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SIMPLE GEOMETRIC CHARACTERIZATION
OF SUPERSOLVABLE ARRANGEMENTS

TAN JIANG, STEPHEN S.-T. YAU AND LARN-YING YEH

1. Introduction. An arrangement of hyperplanes is a finite col-
lection of C-linear subspaces of dimension (l − 1) in Cl. For such an
arrangement A, there is a natural projective arrangement A∗ of hyper-
planes in CPl−1 associated to it. Let M(A) = Cl − ∪{H : H ∈ A}
and M(A∗) = CPl−1 − ∪{H∗ : H∗ ∈ A∗}. Then it is clear that
M(A) = M(A∗) × C∗. The central problem in the theory of arrange-
ments is to find a connection between the topology or differentiable
structure of M(A), respectively M(A∗), and the combinatorial geome-
try of A, respectively A∗.

More specifically, we would like to know the homotopy properties
of M(A) and how these properties relate to various other well-known
properties of arrangements. Many people have asked the following
questions. Precisely when is M(A) a K(π, 1) space?

In [2], Brieskorn considers the Coxeter group W acting on Rl. W
also acts as a reflection group in Cl. Let A = A(W ) be its reflection ar-
rangement. Brieskorn conjectured that A(W ) is a K(π, 1) arrangement
for all Coxeter groups W . He proved this for some of the groups by
representing M as the total space of a sequence of fibrations. Deligne
[3] settled the question by proving that the complement of complexi-
fication of a real simplicial arrangement is K(π, 1). This result proves
Brieskorn’s conjecture because the arrangement of a Coxeter group is
simplicial. Recently, Jambu and Terao [4] introduced the property of
supersolvability of an arrangement. This property is combinatorial in
nature, that is, it depends only on the pattern of intersection of the hy-
perplanes or equivalently on the lattice associated to the arrangement.
It turns out that complement M(A) of a supersolvable arrangement is
the total space of a fiber bundle in which the base and fiber are K(π, 1)
spaces. The long exact homotopy sequence of the bundle shows that
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M(A) is K(π, 1) also. As far as we know, supersolvable arrangements
are the most general kind of complex arrangements having the K(π, 1)
property. Therefore it is desirable to have a simple geometric charac-
terization for a supersolvable arrangement which one can check easily
whether a given arrangement is supersolvable. The following is our
main theorem.

Consider an arrangement A∗ in CP2 which corresponds to A in C3.
Then a point x of intersection of lines A∗ is called the center of A∗ if
for each intersection point y of A∗ there is a line l in A∗ connecting x
and y.

Main theorem. A is a supersolvable arrangement if and only if A∗

has a center.

2. Preliminaries of arrangements and their lattices. We begin
by recalling some terminology in lattice theory.

Definition 2.1. A poset is a set in which a binary relation x ≤ y is
defined which satisfies for all x, y, z the following conditions

P1 (Reflexive). For all x, x ≤ x.

P2 (Antisymmetry). If x ≤ y and y ≤ x, then x = y.

P3 (Transitivity). If x ≤ y and y ≤ z, then x ≤ z.

If x ≤ y, we shall say that x is less than or equal to y. If x ≤ y and
x 	= y, one writes x < y.

An upper bound of a subset X of a poset P is an element a ∈ P such
that x ≤ a for every x ∈ X. The least upper bound is an upper bound
less than or equal to every other upper bound; it is denoted by supX.
By P2, supX is unique if it exists. The notion of lower bound of X
and greatest lower bound (infX) of X are defined dually. Again, by
P2, infX is unique if it exists.

Definition 2.2. A lattice is a poset P in which any two of whose
elements have a greatest lower bound or “meet” denoted by x∧ y, and
a least upper bound or “join” denoted by x ∨ y.
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Definition 2.3. An element y covers an element x in a lattice L if
and only if x < y, but x < z < y for no element z in L.

Definition 2.4. A chain in a lattice L is any linearly ordered subset
of L.

Definition 2.5. A lattice having no infinite chains is said to be semi-
modular whenever it has the covering property: for all lattice elements
x, y, if x and y cover x ∧ y, then x ∨ y covers x and y.

Definition 2.6. Let L be a lattice with finite length. The length of
a chain C of L is defined as |C| − 1. The rank of a ∈ L, denoted by
r(a), is the length of the longest chain in L below a. Let 0̂ = infL and
1̂ = supL. Then r(0̂) = 0. The rank of L (rank L) is defined to be
r(1̂). If a in L has rank 1, then a is called a point or an atom of the
lattice.

Definition 2.7. A point lattice (or atomic lattice) is a lattice in
which every element is a joint of points. A geometric lattice is a semi-
modular point lattice with no infinite chains.

In this paper an arrangement A is a finite collection of hyperplanes
{H1, . . . , Hn} through the origin in Cl. Arrangements in our sense
are sometimes called central. If we view Cl as affine space and allow
A to contain affine hyperplanes, we call A an affine arrangement.
A projective arrangement is a finite set of projective hyperplanes in
projective space CPl−1. Recall the canonical bundle p : Cl − {0} 
→
CPl−1 with fiber C∗, which identifies z with λz for λ ∈ C∗.

Proposition 2.8. Let A be a nonempty arrangement with comple-
ment M =M(A), and let M∗ = p(M). The restriction p :M 
→ M∗ is
a trivial fibration so that M =M∗×C∗. There is a projective (l−1) ar-
rangement A∗ such that M∗ = M(A∗) where M(A∗) is the complement
of the projective arrangement in CPl−1.

Proof. Let H ∈ A. The restriction of p to Cl − H has base space
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CPl−1 − CPl−2 ∼= Cl−1. Thus p : Cl − H 
→ Cl−1 is a trivial bundle
and p : M 
→ M∗ is a subbundle. The rest of the proposition follows
easily.

Since the complement of a hyperplane in a projective space is an
affine space, a nonempty projective arrangement may be viewed as
an affine arrangement and vice versa. Proposition 2.8 above gives
a close connection between central l-arrangements and affine (l − 1)-
arrangements.

Following Orlik-Solomon [5], we define the lattice L(A) of an ar-
rangement. The set L(A) is the set of all intersections of subsets of A,
partially ordered by reverse inclusion, i.e., X ≤ Y ⇔ Y ⊆ X. Thus Cl

is the minimal element.

Define a rank function r on L(A) by r(X) = codimX = l−dimCX for
X ∈ L(A). Call Hi an atom of L(A). Define the join by X∨Y = X∩Y
and the meet by X ∧ Y = ∩{Z : Z ∈ L(A), X ∪ Y ⊂ Z}.

Lemma 2.9. Let A be an arrangement. Then

(i) for every X ∈ L(A) all maximal linear ordered subsets
X0 = Cl < X1 < · · · < Xp = X

have the same cardinality;

(ii) every element of L(A)− {Cl} is a join of atoms;
(iii) for all X, Y in L(A) the rank function satisfies

r(X ∧ Y ) + r(X ∨ Y ) ≤ r(X) + r(Y ).

Thus L(A) is a geometric lattice.

Definition 2.10. Let Lp = Lp(A) := {X ∈ L(A) : r(X) = p}. The
Hasse diagram of L(A) has vertices labeled by the elements of L(A)
and arranged on levels Lp, p ≥ 0. Suppose X ∈ Lp and Y ∈ Lp+1. An
edge connects X with Y if X < Y .

Example 2.1. Let A be an arrangement of hyperplanes in C3

consisting of the elements {(x, y, z) ∈ C3 : x = y}, {(x, y, z) ∈ C3 :
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FIGURE 1. Lattice of Example 2.1.

x = −y}, {(x, y, z) ∈ C3 : x = z}, {(x, y, z) ∈ C3 : x = −z},
{(x, y, z) ∈ C3 : y = −z}, {(x, y, z) ∈ C3 : y = z}. (See Figure
1.)

Definition 2.11. A hyperplane arrangementA inCl+1 is strictly lin-
early fibered if there is a choice of coordinates (x1, . . . , xl, y) on Cl+1 so
that the restriction P, of the projection Cl+1 
→ Cl, (x1, . . . , xl, y) 
→
(x1, . . . , xl), to the complementM(A) is a fiber bundle projection, with
base P(M(A)) = M(B), the complement of an arrangement B in Cl,
and fiber the complement of finitely many points in C. We say that A
is strictly linearly fibered over B.

Definition 2.12. An arrangement A = A1 of finitely many points
in C1 is fiber-type. An arrangement A = Al of hyperplanes in Cl is
fiber-type if A is strictly linearly fibered over a finite-type arrangement
Al−1 in Cl−1.

3. Arrangements with supersolvable lattice. Let L be a finite
geometric lattice with minimal element 0̂, the maximal element 1̂, and
rank function r. We shall briefly review the notions of modular elements
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of L and supersolvable lattices, both of which are defined by Stanley
[6] and [7].

Definition 3.1. A pair (x, y) ∈ L × L is said to be a modular pair
when

z = (z ∨ x) ∧ y for all z with x ∧ y ≤ z ≤ y.

Remark 3.2. In a geometric lattice (x, y) ∈ L × L is a modular pair
if and only if r(x) + r(y) = r(x ∨ y) + r(x ∧ y), cf. [1, p. 83].

Definition 3.3. An element x ∈ L is called a modular element
if it forms a modular pair with every y ∈ L, i.e., if a ≤ y, then
a ∨ (x ∧ y) = (a ∨ x) ∧ y.

The following theorem is due to Theorem 1 of Stanley [6].

Theorem 3.4. An element x ∈ L is modular if and only if no
two complements of x are comparable, i.e., if x ∧ y = x ∧ z = 0̂,
x ∨ y = x ∨ z = 1̂ and y ≥ z, then y = z.

The following lemma due to Terao [8] provides a characterization of
modular elements.

Lemma 3.5. An element x of L is a modular element if and only if
x forms a modular pair with any y satisfying x ∧ y = 0̂.

Stanley [7] defined a lattice to be supersolvable.

Definition 3.6. A geometric lattice L is supersolvable if there exists
a maximal modular chain

0̂ = x0 < x1 < · · · < xl = 1̂,

i.e., l = rankL and each xi is a modular element, i = 0, . . . , l.
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In [4], Jambu and Terao first studied those arrangements A whose
lattice L(A) is supersolvable. In [8] Terao has shown the following
theorem.

Theorem 3.7. An arrangement A is fiber-type if and only if L(A)
is supersolvable.

Corollary 3.8. For any arrangement A, if L(A) is supersolvable,
then M(A) is a K(π, 1) space.

From now on, we consider only the lattice L of a central arrangement
A in C3. We can easily see the following.

Lemma 3.9. For x, y, z ∈ L, y ∨ (x ∧ z) = (y ∨ x) ∧ z if y = 0̂ or
z = 1̂.

Lemma 3.10. Each atom is modular.

Proof of Lemma 3.10. Let x be an atom, i.e., r(x) = 1. In view of
Lemma 3.5, we only need to prove that x forms a modular pair with
any y ∈ L satisfying x ∧ y = 0̂. Furthermore, by Remark 3.2, for such
a y we only need to show that

(3.1) r(x) + r(y) = r(x ∨ y) + r(z ∧ y).

Case 1. r(y) = 0, i.e., y = 0̂. In this case r(x) + r(y) = 1 + 0 = 1,
while r(x ∨ y) + r(x ∧ y) = r(x) + r(0̂) = 1 + 0 = 1. So (3.1) holds.

Case 2. r(y) = 1. In this case both x and y are planes and x∨ y is a
line in L(A). Therefore, r(x ∧ y) + r(x ∨ y) = r(0̂) + r(l) = 0 + 2 = 2,
while r(x) + r(y) = 1 + 1 = 2. So (3.1) holds.

Case 3. r(y) = 2. In this case y is a line not containing in the
plane x because of x ∧ y = 0̂. It follows that x ∨ y = 1̂. Therefore,
r(x)+r(y) = 1+2 = 3, while r(x∨y)+r(x∧y) = r(0̂)+r(1̂) = 0+3 = 3.
So (3.1) holds.
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Case 4. r(y) = 3, i.e., y = 1̂. In this case x ∧ 1̂ = x. So there is
nothing to prove in this case.

Lemma 3.11. Let x ∈ L and codim (x) = 2. x is modular if and only
if codim (x∧ z) = 1 for each z ∈ L different from x with codim (z) = 2.
(In other words, the line x is modular if and only if for each line z ∈ L,
there is a plane y ∈ L containing both x and z.)

Proof. ⇐. Suppose x ∈ L and codim (x) = 2. Suppose further that
codim (x∧ z) = 1 for each z ∈ L with codim (z) = 2. We want to prove
that x is modular. As in the proof of Lemma 3.10, we only need to
show that (3.1) holds for all y ∈ L with x ∧ y = 0̂. Obviously we only
need to consider those y ∈ L with r(y) ≤ 2.

Case 1. r(y) = 0, i.e., y = 0̂. In this case r(x ∨ y) = r(x) and
r(x ∧ y) = r(y). So (3.1) holds.

Case 2. r(y) = 1. In this case x is a line and y is a plane.
The line x is not contained in the plane y because x ∧ y = 0̂. It
follows that x ∨ y = 1̂. Therefore, r(x) + r(y) = 2 + 1 = 3 while
r(x ∨ y) + r(x ∧ y) = r(1̂) + r(0̂) = 3 + 0 = 3. So (3.1) holds.

Case 3. r(y) = 2. In this case y is a line different from x.
r(x∨ y) = r(1̂) = 3, while r(x∧ y) = 1 by hypothesis. So r(x)+ r(y) =
2 + 2 = 3 + 1 = r(x ∨ y) + r(x ∧ y) and (3.1) holds.

⇒. Conversely, suppose x ∈ L, codim (x) = 2 and x is modular. We
want to prove that codim (x ∧ z) = 1 for each z ∈ L different from x
with codim (z) = 2. Since x is modular, (x, z) is a modular pair. By
Definition 3.1, we have

r(x) + r(z) = r(x ∨ y) + r(x ∧ z).

Observe that x ∨ z = 1̂. The above equality implies

2 + 2 = 3 + r(x ∧ z)

which implies r(x ∧ z) = 1.
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Consider the arrangement A∗ in CP2 which corresponds to A in C3;
Lemma 3.11 shows that a point x0 of intersection of lines in A∗ is
modular in L(A) if and only if for each intersection point y of A∗ there
is a line l in A∗ connecting x0 and z. We call such x0 the center of L
(or A∗). Thus we have the following theorem.

Theorem 3.12. L(A) is a supersolvable lattice if and only if A∗ has
a center.

Remark 3.14. From Theorem 3.12 we can give an easy proof that
an arrangement in CP2 with supersolvable lattice is a fiber-type. For
we let the center c and A∗ be c = (0 : 1 : 0) and a line l∞ passing
through c be an infinity. If we look at the complement M(A∗) as
a subset of C2, we can assume that the other lines passing c are
presented by the equations x = k1, . . . , x = km and the rest of the
lines in A∗ are y = a1x + b1, . . . , y = anx + bn. Thus, M(A∗) is
such a bundle with the base B = C − {k1, . . . , km} and the fiber
Fx = C−(z1x+b1, . . . , anx+bn} for each x ∈ B. So A∗ is a fiber-type.

Example 3.1. We construct an arrangement A∗ in CP2 with a
supersolvable lattice. Let l1, l2 and l3 be three non-collinear lines in
CP2 and let A, B and C be their three intersection points. Let XA, XB

and XC be the sets of lines other than l1, l2 and l3 passing through A,
B and C, respectively. Let C be the center of A∗. In order to make C
a center of A∗ we can show that it must have |XC | ≥ max{|XA|, |XS |}.
In case the equality holds, its lattice is unique up to an isomorphism
and its diffeomorphic structure is determined by this lattice.
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Notes in Math. 317, Springer, New York, 1973, 21 44.

3. P. Deligne, Les immeubles des groups de tresses génèralissés, Invent. Math.
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