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ON THE SECOND FUNDAMENTAL TENSOR
OF REAL HYPERSURFACES

IN QUATERNIONIC HYPERBOLIC SPACE

MIGUEL ORTEGA AND JUAN DE DIOS PÉREZ

ABSTRACT. We study real hypersurfaces with constant
quaternionic sectional curvature in the quaternionic hyper-
bolic space and the action of the curvature operator on the
Weingarten endomorphism. We also introduce examples of
ruled real hypersurfaces.

1. Introduction. A quaternionic Kaehlerian manifold is called a
quaternionic space form if it is connected, simply connected and it is
endowed with a complete metric g of constant quaternionic sectional
curvature c. The study of real hypersurfaces when c > 0 is rather
developed (cf. [1], [7], [9]). Besides, these authors deal with both c < 0
and c > 0. Our purpose is to study real hypersurfaces in quaternionic
hyperbolic space (c < 0) of constant quaternionic sectional curvature
c = −4, QHm, m ≥ 2, by paying attention to the second fundamental
tensor.

We describe in Section 2 a semi-Riemannian manifold of index 3 that
is a semi-Riemannian submersion (cf. [5]) over QHm with time-like
totally geodesic fibers as well as a principal fiber bundle over QHm

with structural group S3.

A real hypersurfaceM of a quaternionic space form is said to be ruled
if its maximal quaternionic distribution D of the tangent bundle of M ,
TM , is integrable. This condition is equivalent to g(AX, Y ) = 0 for
any X,Y in D, where A is the Weingarten endomorphism of M (cf.
[8]). In Section 4, we construct a family of ruled real hypersurfaces in
QHm, m ≥ 2, which proves that the class of such real hypersurfaces is
not empty, so Theorem 2 is meaningful.

D is a linear subbundle of TM which inherits two different metric
tensors. The first one is the simple restriction of g, so it seems
natural to keep the same name. The second one comes from the
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second fundamental form by g0(X,Y ) = g(AX, Y ) for any X,Y ∈ D.
Theorem 2 studies the case in which both metrics are proportional by
a smooth function defined on M . Anyway, the main result of Section 5
is the classification of real hypersurfaces in QHm, m ≥ 3, which have
constant quaternionic sectional curvature.

As it is shown in [10], there are no real hypersurfaces in QHm whose
second fundamental tensor is parallel. So, in Section 6, we consider
the curvature operator R acting as a derivation over the Weingarten
endomorphism. That is, for any X,Y tangent to the real hypersurface
M , we define R(X,Y ) ·A = ∇X∇YA−∇Y ∇XA−∇[X,Y ]A, where ∇ is
the Riemannian covariant derivation on M . Thus, we study condition
(33) that allows us to obtain as a corollary the nonexistence of real
hypersurfaces in QHm which satisfy R ·A = 0.

2. The quaternionic hyperbolic space. Let Q be the algebra of
quaternions with quaternionic units {j1, j2, j3}. On Qm+1, m ≥ 2, let
us consider the Hermitian form b(z, w) = −z̄0w0 +

∑m
k=1 z̄kwk where

z = (z0, . . . , zm), w = (w0, . . . , wm) ∈ Qm+1 and z̄ is the quaternionic
conjugate of z ∈ Q. The symplectic scalar product ḡ = Re b is an
indefinite metric tensor of index 4 on Qm+1. Let us consider the real
hypersurface in Qm+1

H4m+3
3 = {z ∈ Qm+1 : b(z, z) = −1}.

The tangent space of H4m+3
3 at a point z is given by

(1) TzH
4m+3
3 = {a ∈ Qm+1 : ḡ(a, z) = 0}.

This shows that the position vector χ : H4m+3
3 → Qm+1 is a globally

defined normal vector field whose length is ‖χ‖2 = −1. Therefore,
H4m+3

3 is a semi-Riemannian submanifold in Qm+1 of index 3. Let
D, D̃ be the Levi-Civita connections of Qm+1 and H4m+3

3 , respectively.
The Gauss formula of χ is

(2) DXY = D̃XY + ḡ(X,Y )χ

for any X,Y tangent to H4m+3
3 . As the curvature tensor of Qm+1

vanishes, it is very easy to check that H4m+3
3 is a space of constant

sectional curvature −1. Next we consider S3 = {λ ∈ Q : λ̄λ = 1} and
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the action S3 ×H4m+3
3 → H4m+3

3 given by λ ∈ S3, z = (z0, . . . , zm) ∈
H4m+3

3 , λz = (λz0, . . . , λzm). This action is free and the quotient will
be denoted by QHm. Moreover, H4m+3

3 is a principal fiber bundle
over QHm with structural group S3. Given a point z ∈ H4m+3

3 , the
horizontal subspace is

(3) T ′
z = {X ∈ TzH

4m+3
3 : ḡ(X, jkz) = 0, k = 1, 2, 3}.

Given X,Y tangent to QHm, we will denote their horizontal lifts
by X ′, Y ′, respectively, and we will define a metric tensor on QHm

by g(X,Y ) = ḡ(X ′, Y ′). This metric tensor makes the fibration π
be a semi-Riemannian submersion, (cf. [5]). As ḡ(jkχ, jkχ) = −1,
k = 1, 2, 3, the fibers are time-like. Note that they are also totally
geodesic. Therefore, (QHm, g) is a Riemannian manifold. Any geodesic
on QHm is the projection of a horizontal geodesic on H4m+3

3 , so that
QHm is complete. Let ∇̃ be the Levi-Civita connection of QHm. The
set {j1χ, j2χ, j3χ} defines a 3-Sasakian structure on H4m+3

3 . As it is
shown in [3], the projection π : H4m+3

3 → QHm induces a structure
of quaternion Kaehlerian manifold on QHm by Jk = π∗(jkχ). This
means that the three-dimensional vector bundle V̂ = Span {J1, J2, J3}
of tensors of type (1, 1) of almost Hermitian structures satisfy

(4)

J2
1 = J2

2 = J2
3 = − Id, J1J2 = − J2J1 = J3

∇̃XJi = qk(X)Jj − qj(X)Jk, i = 1, 2, 3
(dqi + qj ∧ qk)(X,Y ) = 4g(X, JiY ), i = 1, 2, 3

for any X,Y tangent to QHm, where (i, j, k) is a cyclic permutation of
(1, 2, 3) and qk, k = 1, 2, 3, are local 1-forms on QHm. One can easily
compute the following formula

(5) D̃X′Y ′ = (∇̃XY )′ −
3∑

k=1

g(JkY,X)jkχ

for any X,Y tangent to QHm. On the other hand, from the fact that
H4m+3

3 has constant sectional curvature −1, it is not hard to check that
the curvature tensor of QHm is

(6)

R̃(X,Y )Z = − g(Y, Z)X + g(X,Z)Y

+
3∑

k=1

{g(JkY, Z)JkX − g(JkX,Z)JkY

+ 2g(X, JkY )JkZ}
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for any X,Y, Z tangent to QHm. This implies that QHm has constant
quaternionic sectional curvature −4. Finally, if B is the standard unit
ball of Qm, the identification H4m+3

3 → B given by (z0, . . . , zm) 
→
(z1/z0, . . . , zm/z0) lets us construct a diffeomorphism from B to QHm.
Therefore, QHm is the quaternionic hyperbolic space.

3. Real hypersurfaces in the quaternionic hyperbolic space.
In this section we summarize known facts and notations needed in the
sequel. In this paper M will always denote a smooth connected real
hypersurface in QHm, m ≥ 2, without boundary. For the sake of
simplicity, if we write X ∈ TM , we denote a smooth section X of the
tangent bundle TM , or a tangent vector field defined on a suitable open
subset of M . We will use the same notation when we consider some
other linear bundles on M , such as D or its orthogonal bundle D⊥ on
TM .

Let N be a local normal unit vector field on M . We will denote
Uk = −JkN , k = 1, 2, 3. If X is a (local) tangent vector field to M ,
we will write JkX = φkX + fk(X)N , k = 1, 2, 3, where φkX is the
tangential component of JkX and fk(X) = g(X,Uk), k = 1, 2, 3. By
(4)

(7)
φ2

kX = −X + fk(X)Uk, fk(φkX) = 0, φkUk = 0,
k = 1, 2, 3

for any X tangent to M .

(8)
φiX = φi+1φi+2X − fi+2(X)Ui+1 = −φi+2φi+1X + fi+1(X)Ui+2

fi(X) = fi+1(φi+2X) = − fi+2(φi+1X),
φiUi+1 = Ui+2 = −φi+1Ui

i = 1, 2, 3, for any X tangent to M , where the subindices have to be
taken module 3. It is also easy to check

(9)
g(φiX,Y ) + g(X,φiY ) = 0,

g(φiX,φiY ) = g(X,Y )− fi(X)fi(Y )

for any X,Y tangent to M , i = 1, 2, 3. If we denote by ∇ the induced
connection of QHm on M , the Gauss and Weingarten formulae are
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given respectively by

∇̃XY = ∇XY + g(AX, Y )N(10)

∇̃XN = −AX(11)

for any X,Y tangent to M , where A is the Weingarten endomorphism
associated to N . A vector field X tangent toM will be called principal
if there is a function λ on M such that AX = λX. The function λ
is called a principal curvature of M . Given a point x ∈ M , we will
denote Tλ(x) = {X ∈ TxM : AxX = λ(x)X}. From the expression of
the curvature tensor of QHm we can compute the Codazzi equation

(12)

(∇XA)Y−(∇YA)X =
3∑

k=1

{−fk(X)φkY + fk(Y )φkX +2g(φkX,Y )Uk}

for any X,Y tangent to M . From (4), (10) and (11), we obtain

(13)
∇XUi = − pj(X)Uk + pk(X)Uj + φiAX

(∇Xφi)Y = pj(X)φkY − pk(X)φjY + fi(Y )AX − g(AX, Y )Ui

for any X,Y tangent to M and (i, j, k) being a cyclic permutation of
(1, 2, 3). If R is the curvature tensor of M , the Gauss equation takes
the form
(14)
R(X,Y )Z = − g(Y, Z)X + g(X,Z)Y

+
3∑

k=1

{−g(φkY, Z)φkX+g(φkX,Z)φkY +2g(φkX,Y )φkZ}

+ g(AY,Z)AX − g(AX,Z)AY

for any X,Y, Z tangent to M . Let R̃ be the curvature operator of
QHm. We recall that a real hypersurface in QHm is curvature-adapted
if its normal Jacobi operator KN = R̃(·, N)N commutes with the
Weingarten endomorphism. We will denote the maximal quaternionic
distribution of M by D and its orthogonal complement in TM by D⊥.
Bendt proved in [1] that the following three statements are pairwise
equivalent:
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a) M is curvature-adapted.

b) D (or equivalently D⊥) is invariant by the Weingarten endomor-
phism.

c) D⊥ is an autoparallel subbundle of TM .

We note that condition b) is pointwise. That leads to the following
useful notation. Given a subset K of M , we will say that M is
curvature adapted on K if for each p ∈ K, ApDp ⊆ Dp or equivalently,
ApD⊥

p ⊆ D⊥
p . Obviously, if we simply say M is curvature adapted, we

are assuming K =M . The following results can be found in [1].

Lemma A. Let M be a real hypersurface in QHm, m ≥ 2. Let
us suppose that each Uk is principal with principal curvature µk, k =
1, 2, 3.

a) µk is locally constant, k = 1, 2, 3.

b) If X ∈ D and X is principal with principal curvature λ, then
(2λ− µk)AφkX = (λµk − 2)φkX, k = 1, 2, 3.

Lemma B. Let M be a curvature-adapted real hypersurface in QHm,
m ≥ 2. If there exists a nonconstant principal curvature in an open
subset G of M , then A|D⊥ = 2ID⊥ on G.

Theorem A. Let M be a connected curvature-adapted real hypersur-
face in QHm, m ≥ 2, with constant principal curvatures. Then M is
orientable and locally congruent to one of the following:

a) a tube of radius r>0 over a totally geodesic QHk, k ∈ {0, . . . ,m−
1},
b) a tube of radius r > 0 over a totally geodesic CHm,

c) a horosphere.

Table 1 displays the principal curvatures of each model space in the
list of Theorem A.

The distributions Tµi
, i = 1, 2, are included in D⊥ and Tλi

, i = 1, 2,
are included in D.
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TABLE 1.

Model Principal Multiplicities
space curvatures

µ1 = 2 coth(2r) 3
a) λ1 = coth(r) 4k

λ2 = tanh(r) 4(m−k−1)
µ1 = 2 coth(2r) 1

b) µ2 = 2 tanh(2r) 2
λ1 = coth(r) 2m−2
λ2 = tanh(r) 2m−2

c) µ = 2 3
λ = 1 4m−4

4. Examples of minimal ruled real hypersurfaces. We consider
a metric tensor on Q given by g0(a, b) = Re (āb), where a, b ∈ Q.
Now we can rewrite the metric tensor ḡ as ḡ(z, w) = −g0(z0, w0) +∑m

k=1 g0(zk, wk), where z = (z0, . . . , zm), w = (w0, . . . , wm) ∈ Qm+1.
It is easy to see that µ ∈ Q satisfies µ2 = −1 if and only if Reµ = 0
and µ ∈ S3. Now, given µ ∈ S3 such that µ2 = −1, let us define the
hypersurface in H4m+3

3

M̄ =
{
z =

(
r cosh(t)q0, r sinh(t)q1,

√
r2−1 q2, . . . ,

√
r2−1 qm

)

∈ H4m+3
3 : t ∈ R, r > 1, |q0| = |q1| = 1,

m∑
k=2

|qk|2 = 1,

g0(cosh(t)q0, sinh(t)q1µ) = 0
}
.

It is clear that M̄ is invariant under the action of S3 and therefore
M = π(M̄) is a real hypersurface in QHm. If z = (z0, . . . , zm) ∈ M̄ ,
the tangent space of M̄ at z is given by

(15)
TzM̄ = {X = (X0, . . . , Xm) ∈ Qm+1 : ḡ(X, z) = 0,

g0(X0, z1µ) + g0(z0, X1µ) = 0}.



1070 M. ORTEGA AND J. DIOS PÉREZ

Let us consider the following tangent vector fields to M̄ :

Ēk(z) = (cosh(t)jkq0, sinh(t)jkq1, 0, . . . , 0), k = 1, 2, 3,
Ēk+3(z) = (sinh(t)jkq1µ, cosh(t)jkq0µ, 0, . . . , 0), k = 1, 2, 3,

Ē7(z) = (cosh(t)q0, sinh(t)q1, rq2
/√

r2−1, . . . , rqm
/√

r2−1 )

Ēk+7(z) = (0, 0, jk
√
r2−1 q2, . . . , jk

√
r2−1 qm), k = 1, 2, 3

for any z ∈ M̄ . It is not hard to check the following properties:
g0(λa, b) = −g0(a, λb), g0(aλ, b) = −g0(a, bλ), for any a, b ∈ Q and
any λ ∈ S3. Bearing them in mind, the vectors {Ē1, . . . , Ē10} are
indeed tangent to M̄ and an orthogonal system. Besides, the linear
subspace W̄z = {X = (0, 0, X2, . . . , Xm) ∈ Qm+1 :

∑m
k=2Xkz̄k = 0}

satisfies TzM̄ = W̄z ⊕ Span {Ē1(z), . . . , Ē10(z)} for any z ∈ M̄ . A
global unit vector field N̄ to M̄ in H4m+3

3 is

(16) N̄z = (sinh(t)q1µ, cosh(t)q0µ, 0, . . . , 0), z ∈ M̄
which has been computed by using (15). Let Ā be the Weingarten
endomorphism of M̄ associated to N̄ . By (2) and (11), we get
−ĀX̄ = DX̄N̄ for any X̄ ∈ TM̄ . A straightforward computation which
uses this last formula and (16) shows

(17)
ĀĒk = −

(
1
r

)
Ēk+3, ĀĒk+3 =

(
1
r

)
Ēk, k = 1, 2, 3

ĀX̄ = 0 if X̄ ∈ W̄z ⊕ Span {Ē7, . . . , Ē10}(z), z ∈ M̄.

Moreover, N = π∗N̄ is a globally defined unit normal vector field on
M . It is easy to see jkN̄ = Ēk+3 for any k = 1, 2, 3. Besides, from
(17), given X̄ ∈ TM̄ , ĀX̄ ∈ Span {Ēk, Ēk+3 : k = 1, 2, 3}. Moreover,
from (5) then ĀX ′ = (AX)′ − ∑3

k=1 fk(X)jkχ for any X ∈ TM ,

(18)
g(AX, Y ) = ḡ(ĀX ′, Y ′), for any X,Y tangent to M

(AX)′ = ĀX ′, for any X ∈ D.

From (17) and (18), we see that M is minimal and, given X,Y ∈ D,

g(AX, Y ) = ḡ(ĀX ′, Y ′)

=
3∑

k=1

{ḡ(ĀX ′, Ēk+3)ḡ(Ēk+3, Y
′) + ḡ(ĀX ′, Ēk)ḡ(Ēk, Y

′)

=
3∑

k=1

ḡ(X ′,−(1/r)Ēk+3)ḡ(Ēk, Y
′) = 0
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and, therefore, M is ruled.

5. On the second fundamental form. We begin by proving a
generalization of Lemma 3.6 of [1] (see also Lemma 5.1 of [7]). We will
denote by (∗)D⊥ and (∗)D the D⊥-component and the D-component
of (∗), respectively.

Lemma 1. Let M be a real hypersurface in QHm, m ≥ 2. There
is a dense open subset M̃ of M with the following property. For every
p ∈ M̃ , there are an open neighborhood Ĝ of p on QHm and a basis
{J1, J2, J3} of V̂ defined on Ĝ such that p ∈ G := Ĝ∩M ⊆ M̃ , and there
are three smooth vectors {E1, E2, E3} in D and three smooth functions
µk, k = 1, 2, 3, defined on G such that the corresponding Uk = −JkN ,
k = 1, 2, 3, satisfy AUk = µkUk + Ek, for any k = 1, 2, 3.

Remark 1. If M is curvature-adapted, each vector Ek, k = 1, 2, 3,
vanishes on G and the lemma takes the form of Lemma 3.6 of [1]. Also
the vectors {E1, E2, E3} can be linearly dependent.

Proof. We define the element A0 ∈ Hom(D⊥,D⊥) by the following.
Given X ∈ D⊥, A0X = (AX)D⊥ . Now we can copy Berndt’s proof of
Lemma 3.6 in [1], but we use A0 instead of A. At the end of the proof,
we know A0Uk = µkUk, k = 1, 2, 3, on G. Now as the projection
map p : TM → D is smooth, given k ∈ {1, 2, 3}, the orthogonal
decomposition AUk = A0Uk + p(AUk) yields that the smooth vectors
Ek = p(AUk), k = 1, 2, 3, are defined on G and lie in D. This concludes
the proof.

Theorem 1. Let M be a connected real hypersurface in QHm,
m ≥ 2, such that

(19) AφkX = φkAX for any X ∈ D, k = 1, 2, 3.

Then M is an open subset of one of the following.

a) A tube of radius r>0 over a totally geodesic QHk, k=0, . . . ,m−1,

b) a horosphere.
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Proof. Let {U1, U2, U3} be a local orthonormal basis of D⊥. Fix
k ∈ {1, 2, 3}. Given X ∈ D, there is a Y ∈ D such that X = φkY .
Bearing this in mind, by (7) and (19), g(AX,Uk) = g(AφkY, Uk) =
g(φkAY,Uk) = 0. Therefore, M is curvature-adapted. Let us suppose
that M admits a nonconstant principal curvature λ on an open subset
G of M . By Lemma B, AZ = 2Z for any Z ∈ D⊥ on G. Take a unit
X ∈ Tλ. By Lemma A and (19), given k = 1, 2, 3, (2λ − 2)φkX =
(2λ − 2)AφkX = (2λ − 2)φkAX = (2λ − 2)λφkX, from which λ = 1
at any point of G. Therefore, M has constant principal curvatures and
we only have to check which of the real hypersurfaces in Theorem A
satisfies (19).

a) A straightforward computation shows that the horosphere and the
tube of radius r > 0 over a totally geodesic QHk, k = 0, . . . ,m − 1,
satisfy (19).

b) Tube of radius r > 0 over a totally geodesic CHm. In this
case, D⊥ = Vµ1 ⊕ Vµ2 , D = Vλ1 ⊕ Vλ2 , where µ1 = 2 coth(2r),
µ2 = 2 tanh(2r), λ1 = coth(r) and λ2 = tanh(r). Given X ∈ Vλ1

by Lemma A and (19), λ1φkX = φkAX = AφkX = (λ1µk − 2)/(2λ1 −
µk)φkX, k = 1, 2, from which λ1 = (λ1µk − 2)/(2λ1 − µk), and now
λ2

1 − µ1λ1 + 1 = λ2
1 − µ2λ1 + 1. As λ1 �= 0, then µ1 = µ2, that is,

coth(r) = tanh(r). But this equation has no real solutions, which is a
contradiction. This concludes the proof.

Now we suggest reading the introduction to remember the definition
of the metric tensors g and g0 on the bundle D.

Theorem 2. Let M be a connected real hypersurface in QHm,
m ≥ 3, which satisfies g0 = ag where a is a smooth function on M .
Then a is constant and M is one of the following:

a) ruled, a = 0,

b) an open subset of a tube of radius r > 0 over a totally geodesic
QHm−1, 0 < a = tanh(r) < 1,

c) an open subset of a horosphere, a = 1,

d) an open subset of a tube of radius r > 0 over a point, 1 < a =
coth(r).
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Proof. Our hypothesis is equivalent to

(20) AX = aX +
3∑

l=1

fl(AX)Ul for any X ∈ D.

Firstly, if a ≡ 0 on M , then g(AX, Y ) = 0 for any X,Y ∈ D,
and therefore M is ruled. Secondly, let us suppose the open set
{p ∈ M : a(p) �= 0} is not empty. We recall the dense open subset
M̃ of M of Lemma 1. Clearly the set ∆ = {p ∈ M̃ : a(p) �= 0}
is not empty. Choose a point x ∈ ∆. Let G be a connected open
neighborhood of x in M̃ as in Lemma 1. We will follow the notations
of Lemma 1. Let us suppose that M is not curvature adapted at a
certain point p ∈ G. Then at least one of the vectors Ek(p) �= 0, so we
can choose an open neighborhood Ω of p included in G on which M is
not curvature adapted. In the sequel, all computations will be made
in Ω unless otherwise stated. Let us define V = Span {E1, E2, E3} and
W the orthogonal complement of V in D. By (20),

(21) AX = ax for any X ∈W.
Given X,Y ∈ W and k ∈ {1, 2, 3}, we develop g((∇XA)Y −
(∇XA)Y,Ek), bearing in mind (12), (13), (20) and (21),

(22) 0 =
3∑

l=1

g(Ek, El)g(Y, φlX)

for any X,Y in W , k = 1, 2, 3, on Ω. We can regard (22) as a homoge-
neous linear system whose coefficients are g(Ek, El), so that we have to
distinguish three cases. We define the matrix G = (g(Ek, El))k,l=1,2,3.

Case 1. Let us define Ω1 = {q ∈ Ω : dimV (q) = 3} = {q ∈
Ω : detG(q) �= 0}, which is open. The rank of the matrix G is 3,
so that the linear system (22) has the unique solution 0 = g(Y, φlX)
for any l = 1, 2, 3 and any X,Y ∈ W . Therefore, φ1W ⊆ V and
then 3 = dimV ≥ dimW = 4m − 7, that is to say, 4m ≤ 10, which
contradicts m ≥ 3. Therefore, Ω1 is empty.

Case 2. Let us define Ω2 = {q ∈ Ω : dimV (q) = 2}. We can
suppose without losing any generality that V = Span {E1, E2} on an
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open subset Ω0
2 included in Ω2. We can forget the third equation of

(22) and rewrite the others as

(23)
g(Y, φ1X)g(E1, E1) + g(Y, φ2X)g(E1, E2) = − g(Y, φ3X)g(E1, E3)
g(Y, φ1X)g(E1, E2) + g(Y, φ2X)g(E2, E2) = − g(Y, φ3X)g(E2, E3),

for any X,Y ∈W on Ω0
2. Now there are two subcases.

Case 2a. There is a point q ∈ Ω0
2 and a unit Z ∈ (W ∩ φ3W )(q).

By computing at q, we put X = Z, Y = φ3Z in (23), obtaining
0 = g(E1, E3), 0 = g(E2, E3). Introducing them in (23), we get
0 = g(Y, φ1X), 0 = g(Y, φ2X) for any X,Y ∈ W (q). Now this subcase
is finished by a similar reasoning as in Case 1.

Case 2b. W ∩φ3W = {0} at some point q ∈ Ω2. As (φ3W ⊕W )(q) ⊂
D(q) = (V ⊕W )(q), then 4m − 6 = dimW = dimφ3W ≤ dimV = 2,
and therefore m ≤ 2. This is a contradiction. We conclude that the set
of interior points of Ω2 is empty.

Case 3. Let us define Ω3 = {q ∈ Ω : dimV (q) = 1}. Given a point
q ∈ Ω3, we can suppose without losing any generality that E1(q) �= 0.
Then we only write the first equation of (22),

(24)
g(Y, φ1X)g(E1, E1) + g(Y, φ2X)g(E1, E2)

+ g(Y, φ3X)g(E1, E3) = 0

for any X,Y ∈ W at q. As m ≥ 3, dimWq ∩ (V ⊕ φ1V ⊕ φ2V ⊕
φ3V )⊥(q) ≥ 4. Given a nonzero vector X in this subspace, take
Y = φ1X ∈Wq so, by (24), 0 = g(E1, E1)(q), which is a contradiction.
Therefore, Ω3 is empty.

Summing up these three cases, Ω is an open subset included in G,
Ω = Ω2, and Ω2 has no interior points. Therefore, Ω is empty, which
yields that G is a connected curvature adapted real hypersurface in
QHm, and the equation (20) becomes AX = aX for any X ∈ D on G.
This means G is an open subset of one of the real hypersurfaces in the
list of Theorem 1. Table 1 shows that only the horosphere, the tube
of radius r > 0 over a totally geodesic QHm−1 or over a point satisfies
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the fact that there is a constant λ such that AX = λX for any X ∈ D.
In particular, a is constant on G, that is to say, a is locally constant on
∆. Given a connected component C of ∆, as ∆ is an open subset ofM ,
so is C. Besides, a is constant on it and M is curvature adapted on C.
In fact, C is an open subset of one of the three above-mentioned model
spaces. Let us define H0 = {q ∈ M̃ : a(q) = 0}, and let us suppose it is
not empty. As M̃ is a dense subset of M and ∆ is not empty, there is
a sequence {pn}n∈N in a connected component of ∆ whose limit q lies
in H0. But as a is continuous on M , given n ∈ N, 0 �= a(pn) = a(q),
which is a contradiction. Therefore, ∆ must be M̃ . Now, as M̃ is a
dense subset of M , a is continuous on M , a is locally constant on M̃ ,
and M is connected, then a is constant on M and M is an open subset
of one of the three model spaces that we have mentioned before. This
concludes the proof.

Given a vectorX tangent toM , we will denoteQ(X)=Span {X,φ1X,
φ2X,φ3X}. If Π is a 2-plane tangent to M , we will say that Π is
quaternionic if it admits a basis {X,Y } such that Q(X) = Q(Y ).
The quaternionic sectional curvature of M is the sectional curvature
of quaternionic 2-planes tangent to M which are included in D.

Theorem 3. Let M be a connected real hypersurface in QHm,
m ≥ 3, which has constant quaternionic sectional curvature q. Then
M is one of the following:

a) an open subset of a tube of radius r > 0 over a point, − 3 < q =
−4 + coth2(r),

b) an open subset of a horosphere, q = − 3,

c) an open subset of a tube of radius r > 0 over a totally geodesic
QMm−1(c), − 4 < q = − 4 + tanh2(r) < − 3,

d) ruled, q = − 4.

Proof. Take p ∈ M a point, and let us denote UDp = {X ∈ Dp :
‖X‖ = 1‖. If X ∈ UDp, then q = R(X,φkX,φkX,X), k = 1, 2, 3.
From (14) we obtain

(25)
q = − 4 + g(AX,X)g(AφkX,φkX)− g(AX,φkX

2)
for any X ∈ UDp.
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Let X(t), t ∈ (−ε, ε), be a curve contained in a great circle of UDp

and such that X(0) = X, X ′(0) = Y . By (25),

0 =
d

dt
{g(AX(t), X(t))g(AφkX(t), φkX(t))

− g(AX(t), φkX(t))2}t=0.

A straightforward computation shows

(26)
g(AX,Y )g(AφkX,φkX) + g(AX,X)g(AφkY, φkX)

− g(AX,φkX)g((Aφk − φkA)X,Y ) = 0,

for any X,Y ∈ UD, k = 1, 2, 3. Similarly,

0 =
d2

dt2
{g(AX(t), X(t))g(AφkX(t), φkX(t))

− g(AX(t), φkX(t))2}t=0,

and, therefore,

(27)
2(q + 4) = g(AY, Y )g(AφkX,φkX) + 4g(AY,X)g(AφkY, φkX)

+ g(AX,X)g(AφkY, φkY )− 2g(AX,φkX)g(AY, φkY )
− g(Y,AφkX − φkAX)2,

k = 1, 2, 3, for any X,Y ∈ UD. Now let {E1, . . . , E4m−4, U1, U2, U3}
be an orthonormal basis of TM defined on an open subset G ofM such
that

(28) (AEj)D = ajEj

where aj , j = 1, . . . , 4m − 4, are continuous functions on G. In
fact, the functions aj and the vector fields Ej can be chosen con-
tinuous on G, but smooth on an open and dense subset of G.
If we substitute X = Ej , Y = El, j �= l in (26), then 0 =
ajg(AφkEj , φkEl). This yields aj = 0 or g(AφkEj , φkEl) = 0,
j �= l, which implies AφkEj ∈ Span {φkEj} ⊕ D⊥. Therefore, we
can find an orthonormal basis of TM defined on G of the form
{E1, φ1E1, φ2E1, φ3E1, . . . , Em−1, φ1Em−1, φ2Em−1, φ3Em−1} such that
(29) (AEj)D = ajEj , (AφkEj)D = ajkφkEj ,
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where ak, ajk are continuous functions on G, j = 1, . . . ,m − 1, k =
1, 2, 3. As before, all these functions are also smooth on an open and
dense subset of G. If we take X = Ej in (25), by (29),

(30) q + 4 = ajajk, k = 1, 2, 3, j = 1, . . . ,m− 1.

If we put X = Ej , Y = φkEj in (27), by (29),

(31) 2(q + 4) = a2
jk + a2

j , k = 1, 2, 3, j = 1, . . . ,m− 1.

By (30) and (31), 0 = a2
jk − 2ajajk + a2

j = (ajk − aj)2, and then

(32) aj = aj1 = aj2 = aj3, j = 1, . . . ,m− 1.

Choose X = Ej , Y = El, j �= l, and introduce them in (27),
bearing in mind (29), q + 4 = ajal. From this, by (30) and (32),
alaj = q + 4 = a2

l = a2
j for any j �= l. If, for some j �= l, al �= aj at

some point of G, then al = −aj . Thus, a2
l = alaj = −a2

l and then
al = aj = 0. Consequently, a1 = · · · = am−1 = a. Moreover, from (31),
a is constant on G. From (29) and (32), then (AX)D = aX for any
X ∈ D on G, that is to say, g(AX, Y ) = ag(X,Y ) for any X,Y ∈ D
on G. So we only have to check which of the real hypersurfaces of
Theorem 2 have constant quaternionic sectional curvature. Table 1
and (14) show that all of them satisfy this property. This concludes
the proof.

6. The curvature operator.

Theorem 4. Let M be a real hypersurface in QHm, m ≥ 2, which
satisfies

(33)
(R(X,Y )A)Z + (R(Y, Z)A)X + (R(Z,X)A)Y = 0

for any X,Y, Z ∈ D.

Then M is an open subset of either:

a) a tube of radius r>0 over a totally geodesic QHk, k=0, . . . ,m−1,

b) a horosphere.
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Proof. By the first Bianchi identity, (33) is equivalent to

(34)
R(X,Y )AZ +R(Y, Z)AX +R(Z,X)AY = 0,

for any X,Y, Z ∈ D.

By virtue of (14), equation (34) takes the form

0 =
3∑

k=1

{2g(φkX,Y )φkAZ + 2g(φkZ,X)φkAY + 2g(φkY, Z)φkAX

+ g((Aφk + φkA)Z, Y )φkX + g((Aφk + φkA)X,Z)φkY(35)
+ g((Aφk + φkA)Y,X)φkZ}

for any X,Y, Z ∈ D. Let {E1, . . . , E4m−4} be an orthonormal basis
of D defined on an open subset G of M . For each k, l ∈ {1, 2, 3} we
define the function akl =

∑4m−4
i=1 g((Aφk + φkA)φlEi, Ei) on G. In

the sequel, all the computations will be made on G unless otherwise
stated. If we take X = Ei, Y = φlEi, l = 1, 2, 3, in (35) and adding in
i = 1, . . . , 4m− 4, we get

(36)

0 =
3∑

k=1

{ − 2φkφl(Aφk + φkA)Z + aklφkZ + φkAφlφkZ

+ 2
3∑

j=1

fj(φkφl(Aφk + φkA)Z)Uj}+ 8(m− 1)φlAZ,

for any Z ∈ D, l = 1, 2, 3. If we multiply (36) scalarly by Ul, by
virtue of (7), (8), (9), (35) and the fact that φkφl(Aφk + φkA)Z +∑3

j=1 fj(φkφl(Aφk+φkA)Z))Uj ∈ D, we see 0 = −∑3
k=1 g(φkAφlφkZ,

Ul) = g(Z, φl+2AUl+2) + g(Z, φl+1AUl+1) for any Z ∈ D, l = 1, 2, 3,
which yields φl+2AUl+2 + φl+1AUl+1 ∈ D⊥, that is to say, φ1AU1 +
φ2AU2 = Z1, φ2AU2 + φ3AU3 = Z2, φ1AU1 + φ3AU3 = Z3, where
Z1, Z2, Z3 ∈ D⊥ are defined on G. Easy computations show φkAUk ∈
D⊥, k = 1, 2, 3, which imply AUk ∈ D⊥, k = 1, 2, 3, that is to say M
is curvature-adapted. By Lemma 1, we can suppose without losing
any generality that the vector fields {U1, U2, U3} are defined on G
and principal with principal curvatures µk, k = 1, 2, 3, respectively.
Note that the functions akl are independent of the basis of D used
to compute them. Besides, if k �= l, then akl vanishes. Indeed, if
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the basis {Ei : i = 1, . . . , 4m − 4} is such that AEi = λiEi at
some point of G for certain real numbers λi, i = 1, . . . , 4m − 4,
then

∑4m−4
i=1 g(AφkφlEi, Ei) =

∑4m−4
i=1 λig(φkφlEi, Ei) = 0. On the

other hand, if the basis {Ei : i = 1, . . . , 4m − 4} is such that
AφlEi = λiφlEi for certain real numbers λi, i = 1, . . . , 4m − 4,
then

∑4m−4
i=1 g(φkAφlEi, Ei) =

∑4m−4
i=1 λig(φkφlEi, Ei) = 0. These two

computations prove our assertion. From this, (7), (8), (9) and as M is
curvature-adapted, (36) becomes

(37) 0 = allφlZ+(8m−13)φlAZ−2AφlZ−φl+1Aφl+2Z+φl+2Aφl+1

for any Z ∈ D, l = 1, 2, 3. Now we apply −φl to (37) and, by (8),

(38) 0 = allZ+(8m−13)AZ+2φlAφlZ+φl+1Aφl+1Z+φl+2Aφl+2Z

for any Z ∈ D, l = 1, 2, 3. If we change Z by −φlZ in (37), by (8) then

(39) 0 = allZ− (8m−13)φlAφlZ− 2AZ+φl+1Aφl+1Z+φl+2Aφl+2Z

for any Z ∈ D, l = 1, 2, 3. Subtracting (39) from (38) we obtain
0 = (8m − 11)AZ + (8m − 11)φlAφlZ, that is to say, AφlZ = φlAZ
for any Z ∈ D, l = 1, 2, 3. The rest of the proof is to check which real
hypersurfaces in the list of Theorem 1 satisfy (34).

a) Horosphere, tube of radius r > 0 over a totally geodesic QHk,
k = 0, . . . ,m − 1. By Table 1 there is a real number λ such that
AX = λX for any X ∈ D. Therefore, (34) is satisfied.

b) Tube of radius r > 0 over a totally geodesic QHk, k = 1, . . . ,m−1.
Table 1 shows D = Vλ1 ⊕ Vλ2 where λ1 = coth(r), λ2 = tanh(r).
Besides, Vλi

, i = 1, 2, is quaternionic. Now take unit X ∈ Vλ1 ,
Y = φ1X and unit Z ∈ Vλ2 and introduce them in (35), bearing
in mind (8) and (9), 0 = −2λ1φ1Z + 2λ2φ1Z, from which λ1 = λ2.
But the equation coth(r) = tanh(r) has no real solutions. This is a
contradiction which finishes the proof.

Corollary 1. There are no real hypersurfaces in QHm, m ≥ 2, such
that

(40) (R(X,Y )A)Z + (R(Y, Z)A)X + (R(Z,X)A)Y = 0
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for any X,Y, Z tangent to M .

Proof. Let M be a real hypersurface in QHm, m ≥ 2, which satisfies
(40). Then M satisfies (33). So we only have to check which real
hypersurfaces in the list of Theorem 4 satisfy (40). In each case there
are two nonzero real numbers x, y such that

(41) AX = xX + y

3∑
k=1

fk(X)Uk

for any X tangent to M . The first Bianchi identity shows that (40)
is equivalent to R(X,Y )AZ + R(Y, Z)AX + R(Z,X)AY = 0 for any
X,Y, Z tangent to M . Now we substitute (41) in this last equation
bearing in mind the first Bianchi identity and y �= 0, and then
0 =

∑3
k=1{fk(Z)R(X,Y )Uk+fk(Y )R(Z,X)Uk+fk(X)R(Y, Z)Uk} for

any X,Y, Z ∈ TM . Choose a unit Y ∈ D, Z = φ2Y , X = U1 in this
last equation. By (14) and (41), then 0 = R(Y, φ2Y )U1 = −2U3. This
is a contradiction that concludes the proof.

Corollary 2. There are no real hypersurfaces in QHm, m ≥ 2, such
that R ·A = 0.
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