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RECURSIVE SEQUENCES AND
FAITHFULLY FLAT EXTENSIONS

HANS SCHOUTENS

ABSTRACT. For any faithfully flat morphism A → B of
Noetherian normal domains, a power series with coefficients
in A which is rational over B, is already rational over A. The
proof uses the fact that a sequence is recursive whenever it is
recursive over some faithfully flat extension.

0. Introduction. It is well known that a necessary condition for a
ring morphism A → B to be faithfully flat is that any linear system of
equations with coefficients from A which has a solution over B, must
already have a solution over A. In fact, if we strengthen this condition
to any solution over B comes from solutions over A by base change,
then this also becomes a sufficient condition for being faithfully flat. We
could paraphrase the necessary condition as follows: any linear system
of equations over A which is solvable over a faithfully flat extension B
of A, is already solvable over A.

In this paper I present another necessary condition of the same flavor.
The key definition is that of a (linear) recursive sequence (xn)n over a
ring A, as a sequence satisfying some fixed linear relation over A among
t consecutive terms. I show that if A → B is faithfully flat and (xn)n is
a sequence of elements in A satisfying a linear recursion relation with
coefficients in B, then it already satisfies such a recursion relation (of
the same length) with coefficients in A. As there is a strong connection
between recursive sequences and rational power series, I obtain the
following corollary. Assume, moreover, that A and B are normal
domains; then any power series over A which is rational (meaning that
it can be written as a quotient of two polynomials) over B, is already
rational over A. Any direct attempt, however, to prove this corollary
just using faithfully flatness seems to fail, as far as I can tell.

1. Definition. Let A be a Noetherian ring and let x=(xn)n<ω be a
(countable) sequence of elements of A. We say that x is recursive over A
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(of length t), if there exists a linear form L(X)=r0X0+· · ·+rt−1Xt−1∈
A[X], where t ∈ N and X = (Xi)i<t, such that for all n � 0 we have
that

L(xn, . . . , xn+t−1) = xn+t.

Here we have used the notation n � 0 as an abbreviation for there
exists n0, such that for all n ≥ n0.

2. Theorem. Let A → B be a morphism of Noetherian rings and let
x be a sequence in A. If B is faithfully flat over A and x is recursive
over B, then x is already recursive over A (of the same length).

Proof. Let Lt(x) be the collection of all linear forms L(X) ∈ A[X],
where X = (Xi)i≤t and t ∈ N, such that for all n � 0, we have
that L(xn, . . . , xn+t) = 0. Evidently, Lt(x) carries the structure of an
A-module. Let e be the (t + 1)-tuple (0, . . . , 0,−1), and let

aA
t (x) = {L(e) | L ∈ Lt(x)}.

As the latter is the image of Lt(x) under the morphism A[X] → A
defined by substituting e for X, it is an ideal of A.

We claim that x is recursive over A of length t, if and only if,
aA

t (x) = A. Indeed, if x is recursive over A of length t, then there is
a linear form L(X) ∈ A[X], with X = (Xi)i<t such that for all n � 0
we have that L(xn, . . . , xn+t−1) = xn+t. Let L′(X, Xt) = L(X) − Xt

so that L′ ∈ Lt(x). Since 1 = L′(e), we proved one direction and the
converse follows along the same lines.

Now, by assumption, x is recursive over B of length t so that by the
criterion we just established, aB

t (x) = B. Hence let L(X) = b0X0 +
· · · + btXt ∈ B[X] be a witness to this, where X = (Xi)i≤t, i.e., such
that for some n0 ∈ N, we have, for all n ≥ n0, that L(xn, . . . , xt+n) = 0
and L(e) = 1. Therefore bt = −1. Put b = (bi)i<t ∈ Bt. For every
n ≥ n0, let Mn(Y ) ∈ A[Y ], where Y = (Yi)i≤t, be defined as

Mn(Y ) = xnY0 + · · ·+ xn+tYt.

By Noetherianity, there exists some n1 ≥ n0 such that each Mn, for
n ≥ n0, lies in the ideal of A[Y ] generated by Mn0 , . . . , Mn1 . In other
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words, there exists pn,k(Y ) ∈ A[Y ] such that, for all n ≥ n0 and all k
with n0 ≤ k ≤ n1, we have that

(1) Mn(Y ) =
n1∑

k=n0

pn,k(Y )Mk(Y ).

By construction, Mk(b, −1) = 0 for n0 ≤ k ≤ n1. By flatness, we can
find finitely many a(j) ∈ At, e(j) ∈ A and β(j) ∈ B such that

(2) Mk(a(j), e(j)) = 0,

for all j < s and n0 ≤ k ≤ n1, and

(3) b =
∑

j<s

β(j)a(j) − 1 =
∑

j<s

β(j)e(j).

However, from (1) and (2), it then follows that Mn(a(j), e(j)) = 0 for
all j < s and all n ≥ n0. This means that L(j)(X) = a

(j)
0 X0 + · · · +

a
(j)
t−1 + e(j)Xt lies in Lt(x), for each j < s, where a(j) = (a(j)

i )i<t.
Hence −e(j) ∈ aA

t (x). Together with (3), we therefore conclude that
aA

t (x)B = B. But faithfully flatness then implies that aA
t (x) = A,

which by the above criterion means that x is recursive over A of length
t.

3. Proposition. Let A be a Noetherian ring and x a sequence in A.
Let ξx(T ) ∈ A[[T ]] be the generating series of x, i.e.,

ξx(T ) =
∞∑

n=0

xnTn.

Then x is recursive over A, if and only if, ξx(T ) lies in A(T ), where the
latter ring is the localization of A[T ] with respect to the multiplicative
set 1 + (T )A[T ].

Proof. Suppose that x is recursive and let ξ(T ) = ξx(T ). There is
some n0 and some ak ∈ A for k < t such that

(4) xn = a0xn−t + · · ·+ at−1xn−1
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for all n ≥ n0. We want to show that

(5) ξ(T ) ≡ Q(T )ξ(T ) mod A[T ]

for some polynomial Q(T ) ∈ (T )A[T ]. Indeed, if (5) holds, then

ξ(T ) = Q(T )ξ(T ) + P (T )

for some P (T ) ∈ A[T ] and hence ξ(T ) = P (T )/(1−Q(T )) as required.

We work in the A-module A[[T ]]/A[T ]. Clearly

ξ(T ) ≡ Tn0 · ξx′(T ) mod A[T ],

where x′ is the sequence obtained from x by deleting the first n0

elements. Hence in order to prove (5) we may work with this new
recursive sequence and hence assume from the start that n0 = 0. We
have, using (4), that

ξ(T ) =
∑

n<t

xnTn +
∑

n≥t

xnTn

≡
∑

n≥t

(a0xn−t + · · ·+ at−1xn−1)Tn mod A[T ]

≡ a0T
tξ(T ) + · · ·+ at−1Tξ(T ) mod A[T ].

This proves (5).

The converse is an easy exercise and is left to the reader.

4. Corollary. Let ϕ : A → B be a morphism of Noetherian rings.
If ϕ is faithfully flat, then

(6) A(T ) = A[[T ]] ∩ B(T ),

for T a single variable.

Proof. The ⊂-inclusion is immediate, hence take F in the righthand
side of (6). Taking the coefficients of F as the members of a sequence x
over A, we have that F (T ) = ξx(T ). Since F (T ) ∈ B(T ), the sequence
x is recursive over B by Proposition 3. Therefore, by faithfully flatness
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and Theorem 2, x is also recursive over A which by Proposition 3 again
means that F ∈ A(T ).

5. Corollary. Let A → B be a faithfully flat morphism of Noetherian
normal domains. Then any power series with coefficients in A which
is rational over B, is already rational over A.

Proof. A Noetherian normal domain A has the Fatou property by
Chabert [1, Section 3], meaning that A(T ) is equal to the intersection
of the fraction field of A[T ] with A[[T ]], i.e., A(T ) is the ring of rational
power series and we can apply Corollary 4.
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