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COMPOSITION OPERATORS FROM THE
SPACE OF CAUCHY TRANSFORMS INTO

ITS HARDY-TYPE SUBSPACES

JUN SOO CHOA AND HONG OH KIM

ABSTRACT. This paper studies the boundedness and com-
pactness of composition operators from the space of Cauchy
transforms into its Hardy-type subspaces. They are charac-
terized by the behavior of the Cauchy kernel composed by
inducing self-maps of the unit disk.

1. Introduction. Let D be the open unit disk and T the unit circle
in the complex plane. A holomorphic function f on D is said to belong
to K, the space of all Cauchy transforms, if it admits a representation
f(z) =

∫
T
1/(1 − η̄z) dµ(η) where µ is a complex Borel measure on T .

The following inclusion relations between the class K and Hardy spaces
are well known: H1 ⊂ K ⊂ ∩p<1H

p. See [2] and [9].

Now let ϕ be a holomorphic self-map of D. It was known that the
composition operator Cϕ(f) = f ◦ϕ acts as a bounded operator on the
Hardy spaces [12], [10] and on the space K [2]. The compactness
of Cϕ on the Hardy spaces was completely characterized in terms
of the behavior of Nevanlinna counting function by Shapiro [14].
A few years later another equivalent characterization, the so-called
Sarason’s condition, was obtained by Sarason, Shapiro and Sundberg
[13], [15]. Recently, Cima and Matheson [4] considered the problem of
characterizing the compactness of Cϕ on K and have established that
Cϕ is compact on K if and only if it is compact on H2.

The purpose of this paper is to study composition operators Cϕ

which map the space K into some of its subspaces. Indeed, we shall
characterize those holomorphic self-maps ϕ of D that induce bounded
or compact composition operators from the space K to Hp, p ≥ 1,
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BMOA, VMOA and the Dirichlet space. The characterizations are
given by the behavior, in the target spaces, of the Cauchy kernel
composed by ϕ. Some related remarks are also included.

Throughout this paper, the symbol ϕ will be used to denote a
holomorphic self-map of D.

2. Prerequisites. The materials in this section are well known and
summarized shortly.

2.1 Spaces K,Ka, H
p. As mentioned in the introduction, the space

K is the set of all holomorphic functions f on D of the form

(2.1) f(z) =
∫

T

1
1− η̄z dµ(η)

where µ ∈M , the space of all complex Borel measures on T . This class
K becomes a Banach space under the norm

‖f‖K = inf {‖µ‖ : µ satisfies (2.1)},
where ‖µ‖ denotes the total variation of the measure µ. The space Ka

is the subclass of K consisting of all Cauchy transforms of absolutely
continuous complex Borel measures on T . It is known that the space
Ka is a closed subspace of K [2].

For 1 ≤ p < ∞, the Hardy space Hp is the Banach space of all
holomorphic functions f on D for which

‖f‖Hp ≡ sup
0≤r<1

( ∫
T

|f(rζ)|p dσ(ζ)
)1/p

=
( ∫

T

|f∗(ζ)|p dσ(ζ)
)1/p

<∞,

where dσ denotes the Lebesgue measure on T of total mass 1 and
f∗(ζ) = limr↗1 f(rζ) is the radial limit which exists almost everywhere
ζ ∈ T .

2.2 BMOA, VMOA and the Dirichlet space D. The space
BMOA consists of those functions f ∈ H2 for which

‖f‖∗ ≡ sup
a∈D

‖f ◦ ϕa − f(a)‖H2 <∞,
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where ϕa(z) = (a − z)/(1 − āz) is the conformal automorphism of D
that interchanges a with 0. BMOA is a Banach space under the norm
‖f‖BMOA = |f(0)|+‖f‖∗. VMOA is a closed subspace of BMOA which
consists of all functions f ∈ H2 for which

lim
|a|→1−

‖f ◦ ϕa − f(a)‖H2 = 0.

It is well known that if f is holomorphic on D, then f ∈ BMOA if and
only if

(2.2) sup
a∈D

∫
D

|f ′(z)|2(1− |ϕa(z)|2) dx dy <∞,

and f ∈ VMOA if and only if

(2.3) lim
|a|→1−

∫
D

|f ′(z)|2(1− |ϕa(z)|2) dx dy = 0,

where z = x+iy. See [1] and [6]. The Dirichlet spaceD is the collection
of functions f holomorphic on D for which

‖f‖2
D ≡ |f(0)|2 +

∫
D

|f ′(z)|2 dx dy <∞.

From the definitions of these spaces, it is clear that the following
inclusion relations hold among these spaces: D ⊂ VMOA ⊂ BMOA.

2.3 Boundedness and compactness. Let X and Y be two Banach
spaces with respective norms ‖ ‖X and ‖ ‖Y . As usual, a linear operator
T from X to Y is said to be bounded if a positive constant B exists
such that

‖Tx‖Y ≤ B‖x‖X for all x ∈ X.
This bounded operator T is said to be compact if T maps the closed
unit ball {x : ‖x‖X ≤ 1} about the origin in X into a relatively compact
set in Y . Equivalently, T : X → Y is compact if and only if for every
sequence {xn} in X which is bounded by one, {Txn} has a convergent
subsequence in Y .

3. Cϕ : K → Hp with p ≥ 1. In this section we characterize the
boundedness and compactness of Cϕ : K → Hp, p ≥ 1. The results in



98 J.S. CHOA AND H.O. KIM

this section may be compared with those in [3]. The characterizations
are given in terms of the behavior of the Cauchy kernel composed by
ϕ. It seems rather easy to formulate the criterion for boundedness, but
not at all obvious even to expect the one for compactness. To get an
idea what the one might be, we need to mention the following result
for Cϕ on K. The equivalence of (ii) and (iii) in the following theorem
was recently proved by Cima and Matheson in [4]. The equivalence of
(i) and (ii), or (iii), is interesting itself and it is also contained there.
We add to the list a new condition (iv) which will serve as a prototype
of our idea.

Theorem 3.1. For a holomorphic self-map ϕ of D, the following
conditions are equivalent:

(i) Cϕ(K) ⊂ Ka.

(ii) Cϕ is compact on K.

(iii) ϕ satisfies Sarason’s condition for the compactness of Cϕ on H2,
that is,

(3.1)
∫

T

1− |ϕ∗(ζ)|2
|η − ϕ∗(ζ)|2 dσ(ζ) =

1− |ϕ(0)|2
|η − ϕ(0)|2

for every η ∈ T .

(iv) |ϕ∗(ζ)| < 1 almost everywhere ζ ∈ T and the integral

(3.2)
∫

T

1− |ϕ∗(ζ)|2
|η − ϕ∗(ζ)|2 dσ(ζ)

is a continuous function of η ∈ T .

Proof. We only have to prove the equivalence of (iii) and (iv). First
we assume (iii) holds. Applying Fubini’s theorem to the integral of
(3.1) against the measure dσ(η),

∫
T

∫
T

1− |ϕ∗(ζ)|2
|η − ϕ∗(ζ)|2 dσ(η) dσ(ζ) =

∫
T

1− |ϕ(0)|2
|η − ϕ(0)|2 dσ(η) = 1.

The inner integral on the lefthand side is zero if |ϕ∗(ζ)| = 1 and is
one if |ϕ∗(ζ)| < 1. Therefore, we can conclude that |ϕ∗(ζ)| < 1 almost
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everywhere ζ ∈ T . It is obvious that the condition (3.1) implies the
continuity of the integral (3.2).

To prove the reverse implication, we note that there is a Poisson
integral representation of the positive harmonic function: for every
η ∈ T ,

1− |ϕ(z)|2
|η − ϕ(z)|2 =

∫
T

1− |z|2
|ξ − z|2

(
1− |ϕ∗(ξ)|2
|η − ϕ∗(ξ)|2 dσ(ξ) + dµη(ξ)

)

where µη is a positive singular measure on T . By taking z = 0, we have

(3.3) µη(T ) =
1− |ϕ(0)|2
|η − ϕ(0)|2 −

∫
T

1− |ϕ∗(ξ)|2
|η − ϕ∗(ξ)|2 dσ(ξ).

By the continuity of the integral (3.2), µη(T ) is a continuous function
of η ∈ T . Integrating both sides of (3.3) with respect to dσ(η) and
applying Fubini’s theorem,∫

T

µη(T ) dσ(η) =
∫

T

1− |ϕ(0)|2
|η − ϕ(0)|2 dσ(η)

−
∫

T

∫
T

1− |ϕ∗(ξ)|2
|η − ϕ∗(ξ)|2 dσ(η) dσ(ξ)

= 1− 1 = 0,
as above. Therefore, we have µη(T ) = 0 for every η ∈ T . This gives
(3.1), and the proof is complete.

Now we have the following characterization of the boundedness of
Cϕ : K → Hp, p ≥ 1. As indicated in the beginning of this section, the
proof is quite standard. But we include it for the sake of completeness.
Throughout this section we always assume 1 ≤ p <∞.

Theorem 3.2. For a holomorphic self-map ϕ of D, the following
conditions are equivalent:

(i) Cϕ : K → Hp is bounded.

(ii) |ϕ∗(ζ)| < 1 almost everywhere ζ ∈ T and a positive constant B
exists such that

(3.4) sup
η∈T

( ∫
T

∣∣∣∣ 1
1− η̄ϕ∗(ζ)

∣∣∣∣
p

dσ(ζ)
)1/p

≤ B <∞.
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(iii) The family {1/(1− η̄ϕ) : η ∈ T} is a norm-bounded subset of Hp,
that is, a positive constant B exists such that

(3.5) sup
η∈T

∥∥∥∥ 1
1− η̄ϕ

∥∥∥∥
Hp

≤ B <∞.

Proof. (i) ⇒ (ii). Since Cϕ(K) ⊂ Hp ⊂ Ka, we have |ϕ∗| < 1 almost
everywhere by Theorem 3.1. Choose a family fη(z) = 1/(1 − η̄z),
η ∈ T , in K. Then ‖fη‖K = 1. See, for example, [2, p. 468]. By the
boundedness of Cϕ : K → Hp, a positive constant B exists such that

( ∫
T

|fη ◦ ϕ∗(ζ)|p dσ(ζ)
)1/p

= ‖fη ◦ ϕ‖Hp ≤ B‖fη‖K = B

for any η ∈ T . This is (3.4).
(ii) ⇒ (iii). This is trivial.

(iii) ⇒ (i). If f ∈ K, a µ ∈M exists with ‖µ‖ = ‖f‖K such that

f(z) =
∫

T

1
1− η̄z dµ(η).

Composing with ϕ and applying Jensen’s inequality, we get

(3.6) |f ◦ ϕ(rζ)|p ≤ ‖µ‖p−1

∫
T

∣∣∣∣ 1
1− η̄ϕ(rζ)

∣∣∣∣
p

d|µ|(η).

Integrating both sides of (3.6) with respect to dσ(ζ) and then applying
Fubini’s theorem, we have by (3.5)

∫
T

|f ◦ ϕ(rζ)|p dσ(ζ) ≤ ‖µ‖p−1

∫
T

∫
T

∣∣∣∣ 1
1− η̄ϕ(rζ)

∣∣∣∣
p

dσ(ζ) d|µ|(η)
≤ Bp‖µ‖p = Bp‖f‖p

K .

That is, ‖f ◦ ϕ‖Hp ≤ B‖f‖K .

Remark 1. If p = 1, the condition (3.5) is easily seen to be equivalent
to the condition

(3.7)
η + ϕ
η − ϕ ∈ H1 for every η ∈ T .
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Since Re [(η + ϕ)/(η − ϕ)] ≥ 0, (3.7) is again equivalent to

1− |ϕ∗|2
|η − ϕ∗|2 ∈ L logL for every η ∈ T,

by the famous L logL-theorem of Zygmund [7, pp. 135 136]. Conse-
quently, we have Cϕ : K → H1 is bounded if and only if (1−|ϕ∗|2)/|η−
ϕ∗|2 ∈ L logL for every η ∈ T .

Remark 2. Since H1 ⊂ Ka if Cϕ : K → H1 is bounded then Cϕ maps
K into Ka, so Cϕ is compact on H2 by Theorem 3.1. We mention that
the converse is not true. Indeed, the self-map

ϕ(z) = ir

√
i(1 + iz)/(1− iz)− i√
i(1 + iz)/(1− iz) + i , 0 < r < 1,

can be shown to have
∫

T
(1/|1−ϕ∗|) dσ =∞ so that Cϕ : K → H1 is not

bounded by Theorem 3.2. This map ϕ can be found in [5, pp. 147 148],
where they showed that ϕ induces a compact composition operator Cϕ

on H2 but the operator is not Hilbert-Schmidt. We can easily adapt
the argument used by them to establish

∫
T
(1/|1− ϕ∗|) dσ =∞.

Next we turn to the compactness of Cϕ : K → Hp which is one
of our main concerns in this paper. The continuity condition (ii) of
the integral in the following theorem is, in the spirit, analogous to the
condition (iv) for the compactness of Cϕ on K in Theorem 3.1.

Theorem 3.3. The following conditions are equivalent:

(i) Cϕ : K → Hp is compact.

(ii) |ϕ∗(ζ)| < 1 almost everywhere ζ ∈ T , and the integral

(3.8)
∫

T

∣∣∣∣ 1
1− η̄ϕ∗(ζ)

∣∣∣∣
p

dσ(ζ)

is a continuous function of η ∈ T .

(iii) |ϕ∗(ζ)| < 1 almost everywhere ζ ∈ T and the family of measures
{νη : η ∈ T} defined by

(3.9) νη(E) =
∫

E

∣∣∣∣ 1
1− η̄ϕ∗(ζ)

∣∣∣∣
p

dσ(ζ)
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is equi-absolutely continuous, with respect to η. That is, given ε > 0, a
δ > 0 exists such that νη(E) < ε for all η ∈ T whenever σ(E) < δ.

Proof. Before we start, let us first observe that, because of (2.1)
the unit ball of K becomes a normal family of holomorphic functions.
A standard normal family argument then shows that Cϕ : K → Hp is
compact if and only if whenever {fn} is a sequence inK with ‖fn‖K ≤ 1
and fn → 0 uniformly on compact subsets of D, then ‖fn ◦ ϕ‖Hp → 0.
Now we proceed with the proof of Theorem 3.3.

(i) ⇒ (ii). Since Cϕ(K) ⊂ Hp ⊂ Ka, we have |ϕ∗| < 1 almost
everywhere by Theorem 3.1.

Let ηn ∈ T with ηn → η, n→ ∞, and let fηn
(z) = 1/(1−ηnz). Then

‖fηn
‖K = 1 and fηn

→ fη uniformly on compact subsets of D with
the obvious notation for fη. By the compactness of Cϕ : K → Hp,
‖fηn

◦ ϕ − fη ◦ ϕ‖Hp → 0, n → ∞. Since Cϕ : K → Hp is bounded,
there is a constant B > 0 such that

‖fη ◦ ϕ‖Hp ≤ B‖fη‖K = B, for all η ∈ T.

Applying Exercise 24(b) on page 74 of [11], we have
∫

T

∣∣∣|fηn
◦ ϕ∗|p − |fη ◦ ϕ∗|p

∣∣∣ dσ

≤ 2pBp−1

( ∫
T

|fηn
◦ ϕ∗ − fη ◦ ϕ∗|p dσ

)1/p

= 2pBp−1‖fηn
◦ ϕ− fη ◦ ϕ‖Hp −→ 0, n→ ∞.

In particular, we have
∫

T

|fηn
◦ ϕ∗|p dσ →

∫
T

|fη ◦ ϕ∗|p dσ, n→ ∞.

That is,

∫
T

∣∣∣∣ 1
1− ηnϕ∗

∣∣∣∣
p

dσ −→
∫

T

∣∣∣∣ 1
1− η̄ϕ∗

∣∣∣∣
p

dσ, n→ ∞,

which shows the continuity of the integral (3.8).
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(ii) ⇒ (iii). If not, a sequence {ηk} in T with ηk → η and a
sequence of Borel sets Ek ⊂ T exist such that σ(Ek) → 0, k → ∞,
but νηk

(Ek) ≥ c > 0 for all k = 1, 2, 3, . . . . Note that

νηk
(Ek) ≤

∫
Ek

∣∣∣∣
∣∣∣∣ 1
1− ηkϕ∗

∣∣∣∣
p

−
∣∣∣∣ 1
1− η̄ϕ∗

∣∣∣∣
p∣∣∣∣ dσ + νη(Ek) ≡ (I) + (II).

Obviously, (II) = νη(Ek)→ 0, k → ∞. Also, by another application of
Exercise 24(b) in [11, p. 74] and by applying Exercise 17(b) of [11, p.
73], we have

(I) ≤
∫

T

∣∣∣∣
∣∣∣∣ 1
1− ηkϕ∗

∣∣∣∣
p

−
∣∣∣∣ 1
1− η̄ϕ∗

∣∣∣∣
p∣∣∣∣ dσ

≤ 2pRp−1

(∫
T

∣∣∣∣ 1
1− ηkϕ∗ − 1

1− η̄ϕ∗

∣∣∣∣
p

dσ

)1/p

−→ 0, k → ∞,

where

R = sup
η∈T

( ∫
T

∣∣∣∣ 1
1− η̄ϕ∗

∣∣∣∣
p

dσ

)1/p

.

Therefore, νηk
(Ek)→ 0, k → ∞. This contradiction shows (ii) ⇒ (iii).

(iii) ⇒ (i). Suppose ‖fn‖K ≤ 1 for n = 1, 2, . . . , and fn → 0
uniformly on compact subsets of D. We have to show ‖fn ◦ϕ‖Hp → 0,
n → ∞. For each n, we can find a µn ∈ M with ‖µn‖ = ‖fn‖K such
that fn(z) =

∫
T
1/(1− η̄z) dµn(η). Therefore,

fn ◦ ϕ∗(ζ) =
∫

T

1
1− η̄ϕ∗(ζ)

dµn(η) for a.e. ζ ∈ T.

Given ε > 0, we now choose δ > 0 such that νη(E) < ε for all η ∈ T
whenever σ(E) < δ. Since |ϕ∗| < 1 almost everywhere on T , we can
choose a positive number ρ < 1 and a compact set F ⊂ T such that
|ϕ∗(ζ)| < ρ for all ζ ∈ F and σ(T \F ) < δ. On T \F , Jensen’s inequality
and Fubini’s theorem yield

(3.10)
∫

T\F

|fn ◦ ϕ∗(ζ)|p dσ(ζ)

≤ ‖µn‖p−1

∫
T

∫
T\F

∣∣∣∣ 1
1− η̄ϕ∗(ζ)

∣∣∣∣
p

dσ(ζ) d|µn|(η)

≤ ‖fn‖p−1
K ε

∫
T

d|µn|(η)
= ε‖fn‖p

K ≤ ε.
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On F , fn ◦ ϕ∗ → 0 uniformly as n→ ∞. Hence,

(3.11)
∫

F

|fn ◦ ϕ∗(ζ)|p dσ(ζ) −→ 0, n→ ∞.

Therefore, ‖fn ◦ ϕ‖Hp → 0, n→ ∞, by (3.10) and (3.11).

We give a sufficient condition for Cϕ : K → Hp to be compact.

Theorem 3.4. If
∫

T
1/(1 − |ϕ∗|)p dσ < ∞, then Cϕ : K → Hp is

compact.

Proof. It suffices to show that ϕ satisfies the condition (ii) of
Theorem 3.3. It is obvious that the hypothesis implies |ϕ∗| < 1 almost
everywhere. Now let ηn ∈ T with ηn → η, n→ ∞. Then, as n→ ∞,

∣∣∣∣ 1
1− ηnϕ∗(ζ)

∣∣∣∣
p

−→
∣∣∣∣ 1
1− η̄ϕ∗(ζ)

∣∣∣∣
p

for a.e. ζ ∈ T.

Since |1/(1 − ηnϕ
∗(ζ))|p ≤ 1/(1 − |ϕ∗|)p ∈ L1(T ), we have by the

dominated convergence theorem

∫
T

∣∣∣∣ 1
1− ηnϕ∗(ζ)

∣∣∣∣
p

dσ(ζ) −→
∫

T

∣∣∣∣ 1
1− η̄ϕ∗(ζ)

∣∣∣∣
p

dσ(ζ), n→ ∞,

which shows the continuity of the integral
∫

T
|1/(1 − η̄ϕ∗(ζ))|p dσ(ζ).

Therefore, Cϕ is compact by Theorem 3.3.

It seems probably that the converse of Theorem 3.4 above fails to be
true, but we have not been able to find such an example. However,
the following self-map ϕ of Lotto [8, pp. 93 95] can be shown to have∫

T
1/(1−|ϕ∗|)p dσ =∞ but it induces a bounded composition operator

Cϕ : K → Hp. We could not show that it is compact.

Example 3.5. Let ϕ(z) = 1/{1 − i(i(1 − z)/(1 + z))1/2p} where
1 ≤ p < ∞. Then ∫

T
1/(1 − |ϕ∗(eiθ)|)p dθ = ∞, but Cϕ : K → Hp is

bounded.
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Proof. We give the proof only for the case p = 1. A tedious
but similar argument works for the case p > 1. Let us first show∫ π

−π
dθ/(1 − |ϕ∗(eiθ)|) = ∞. Let h(z) =

√
i(1− z)/(1 + z). If

0 < θ < π, i(1 − eiθ)/(1 + eiθ) = tan(θ/2) is positive. We put
t = h(eiθ) =

√
tan(θ/2). Then

ϕ∗(eiθ) =
1

1− it ,

and so
1

1− |ϕ∗(eiθ)|2 =
1
t2
+ 1 = cot(θ/2) + 1.

Therefore,
∫ π

−π

dθ

1− |ϕ∗(eiθ)| ≥
∫ π

0

dθ

1− |ϕ∗(eiθ)|2 ≥
∫ π

0

cot(θ/2) dθ =∞.

Next we will show that Cϕ : K → H1 is bounded. We have to show
that ϕ satisfies the condition (ii) of Theorem 3.2. Since ϕ fixes the
point 1 and sends every other point of T into D, it suffices to show
that, for a fixed small ε > 0,

sup
−√

ε≤α≤√
ε

∫ 2ε

−2ε

dθ

|eiα − ϕ∗(eiθ)| <∞.

We split the integral into two parts, the first over [0, 2ε] and the second
over [−2ε, 0]. For 0 < θ ≤ 2ε, we can calculate as above

1
|eiα − ϕ∗(eiθ)| =

√
1 + tan(θ/2)√

(
√
tan(θ/2)− sinα)2 + (1− cosα)2

,

so that

(3.12)

sup
−√

ε≤α≤√
ε

∫ 2ε

0

dθ

|eiα − ϕ∗(eiθ)|

≤ 2
√
1 + tan ε sup

0<α≤√
ε

∫ ε

0

dθ√
(
√
tan(θ)− sinα)2 + (1−cosα)2

.
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Using the change of variable
√
tan θ− sinα = u(1− cosα), we see that

the last integral of (3.12) becomes

∫ (
√

tan ε−sin α)/(1−cos α)

−(sin α/(1−cos α))

2(sinα+ (1− cosα)u)√
1 + u2[1 + {(sinα+ (1− cosα)u}4]

du

which is obviously less than

2 sinα
∫ ((

√
tan ε−sinα)/(1−cos α))

−(sin α/(1−cos α))

du√
1 + u2

+ 2(1− cosα)
∫ ((

√
tan ε−sin α)/(1−cos α))

−(sin α/(1−cos α))

|u|√
1 + u2

du

= 2 sinα
( ∫ 0

−(sin α/(1−cos α))

+
∫ ((

√
tan ε−sin α)/(1−cos α))

0

)
du√
1 + u2

+ 2(1− cosα)
∫ ((

√
tan ε−sin α)/(1−cos α))

−(sin α/(1−cos α))

|u|√
1 + u2

du

≡ (I) + (II) + (III).

For 0 < α ≤ √
ε, it is easy to see that

(III) ≤ 4
[√

(1− cosα)2 + (√tan ε− sinα)2 +
√
(1− cosα)2 + sin2 α

]

≤ 4
[√
1 + tan ε+

√
2
]

and (I) is dominated by 4.

We also see that, since 1 + u2 ≥ 2u,

(II) ≤ 2 sinα
∫ (

√
tan ε/(1−cos α))

0

du√
2u

= 2
√
2 4
√
tan ε

sinα√
1− cosα

= 4 4
√
tan ε cos(α/2) ≤ 4 4

√
tan ε.

From these estimates, we have

sup
−√

ε≤α≤√
ε

∫ 2ε

0

dθ

|eiα − ϕ∗(eiθ)| <∞.
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It remains to prove that

sup
−√

ε≤α≤√
ε

∫ 0

−2ε

dθ

|eiα − ϕ∗(eiθ)| <∞.

For this, we note that for −2ε ≤ θ < 0, h(eiθ) = it where t =√
tan(|θ|/2) > 0. Hence for such θ, we have ϕ∗(eiθ) = 1/(1 + t) so

that

1
|eiα − ϕ∗(eiθ)| =

1 + t√
1− 2(1 + t) cosα+ (1 + t)2 ≤ 1 +

1
t
,

and thus

sup
−√

ε≤α≤√
ε

∫ 0

−2ε

dθ

|eiα − ϕ∗(eiθ)| ≤
∫ 0

−2ε

(
1 +

1√
tan(|θ|/2)

)
dθ <∞

and the proof is complete.

4. Cϕ : K → BMOA, VMOA or D. In this section we consider
the boundedness and compactness of Cϕ : K → BMOA, VMOA or the
Dirichlet space D. They are also connected with the behavior of the
Cauchy kernel composed with ϕ. For the boundedness of Cϕ we have
the following theorem which is analogous to Theorem 3.2.

Theorem 4.1. For ϕ a holomorphic self-map of D, we have

(a) Cϕ : K → BMOA is bounded ⇔ The family {1/(1− η̄ϕ) : η ∈ T}
is a norm-bounded subset of BMOA, that is, B > 0 exists such that

(4.1) sup
η∈T

sup
a∈D

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy ≤ B <∞.

(b) Cϕ : K → VMOA is bounded ⇔

(4.2) lim
|a|→1−

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy = 0

for every η ∈ T .
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(c) Cϕ : K → D is bounded ⇔ The family {1/(1− η̄ϕ) : η ∈ T} is a
norm-bounded subset of D, that is, B > 0 exists such that

(4.3) sup
η∈T

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 dx dy ≤ B <∞.

Proof. We shall only prove (b), since the proof of (a) or (c) is similar
to that of (b).

(⇒). As noted in the proof of Theorem 3.2, we know ‖1/(1−η̄z)‖K =
1 for each η ∈ T . Thus, by the boundedness of Cϕ : K → VMOA, we
have, in particular,

1
1− η̄ϕ ∈ VMOA for every η ∈ T.

Due to (2.3), this says

lim
|a|→1−

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy = 0 for every η ∈ T.

(⇐). If f ∈ K, there is a µ ∈M such that

f(z) =
∫

T

1
1− η̄z dµ(η).

Composing with ϕ, taking derivatives and applying Jensen’s inequality,
we have

(4.4) |(f ◦ ϕ)′(z)|2 ≤ ‖µ‖2

∫
T

|ϕ′(z)|2
|1− η̄ϕ(z)|4

d|µ|(η)
|µ‖ .

Integrating (4.4) with respect to (1 − |ϕa(z)|2) dx dy and applying
Fubini’s theorem yield

(4.5)
∫
D

|(f ◦ ϕ)′(z)|2(1− |ϕa(z)|2) dx dy

≤ ‖µ‖
∫

T

[ ∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy

]
d|µ|(η).
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By (4.2), the inner integral in the second term of (4.5) tends to zero as
|a| → 1− for every η ∈ T . Also we see that the inner integral of (4.5)
is at most

sup
a∈D

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy,

which is dominated by

B

∥∥∥∥ 1
1− η̄z

∥∥∥∥
K

= B

because the condition (4.2) implies the boundedness of Cϕ : K →
BMOA. Here B is a positive constant, independent of η ∈ T . Thus by
the bounded convergence theorem, the second term of (4.5) tends to
zero as |a| → 1−, so that

lim
|a|→1−

∫
D

|(f ◦ ϕ)′(z)|2(1− |ϕa(z)|2) dx dy = 0.

We conclude that if f ∈ K, then Cϕ(f) ∈ VMOA. The boundedness
of Cϕ : K → VMOA follows from the closed graph theorem.

For compactness, we have the following theorem which is analogous
to Theorem 3.3.

Theorem 4.2. For ϕ a holomorphic self-map of D, we have

(a) Cϕ : K → BMOA is compact ⇔ The quantity

(4.6) sup
a∈D

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy

is a continuous function of η ∈ T .

⇔ The family of measures {νη : η ∈ T} defined by

νη(E) = sup
a∈D

∫
E

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy

is equi-absolutely continuous.
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(b) Cϕ : K → VMOA is compact ⇔

(4.7) lim
|a|→1−

sup
η∈T

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy = 0.

(c) Cϕ : K → D is compact ⇔ The integral

(4.8)
∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 dx dy

is a continuous function of η ∈ T .

⇔ The family of measures {νη : η ∈ T} defined by

νη(E) =
∫

E

|ϕ′(z)|2
|1− η̄ϕ(z)|4 dx dy

is equi-absolutely continuous.

The equivalence (a) or (c) can be proved by a similar method as
in the proof of Theorem 3.3. The details of the proof are left to the
reader. For the proof of (b), we require the following result which gives
a characterization of compact composition operators whose range is a
subset of VMOA. We quote this as a lemma, which can be found in
[16, Theorem 3.11].

Lemma. Let ϕ be a holomorphic self-map of D and X a Möbius
invariant Banach space, that is, if f ∈ X then f ◦ ϕa ∈ X for every
a ∈ D. Then Cϕ : X → VMOA is compact if and only if

lim
|a|→1−

sup
‖f‖X≤1

f∈X

∫
D

|(f ◦ ϕ)′(z)|2(1− |ϕa(z)|2) dx dy = 0.

Proof of (b). We first recall that K is a Möbius invariant Banach
space. See, for example, [2]. Suppose that Cϕ : K → VMOA is
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compact. Take fη(z) = 1/(1−η̄z), η ∈ T . Then fη ∈ K and ‖fη‖K = 1.
Now (4.7) follows from the lemma since

|(fη ◦ ϕ)′(z)| = |ϕ′(z)|
|1− η̄ϕ(z)|2 .

Conversely, we are assuming (4.7) and will show that Cϕ : K →
VMOA is compact. From the lemma again, it suffices to show

lim
|a|→1−

sup
‖f‖K≤1

f∈K

∫
D

|(f ◦ ϕ)′(z)|2(1− |ϕa(z)|2) dx dy = 0.

Let f ∈ K with ‖f‖K ≤ 1. Then there is a µ ∈ M with ‖µ‖ = ‖f‖K

such that f(z) =
∫

T
1/(1 − η̄z) dµ(η). Then, as in the proof of

Theorem 4.1, we have

∫
D

|(f ◦ ϕ)′(z)|2(1− |ϕa(z)|2) dx dy

≤ ‖µ‖
∫

T

[ ∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy

]
d|µ|(η)

≤
(
sup
η∈T

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2 dx dy

)
· ‖µ‖2

≤ sup
η∈T

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy.

Hence,

(4.9) sup
‖f‖K≤1

f∈K

∫
D

|(f ◦ ϕ)′(z)|2(1− |ϕa(z)|2) dx dy

≤ sup
η∈T

∫
D

|ϕ′(z)|2
|1− η̄ϕ(z)|4 (1− |ϕa(z)|2) dx dy.

By (4.7), the second term of (4.9) tends to zero as |a| → 1− and
therefore the first term goes to zero as |a| → 1−. This establishes
our claim.
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Finally, we have the following sufficient conditions for compactness.
(a) or (c) follows directly from the line of argument in Theorem 3.4 and
(b) is obvious.

Theorem 4.3. Suppose that ϕ is a holomorphic self-map of D.

(a) If supa∈D

∫
D
{|ϕ′(z)|2/1− |ϕ(z)|4}(1− |ϕa(z)|2) dx dy <∞, then

Cϕ : K → BMOA is compact.

(b) If lim|a|→1−
∫
D
{|ϕ′(z)|2/(1 − |ϕ(z)|)4}(1 − |ϕa(z)|2) dx dy = 0,

then Cϕ : K → VMOA is compact.

(c) If
∫
D
|ϕ′(z)|2/(1 − |ϕ(z)|)4 dx dy < ∞, then Cϕ : K → D is

compact.
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