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FAMILIES OF MAXIMAL SUBBUNDLES
OF STABLE VECTOR BUNDLES ON CURVES

EDOARDO BALLICO AND BARBARA RUSSO

ABSTRACT. Let X be a smooth projective curve of genus
g ≥ 2, and let E be a vector bundle on X. Let Mk(E)
be the scheme of all rank k subbundles of E with maximal
degree. For every integer r, k and x with 0 < k < r and
either 2k ≤ r and 0 ≤ x ≤ (k − 1)(r − 2k + 1) or 2k > r
and 0 ≤ x ≤ (r − k − 1)(2k − r + 1), we construct a rank r
stable vector bundle E such that Mk(E) has an irreducible
component of dimension x. Furthermore, if there exists a
stable vector bundle F with small Lange’s invariant sk(F ) and
with Mk(F ) ‘spread enough,’ then X is a multiple covering of
a curve of genus bigger than 2.

1. Introduction. Let X be a smooth projective curve of genus
g ≥ 2 defined over an algebraically closed field K. In this paper we
study the rank r stable vector bundles, E, on X such that for some
integer k with 0 < k < r, E has a ‘large’ family of subbundles with
rank k and maximal degree. For positive integers r, d let M(X; r, d) be
the moduli space of stable vector bundles on X of rank r and degree
d. It is well known that M(X; r, d) is smooth and irreducible. For
a positive integer k with 0 < k < r, let Mk(E) be the set of all
rank k subbundles of E with maximal degree. Being a Quot-scheme,
Mk(E) has a natural scheme-structure. For the intent of this paper
we will only need to consider its reduced structure. Indeed, we are
interested in finding a stable vector bundle E such that Mk(E) has an
irreducible component with prescribed dimension. Since every element
in Mk(E) has maximal degree, the scheme Mk(E) is complete. Hence,
by [7, pp. 254 255], we have dim (Mk(E)) ≤ k(r − k) for every rank
r vector bundle E. Fixing x with x ≤ k(r − k), it is very easy to
find a decomposable rank r vector bundle E such that Mk(E) has an
irreducible component of dimension x. But we are interested in stable
vector bundles which are indecomposable. Hence, using extensions of
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a line bundle by a decomposable rank r − 1 bundle, we will prove in
Section 2 the following result:

Theorem 1.1. Fix integers g, r, k with 2 ≤ g ≤ r + 1, 0 < k < r; if
2k ≤ r, then assume x ≤ (k − 1)(r − 2k + 1); if 2k > r, then assume
x ≤ (r−k−1)(2k−r+1). Let X be a smooth projective curve of genus
g. Then there exists a stable vector bundle E on X such that Mk(E)
has an irreducible component of dimension x.

The proof of Theorem 1.1 is quite simple but even if we tried we were
not able to produce larger families of maximal degree subbundles. The
bound on the dimension x := dim (Mk(E)) seems to be quite good,
see Proposition 3.11. The dimension of Mk(E) is known when E is a
general element of M(X; r, d) (see Remark 2.2 and Proposition 2.3).
Classically the picture was clear for a rank 2 stable vector bundle E:
either dim (M1(E)) = 0 or dim (M1(E)) = 1 (see the introduction
of [6] and references therein). In fact the situation is described by one
invariant, called degree of stability, s(E). It is known that 0 < s(E) ≤ g
and s(E) � deg (E)(2) ([8]). Furthermore, for E general in its moduli
space we have s(E) = g if g − d is even and s(E) = g − 1 if
g − d is odd. Maruyama proved two main facts: if s(E) = g, then
dim (M1(E)) = 1 and if s(E) < g, then dim (M1(E)) = 0. Lange and
Narasimhan produced examples of stable rank 2 vector bundles with
dim (M1(E)) = 0 and s(E) < g (see [6, Proposition 3.3 and Sections
5, 6 and 7]). Indeed, taking f : X → Y a multiple covering of curve
Y of genus g′ ≥ 2, they were able to produce examples of curves X of
genus g big enough to obtain a stable rank 2 vector bundle, E, on X
with s(E) < g and dim (M1(E)) = 1 by pulling back a stable vector
bundle, F , on Y with s(F ) = g′ (see [6, Proposition 7.3]). In [3] Butler
proved some kind of reverse question: if E is a stable vector bundle
of rank 2 with dim (M1(E)) = 1 and s(E)(2s(E) − 1) < g, then there
is a covering f : X → Y and a stable vector bundle on Y, F with
R ∈ Pic (X) with A⊗R � f∗(B) and dim (M1(F )) = 1. In higher rank
the situation is more complicated (see Remark 2.2). In particular, the
stability condition for a rank r vector bundle, E, is controlled by r− 1
invariants called degrees of stability (or Lange’s invariants):

sk(E) = k deg (E) − r min
H↪→E
rk H=k

deg (H).
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In Section 3 we give a partial generalization to higher rank of a theorem
of Butler (see Theorem 3.9) which gives how restrictive it is to have
‘many and very spread’ maximal degree subbundles. This is the key
motivation of our paper: Theorem 3.9 and Proposition 3.11 show the
existence of a rank r stable vector bundle, E, with a low value of sk(E)
and large dimension of Mk(E).

2. Proof of Theorem 1.1. Before proving Theorem 1.1, we need
the following remark.

Remark 2.2. Assume char K = 0. Fix some integers g, r, k, a, b with
g ≥ 3, r ≥ 2, 0 < k < r and kb − a(r − k) > 0. Let X be a smooth
projective curve of genus g. Let A be a general member of M(X; k, a),
B a general member of M(X; r − k, b) and E a general extension of
B by A. If kb − a(r − k) < k(r − k)(g − 1) by [9, Theorem 0.1],
E is stable (see also [2] for several special cases). Furthermore, by
a result of Hirschovitz [4] a general member of M(X; r, a + b) is an
extension of a general B ∈ M(X; r− k, b) by a general A ∈ M(X; k, a)
if and only if kb − a(r − k) ≥ k(r − k)(g − 1). As remarked in the
introductions of [9] and [2, Equation D], the stability of such an E
implies dim (Mk(E)) = max{s − k(r − k)(g − 1), 0}. In fact, Mk(E)
turns out to be the fiber of a morphism, φ, between the parameter
space of stable extensions of stable vector bundles and the moduli
space M(X; r, d); this allows us to estimate the dimension of Mk(E).
In particular, if s = k(r − k)g, then dim (Mk(E)) = k(r − k) which by
[7, pp. 254 255], it is the maximum admissible dimension of Mk(E).

If char K = 0, there exists a first weak version of Theorem 1.1:

Proposition 2.3. Assume char K = 0. Fix integers r, k, x with
0 < k < r, 0 ≤ x ≤ k(r − k) and x divisible by the highest common
divisor, u, of k and r. Let X be a smooth curve of genus g ≥ 3. Then
there exists an integer d such that for a general E ∈ M(X; d, r), the
algebraic set Mk(E) has an irreducible component of dimension x and
every irreducible component of Mk(E) has dimension at most x.

Proof. Since u divides x, there exists an integer d with 0 ≤ d < r.
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Moreover, there exists a unique integer a satisfying (d − a)/(r − k) −
g ≤ (a/k) ≤ (d − a)/(r − k) − g + 1. Hence, as pointed out in
2.2, we have dim (Mk(E)) = x = max{s − k(r − k)(g − 1), 0} with
s = (d− a)k − a(r − k).

Proof of Theorem 1.1. Since the cases k = 1 and k = r − 1 are
covered by Proposition 2.3, when charK = 0 and g ≥ 3, we may
assume k ≥ 2 and r − k ≥ 2. Furthermore, Mk(E) � Mr−k(E∗)
for every rank r vector bundle E. Therefore taking, if necessary,
the dual bundle, we may assume 2k ≤ r. If char K > 0 or g = 2
and k = 1 or k = r − 1 proceed as in the last part of case 2)
below. Hence from now on we may assume 4 ≤ 2k ≤ r. Since
x ≤ (k − 1)((r − k) − (k − 1)) we can find two integers y and t with
0 < 2t ≤ y ≤ r − k, t ≤ k − 1 and t(y − 1 − t) ≤ x ≤ t(y − t).
Set e := x − t(y − 1 − t). Then 0 ≤ e < t and if y = r − k, then
e = 0. Therefore, y + e + 1 ≤ r − 1. Take a general (r − e− y − 1)-ple
(M,R1, . . . , Rr−e−y−1) ∈ Pic0(X) × · · · × Pic0(X) and L ∈ Pic1(X)
with h0(X,L) = 0. Set F := O⊕y

X ⊕ M⊕(e+1) ⊕ (⊕1≤i≤r−e−y−1Ri)
(notice that y + e + 1 ≤ r − 1). By construction F is a semi-stable
vector bundle with rkF = r − 1 and degF = 0. Let E be a general
extension of L by F .

Claim. E has no proper subsheaf with positive degree and every
degree 0 subsheaf of E is a subsheaf of F .

Here we assume the claim. Hence E is stable. Choose some integers
u, v with 0 ≤ u ≤ y, 0 ≤ v ≤ e+1 and 0 ≤ k−u−v ≤ r−e−y−2. Let
I be any subset of {1, . . . , r− e− y−2} with card (I) = k−u− v. Call
T (u, v, I) the following family of rank k subbundles of F with degree
0: A ∈ T (u, v, I) if and only if A � A1 ⊕ A2 ⊕ A3 where A1 subsheaf
of O⊕y isomorphic to O⊕uA2 is a subsheaf of M⊕(e+1) isomorphic to
Mv and A3 � ⊕i∈IRi. Since F is polystable and no two among the
degree 0 line bundles OX , M and Ri, 1 ≤ i ≤ r − y − e − 2, are
isomorphic, then T (u, v, I) is an irreducible component of Mk(E) with
dim (T (u, v, I)) = u(y−u)+(e+1−v)v. Varying u, v and I we obtain in
this way all the irreducible components of Mk(F ). By the second part
of the claim, these are the irreducible components of Mk(E). When
u = t and v = 1, by the definition of e we get dim (T (t, 1, I)) = x.
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Hence, to prove 1.1, it is sufficient to prove the claim.

Proof of the claim. We move the line bundles M and Ri, 1 ≤ i ≤
r−e−y−2 in Pic0(X). By the semi-continuity of the Lange’s invariants
sk [5, Lemma 1.3], it is sufficient to prove the claim for the following
general extension

(2.1) 0 −→ O⊕(r−1)
X −→ G −→ L −→ 0.

Since h0(X,L) = 0, we have h0(X,G) = r − 1. In particular, the
subsheaf O⊕(r−1)

X is the subsheaf spanned by H0(X,G). Hence it is
uniquely determined by G and sent into itself by any endomorphism
of G. Therefore, G fits in a unique way into 2.1, up to an element
of Aut (G). Since χ(L∗) = −g and by our assumptions on g and r, G
contains no factor isomorphic to OX . In order to obtain a contradiction,
we assume the existence of a proper subsheaf B of G with deg (B) ≥ 0
and if degB = 0 we suppose that B is not a direct factor of O⊕(r−1)

X .
Taking h := rkB minimal among all the ranks of such subbundles,
we may assume B stable. Taking deg (B) maximum among all the
degrees of all such rank h subbundles we may assume B saturated in
G. Since B is not contained in O⊕(r−1)

X , the map π : B → L induced
by the surjection j : G → L in 2.1 is not zero. Set B′ : Ker (π),
L′ = Im (π) and w := h0(X,B′). Since B′ is a subsheaf of O⊕(r−1)

X ,
we have B′ � B′′ ⊕O⊕(w)

X with h0(X,B′′) = 0. Since B′∗ is spanned,
det (A′∗) is spanned. Thus, if deg (B′∗) = deg (det (B′∗) �= 0, X has
a degree deg (B′∗) pencil. By our assumption on the degree of B we
have deg (B′∗) ≤ deg (L′) ≤ deg (L) = 1. Since g > 0 there is no degree
deg (B′∗) pencil on X. Hence a contradiction. Thus deg (B′∗) = 0,
that is, w = h− 1 and B′ � O⊕(h−1)

X . At this point we distinguish two
cases:

Case 1). Here we assume L �� L′, that is, the existence of a positive
divisor D with L′ = L(−D). Since deg (L′) ≤ deg (L)−1 = 0, µ(B) ≥ 0
and B is stable, we obtain a contradiction, unless h = 1, B � L′ and
w = 0. In this case we have L′ � L(−P ) for some P ∈ W and F

a positive elementary transformation of O⊕(r−1)
X ⊕ L(−P ) supported

in P . Hence the set of all such bundles G depends at most on r
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parameters. Since dim (Ext1(L,O⊕(r−1)
X ))) = (r−1)g by the Riemann-

Roch theorem and any such G fits, up to a multiplicative constant, in a
unique exact sequence 2.1, we get a contradiction concluding the proof
in Case 1).

Case 2). Here we assume L � L′. Then since B′ � O⊕(w)
X as a direct

factor of O⊕(r−1)
X , we get G/B � O⊕(r−1−w)

X = O⊕(r−h)
X . Hence, G/B

is isomorphic to a direct factor of G. But G cannot have any trivial
factor which is a contradiction and the theorem is proved.

Remark 2.4. The proof of 1.1 shows the existence of a vector bundle
E ∈ M(X; r, 1) such that Mk(E) has an irreducible component t of
dimension x and such that every B ∈ T is a direct sum of line bundles
of degree 0.

Remark 2.5. Let T ⊂ Mk(E) be an irreducible subvariety such that
there is a subbundle F of E containing every B ∈ T . By [7, pp.
254 255], it follows that dim (T ) ≤ k(r − k). In the proof of Theorem
1.1 we have constructed a vector bundle E which has a subbundle F
with exactly this property.

We repeat here the description of the irreducible components of
Mk(E) for the stable bundle, E, obtained in the proof of Theorem 1.1.
First choose integers u, v with 0 ≤ u ≤ y, 0 ≤ v ≤ e+1, 0 ≤ k−u−v ≤
r− e− y− 2. Then choose any subset, I, of {1, . . . , r− e− y− 2} with
card (I) = k−u− v. For any such data (u, v, I), there is an irreducible
component, T (u, v, I) of Mk(E) and every irreducible component of
Mk(E) arises in this way. Furthermore, we have dim (T (u, v, I)) =
u(y − u) + (e + 1 − v)v.

3. Maximally spread families and multiple covering curves.
In this section we will give a partial generalization of a result of Butler
[3]. As in [3] we will use a result of Accola [1] which is valid in
characteristic zero. Therefore, we assume that char K = 0. Let X
be a smooth projective curve of genus g ≥ 2. Fix two integers k, r
with 0 < k < r and set m := GCD (k, r − k), v := (r − k)/m and
w := (k/m). Let E be a rank r vector bundle on X and H := {Ht}t∈T
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a flat family of saturated rank k subbundles of E parameterized by an
irreducible complete variety T . For every t ∈ T , set Gt := E/Ht. For
all pairs (x, y) ∈ T 2, the composition of the inclusion ix : Hx → E
with the surjection jx : E → Gy gives a map φ(x, y) : Hx → Gy such
that φ(x, y) = 0 if and only if Hx and Hy are isomorphic subsheaf of
E. More generally, for all (x(1), . . . , x(v), y(1), . . . , y(w)) ∈ T v+2, we
have a map Φ((x(1), . . . , x(v), y(1), . . . , y(w))) : Hx(1) ⊕ · · · ⊕Hx(v) →
Gy(1)⊕· · ·⊕Gy(w). Notice that Hx(1)⊕· · ·⊕Hx(v) and Gy(1)⊕· · ·⊕Gy(w)

have the same rank [k(r − k)/m].

Definition 3.6. The family H is called maximal spread if for general
(x(1), . . . , x(v), y(1), . . . , y(w)) ∈ T v+w the map Φ((x(1), . . . , x(v),
y(1), . . . , y(w))) is invertible at a general point of X.

Remark 3.7. If r = 2k maximally spread means that for general
(x(1), y(1)) ∈ T 2 the map Hx(1) → Gy(1) is an injective map of sheaves,
which is a condition that may be satisfied.

By definition a maximal spread family H induces an inclusion of
sheaves of Hx(1) ⊕ · · · ⊕Hx(v) in Gy(1) ⊕ · · · ⊕Gy(w). If H is maximal
spread, then the map

det (Φ((x(1), . . . , x(v), y(1), . . . , y(w)))) :
det (Hx(1) ⊕ · · · ⊕Hx(v)) −→ det (Gy(1) ⊕ · · · ⊕Gy(w))

is an inclusion. Therefore there is an effective divisor, Z((x(1), . . . , x(v),
y(1), . . . , y(w))), associated to a line bundle isomorphic to det (Hx(1)⊕
· · · ⊕Hx(v))∗ ⊗ det (Gy(1) ⊕ · · · ⊕G(y(w)). Hence,

deg (Z((x(1), . . . , x(v), y(1), . . . , y(w))))
= w(deg (Gt)) − v(deg (Ht))
= w(deg (E) − deg (Ht)) − v(deg (Ht)

=
(k(deg (E)) − r(deg (Ht)))

m
.

Hence, if Ht is maximal (that is, has maximum degree among rank k
subbundles of E), then deg (Z((x(1), . . . , x(v), y(1), . . . , y(w)))) =
(sk(E)/m). The divisor Z((x(1), . . . , x(v), y(1), . . . , y(w))) depends
symmetrically on the variables x(i) ∈ T , 1 ≤ i ≤ v and y(j) ∈ T ,
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1 ≤ j ≤ w. Notice that we have defined the divisors Z((x(1), . . . , x(v),
y(1), . . . , y(w))) in a general open set of T v+w. Since T is complete the
set of effective divisors Z((x(1), . . . , x(v), y(1), . . . , y(w))) has limits
for all (x(1), . . . , x(v), y(1), . . . , y(w)) ∈ T v+w. These limits are not
unique, but this does not affect our computation. In particular, for
every x ∈ T , we may find Z(x, . . . , x, x, . . . , x) an effective divisor
such that O(Z(x, . . . , x, x, . . . , x)) � det (Hx)⊗v ⊗ det (Gx)⊗w.

Remark 3.8. Notice that, for every (x(1), . . . , x(v), y(1), . . . , y(w)) ∈
T v+w the divisor

(v + w)Z((x(1), . . . , x(v), y(1), . . . , y(w)))

and the divisor
∑

1≤i≤v

Z((x(i), . . . , x(i), x(i), . . . , x(i)))

+
∑

0≤j≤w

Z((y(j), . . . , y(j), y(j), . . . , y(j)))

are associated to the same line bundle

det (Hx(1) ⊕ · · · ⊕Hx(v))∗ ⊗ det (Gy(1) ⊕ · · · ⊕Gy(w))(v+w)

and therefore they are linearly equivalent. Call L((x(1), . . . , x(v),
y(1), . . . , y(w))) the subsheaf of det (Hx(1)⊕· · ·⊕Hx(v))∗⊗det (Gy(1)⊕
· · · ⊕ Gy(w))(v+w) spanned by H0(X, det (Hx(1) ⊕ · · · ⊕ Hx(v))∗ ⊗
det (Gy(1) ⊕ · · · ⊕ Gy(w))(v+w)). We believe that the two families of
line bundles {det (Hx(1) ⊕· · ·⊕Hx(v))∗⊗det (Gy(1) ⊕· · ·⊕Gy(w))} and
{L((x(1), . . . ,x(v), y(1), . . . , y(w))) | (x(1), . . . , x(v), y(1), . . . , y(w)) ∈
T v+w} give more information on the geometry of E then sk(E) (even
in the case in which Mk(E) is finite).

Theorem 3.9. Assume charK = 0. Let X be a smooth projective
curve of genus g ≥ 2 and E ∈ M(X; r, d), r ≥ 2, such that Mk(E) has
a maximal spread family, T , and such that sk(E)(sk(E) − m) < m2g
where m := GCD (k, r). Then there exist a smooth curve C and a
morphism π : X → C with deg (π) > 1.
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Remark 3.10. As one can easily see we are going to prove more
than what is stated in Theorem 3.9. In fact, we are going to prove that
there exists a family of line bundles R(x(1), . . . , x(v), y(1), . . . , y(w)) ∈
Pic (C) such that π∗(R(x(1), . . . , x(v), y(1), . . . , y(w))) � det (Hx(1) ⊕
· · · ⊕ Hx(v))∗ ⊗ det (Gy(1) ⊕ · · · ⊕ Gy(w)). If the rank of E is 2, the
existence of this family (with w = v = 1), allows us to construct a
rank 2 stable vector bundle F on C whose pull-back is E and whose
family of maximal degree linebundles is the pull-back of the one of E,
up to a twist by a line bundle, A, on C (see [3]).

Proof. Set v := (r − k)/m and w := (k/m) and take general
(x(1), . . . , x(v), y(1), . . . , y(w)) ∈ T v+w. By Remark 3.8, we have

h0(det (Hx(1) ⊕ · · · ⊕Hx(v))∗ ⊗ det (Gy(1) ⊕ · · · ⊕Gy(w))(v+w)) ≥ 2.

As in Remark 3.8, consider the line bundles L((x(1), . . . , x(v), y(1), . . . ,
y(w))); they form an infinite family of spanned nontrivial line bun-
dles with degree at most sk(E)/m. Since (sk(E)/m)[(sk(E)/m) −
1] < g, we can apply a result of Accola (see [1, Theorem 4.3] or
[3, Lemma 1.2]), finding a nontrivial covering π : X → C and
R(x(1), . . . , x(v), y(1), . . . , y(w)) ∈ Pic (C) with π∗(R(x(1), . . . , x(v),
y(1), . . . , y(w))) � det (Hx(1)⊕· · ·⊕Hx(v))∗⊗det (Gy(1)⊕· · ·⊕Gy(w)).

To explain the notion of maximally spread family, we prove the
following easy result

Proposition 3.11. (any char K). Let X be a smooth projective curve
of genus g ≥ 2. Fix integers r, k with 0 < k < r and a rank r vector
bundle E on X. Let T ⊂ Mk(E) be an irreducible projective family with
dim (T ) > k(r− 1− k). Then T is maximally spread. Furthermore, for
every P ∈ X the union of the subspaces Ht|{P} ⊂ E|{P} is not contained
in a lower dimensional vector subspace of E|{P} .

Proof. Fix P ∈ X. By the proof of the proposition of [7, page 254],
the map

π : T −→ Grass (r − k,E|{P})

sending Ht, t ∈ T , into the (r−k)-dimensional vector space E|{P}/Ht|{P}
is finite. Since dim (T ) > k(r − k) = Grass (r − k,E|{P}), the union of
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all subspaces Ht|{P} for t ∈ T cannot be contained in a hyperplane of
E|{P}.
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