≤ sup
τ∈h(Nλ)

|x̂(τ )|pλ(y).

It follows from this inequality that p̃λ(x) ≤ supτ∈h(Nλ) |x̂(τ )|. Thus,
we have

p̃λ(x) ≤ sup
τ∈h(Nλ)

|x̂(τ )| ≤ sup
τ∈h(Ñλ)

|x̂(τ )| ≤ p̃λ(x)

which yields the result.
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The following result is easy to see.

Theorem 5. Suppose that (A, T (P)) is a locally A-uniform algebra.
Then mλ = supτ∈h(Nλ) gλ(τ ) for all λ ∈ Λ.

Let (A, T (P)) be a locally A-uniform algebra. We shall call Λ0 ⊂ Λ a
directed subset if, for each λ and µ ∈ Λ0, λ �= µ, either pλ(x) ≤ pµ(x)
or pµ(x) ≤ pλ(x) for all x ∈ A (denoted by pλ ≤ pµ and pµ ≤ pλ), and
if pλ ≤ pµ, then gµ|h(Nλ) = gλ. Now each directed subset Λ0 defines
a function gΛ0 from ∆(A, T (P)) into (0,∞) such that gΛ0|h(Nλ) = gλ

for all λ ∈ Λ0. If A has unit and pλ(e) = 1 for all λ ∈ Λ, then
gΛ0(∆(A, T (P))) ⊂ (0, 1] for each directed subset Λ0. Note that gΛ0 is
not in general bounded. The functions gΛ0 correspond to the weight
functions of Examples 1 3 and the sets h(Nλ) correspondingly to the
members of the covers of X.

Lemma 10. Suppose that (A, T (P)) is a locally A-uniform algebra.
If A is symmetric, i.e., for each x ∈ A there is a y ∈ A such that ¯̂x = ŷ

(here the bar denotes complex conjugation), then Â is T ( ˆ̃P) dense in
C∞(∆(A, T (P̃ )) = {g|∆(A,T (P̃) | g ∈ C(∆(A, T (P̃ ) ∪ {τ∞}), g(τ∞) =
0}, where τ∞ is a complex homomorphism on Ae (which is the algebra
obtained from A by adjoining the unit) satisfying τ∞(x, α) = α for all
(x, α) ∈ Ae.

Proof. If p̂λ(x̂) = pλ(x) for all x ∈ A and λ ∈ Λ, it follows from
Theorem 4 that (A, T (P̃)) is a locally convex square algebra which
yields the result. For a detailed proof, see [10].

Theorem 6. Suppose that (A, T (P)) is a locally A-uniform algebra.
If A is symmetric, then ∆(A, T (P)) is dense in ∆(A, T (P̃)).

Proof. Suppose first that A has unit. Now, if ∆(A, T (P)) is not
dense in ∆(A, T (P̃)), then there is a point τ0 in ∆(A, T (P̃)) and
an open neighborhood V (τ0) ⊂ ∆(A, T (P̃)) of τ0 such that V (τ0) ∩
∆(A, T (P)) = ∅. Since ∆(A, T (P̃)) is completely regular there must
be a function g ∈ C(∆(A, T (P̃))) such that g(τ0) = 1 and g(τ ) =
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0 for all τ ∈ ∆(A, T (P̃))\V (τ0). By Lemma 2 Â is T ( ˆ̃P) dense
in C(∆(A, T (P̃))). By the assumption ∆(A, T (P)) is a subset of
∆(A, T (P̃))\V (τ0). Thus there is an element x ∈ A for which x̂(τ0) �= 0
and x̂(τ ) = 0 for all τ ∈ ∆(A, T (P)). But this latter condition implies
that pλ(x) = p̂λ(x̂) = 0 for all λ ∈ Λ which in turn implies that
x = 0 and we get a contradiction. Thus ∆(A, T (P)) must be dense in
∆(A, T (P̃)). If A is without unit we can apply the results of [10] to
the algebra (Ae, T (P̃e)) where Ae is the algebra obtained from A by
adjoining the unit and P̃e = {P̃λ | λ ∈ Λ} where the seminorms P̃λ

are defined by P̃λ(x, α) = supp̃λ(y)≤1 p̃λ(xy+αy), (x, α) ∈ Ae. Now by
using the same methods as above, we can see that ∆(A, T (P)) is dense
in ∆(A, T (P̃)).

The following result is obvious.

Corollary 3. Suppose that the assumptions of Theorem 5 are valid.
Then h(Nλ) is dense in h(Ñλ) for all λ ∈ Λ.

Note that adjoining the unit to a locally A-convex algebra (A, T (P))
without unit is not so easy as for the locally m-convex case. For the
locally m-convex case this type of problem has been considered in [10].

We shall say that (A, T (P̃)) is full if Â = C∞(∆(A, T (P̃)). The
assumption that (A, T (P̃)) is full does not necessarily imply that
∆(A, T (P)) is dense in ∆(A, T (P̃)). Namely, if we take an algebra
(A, T (P)) of Example 4, then for this algebra (A, T (P̃)) is full in
C(∆(A, T (P̃))), but ∆(A, T, (P)) is empty and thus not dense in
∆(A, T (P̃)).

Corollary 4. Let (A, T (P)) be a locally A-uniform algebra for which

Â is T ( ˆ̃P)-dense in C(∆(A), T (P̃)). If each pλ is subquadrative, then
pλ is submultiplicative for all λ ∈ Λ and in particular if pλ(e) = 1 for
all λ ∈ Λ, then gλ = χh(Nλ) for all λ ∈ Λ.

Proof. Now, if pλ(x2) ≤ pλ(x)2, then it is easy to see that gλ(τ ) ≥ 1
for all τ ∈ h(Nλ) from which it follows that pλ is submultiplicative, see
[1]. If pλ(e) = 1, then it follows from Theorem 2 that gλ = χh(Nλ) for
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all λ ∈ Λ.
In the case when ∆(A, T (P)) is dense in ∆(A, T (P̃)) we can use a type
of extended representation of (A, T (P)). Namely, if the assumptions of
Lemma 10 are valid, then clearly also each h(Nλ) is dense in h(Ñλ),
and thus we can extend each gλ into a larger set h(Ñλ) by defining
gλ(τ ) = 0 if τ ∈ h(Ñλ)\h(Nλ). Now we can study the Gelfand function
x̂ of the element x of (A, T (P)) as a function on larger set ∆(A, T (P̃ )).
Then Â ⊂ C(∆(A, T (P̃))) and we can define a seminorm p̂λ by
p̂λ(x̂) = supτ∈h(Ñλ) gλ(τ )|x̂(τ )| for all x ∈ A and λ ∈ Λ. If we apply
this representation to Example 5 we naturally get Â = C(∆(A, T (P̃))),
and for the extended weight functions we have ĝλ(τt) = g(t) for all
t ∈ X and x̂(τt) = x(t) for all x ∈ A and t ∈ X.

4. Open problems and questions. It is known that if p is a square
preserving (uniform) seminorm on an (associative) algebra A, then p
is automatically regular, submultiplicative, and the quotient algebra
A/ker p is commutative. See [8] or [12]. Thus all topological algebras
(A, T (P)) where T (P) is a uniform Hausdorff-topology are commuta-
tive and locally m-convex. Also algebras of this type can always be
considered as function algebras. Similarly, each C∗-seminorm on an al-
gebra A is automatically submultiplicative, see [26]. A seminorm on an
algebra A with an involution is called a C∗-seminorm if p(xx∗) = p(x)2

for all x ∈ A. An algebra (A, T (P)) with a topology T (P) is called
a locally C∗-algebra if the seminorms of P are all C∗-seminorms. It
would be interesting to know whether the analogical results will also
hold for locally A-convex algebras. So does there exist some property
for the seminorms of P which would imply that the algebra (A, T (P))
is a locally A-convex algebra and which in the commutative case is a
locally A-uniform algebra (and thus a function algebra). In a commu-
tative case some results along this line have been represented in [1],
but all topologies studied in this paper are equivalent with a locally
m-convex topology. An interesting property for the topology T (P) is
the following. Suppose that A is an algebra with an involution. Let
T (P) be a topology on A defined by the family of seminorms P where
each p ∈ P satisfies the conditions

p(xx∗) = p(x2) and p(x∗) = p(x) for all x ∈ A.

Does it follow from these two properties that (A, T (P)) is a locally
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A-convex algebra for which in the commutative case p̃ is a square
preserving for all p ∈ P. Note that all algebras presented in Examples
1 4 (complex conjugation as an involution) satisfy the conditions given
above.
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