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HOMOGENEOUS ALGEBRAIC DISTRIBUTIONS

M. CASTRILLÓN LÓPEZ AND J. MUÑOZ MASQUÉ

ABSTRACT. Vertical distributions on a vector bundle
admitting a system of homogeneous algebraic vector fields of
the same degree are characterized.

1. Introduction. The goal of this paper is to provide a charac-
terization of homogeneous algebraic distributions on vector bundles.
The starting point is the classical result according to which a vector
field X on Rm is homogeneous algebraic of degree d if and only if
[χ,X] = (d − 1)X, χ being the Liouville vector field. If one wants to
involve exclusively the module structure spanned by a vector field X in
characterizing algebraic vector fields, then one is led to study the equa-
tion [χ,X] = fX. In this case a first result (cf. 4.7 below) states that
the function f should be constant along the zero section of the vector
bundle p : E → M on which X is defined, and this constant should
be an integer ≥ −1. Our main result is a generalization of the above
statement to distributions of arbitrary rank: it is stated that a vertical
distribution locally spanned by X1, . . . , Xr is homogeneous algebraic
of degree d if and only if an r×r matrix A = (aij), aij ∈ C∞(E), exists
which is equal to d− 1 times the identity matrix along the zero section
of E, and such that [χ,Xj ] =

∑r
i=1 aijXi, for j = 1, . . . , r (cf. 4.6).

Algebraic distributions play a role in several fields of real and complex
geometry such as singularities of vector fields, the moduli problem
for differential forms, calculation of differential invariants of a Lie
group action, etc. (e.g., see [6], [10], [14], [16], [22]). Thus, it seems
interesting to obtain a characterization of these differential systems.
Linear representations of families of Lie groups on vector bundles give
rise to such distributions in a natural way. Families of Lie groups and
specially Lie group fiber bundles naturally appear in the field theory
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and gauge theories as well as in differential geometry. For example,
the gauge group of a principal bundle P → M can be obtained as
the global sections of the adjoint bundle of P (cf. [1]; see also [2],
[3], [4], [9], [17], [18], [19]). This bundle is endowed with a natural
structure of Lie group fiber bundle. Similarly, the gauge algebra of P is
obtained by taking global sections in a Lie algebra bundle attached to
P . For Lie algebra bundles this is indeed an extension to nontrivial
bundles of the well-known process of gauging a Lie algebra g with
functions of a manifold M , which corresponds to consider the infinite
Lie algebra C∞(M)⊗ g with the bracket [f ⊗A, g ⊗B] = fg ⊗ [A,B],
f, g ∈ C∞(M), A,B ∈ g, as C∞(M) ⊗ g may be viewed as the global
sections of the trivial bundle pr1 : M × g →M . These techniques also
apply to Supersymmetry ([15]). In Section 5 we introduce the general
definition of these structures showing the usual settings in which they
are commonly found, and we characterize (see 5.8) the distributions
induced by a linear representation of a family of Lie groups.

We define an algebraic distribution as a sheaf of submodules of the
sheaf of germs of p-vertical vector fields on a vector bundle p : E →M ,
which is locally spanned by a finite number of algebraic vector fields.
Note that, according to this definition, distributions may be singular
and they usually are in the algebraic case but in any case the rank of the
distribution is kept to be locally constant on a dense open subset. This
seems to be a suitable general setting in order to introduce algebraic
distributions as a vector bundle is endowed with a canonical structure
of algebraic scheme over M , independently of the class of functions
(C∞, Cω or complex-analytic) that we consider on the base manifold,
although we formulate our results in the C∞ category for the sake of
simplicity.

2. Algebraic morphisms of vector bundles. In this section we
shall briefly introduce some notations and preliminary results which we
shall use throughout this paper.

2.1 Vector bundle charts. Let p : E → M be a vector bundle
over a C∞ manifold M . Assume U ⊆ M is an open subset such
that E|U is trivial, and let s1, . . . , sm be a basis of sections of E
over U . Each vector e ∈ p−1(x), x ∈ U , can be uniquely written as
e = λ1s1(x) + · · · + λmsm(x) for some scalars λi ∈ R, 1 ≤ i ≤ m.
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Hence, we can define m functions yi : p−1(U) → R, yi(e) = λi.
In addition, assume that U is a coordinate domain with coordinates
(x1, . . . , xn) with n = dimM . Then it is not difficult to prove that
(xj ; yi), 1 ≤ i ≤ m, 1 ≤ j ≤ n, is a coordinate system on p−1(U)
for the manifold E. Such systems of coordinates will be called vector
bundle charts.

Definition 2.2. Let p : E → M , p′ : E′ → M ′ be two vector
bundles over the C∞ manifolds M,M ′, respectively. A differentiable
mapping Φ : E → E′ is said to be an algebraic morphism if Φ satisfies
the following two conditions:

1. Φ is a bundle map over M , i.e., a differentiable map φ : M →M ′

exists making the following diagram commutative

E w
Φ

u

p

E′

u

p′

M w

φ
M ′

2. For every x ∈ M , there exist open coordinate neighborhoods
U,U ′ of x and φ(x), respectively over which E|U and E′|U ′ are trivial,
and vector bundle charts (U ;xj , yi), (U ′;x′j , y

′
i′), 1 ≤ j ≤ n, 1 ≤ i ≤ m,

1 ≤ j′ ≤ n′, 1 ≤ i′ ≤ m′ for E and E′, respectively such that φ(U) ⊆ U ′

and
y′i′(Φ(v)) = Pi′(φ(p(v)))(y1(v), . . . , ym(v)),

1 ≤ i′ ≤ m′, ∀ v ∈ p−1(U),

where Pi′ are polynomials in the fiber variables with coefficients in the
ring of differentiable functions of U ′, i.e., Pi′ ∈ C∞(U ′)[t1, . . . , tm], ti
being m indeterminates.

The morphism Φ is said to be homogeneous of degree (r1, . . . , rm′)
if Pi′ is a homogeneous polynomial of degree ri′ , 1 ≤ i′ ≤ m′. If
all polynomials Pi′ have the same degree r, we shall say that Φ is
homogeneous of degree r. If M = M ′ and φ is the identity map, then
Φ is said to be a vertical morphism. Note that the definition makes
sense as it does not depend on the vector bundle charts chosen. In
fact, if (U ; x̄j , ȳi) is another vector bundle chart of E on U , then there
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exists an invertible m×m matrix (aij(x))m
i,j=1, aij ∈ C∞(U) such that

ȳi =
m∑

j=1

aij(x)yj , 1 ≤ i ≤ m,

and hence if P (ȳ1, . . . , ȳm) is a polynomial of degree r in C∞(U ′)[t1, . . . ,
tm], then

P (φ(x))
( m∑

j=1

a1j(x)yj , . . . ,
m∑

j=1

amj(x)yj

)

is also a polynomial in C∞(U ′)[t1, . . . , tm] of the same degree, and
similarly in changing vector bundle charts in the bundle E′.

Notations 2.3. Given a vector bundle p : E → M , we denote
by Sr(E) the vector bundle of its rth symmetric power and S•(E) =
⊕∞

r=0S
r(E) stands for the direct sum of such bundles endowed with the

standard Z-graded algebra structure.

Proposition 2.4. The vertical homogeneous algebraic morphisms of
degree r from p : E → M into p′ : E′ → M can be identified with the
global sections of the bundle Sr(E∗) ⊗ E′ →M .

Proof. Every section σ : M → Sr(E∗) ⊗ E′ gives rise to a vertical
algebraic morphism of degree r, F (σ) : E → E′ by setting F (σ)(e) =
σ(p(e))(e, . . . , e). Conversely, if Φ : E → E′ is a vertical algebraic
morphism of degree r, taking into account that R[y1, . . . , ym], can be
identified to S•(Rm)∗, for every x ∈M there exists a unique symmetric
mapping F ′(Φ)(x) ∈ Sr(E∗

x) ⊗ E′
x such that

Φ(e) = F ′(Φ)(x)(e, (r. . ., e), ∀ e ∈ Ex,

where Ex = p−1(x). Moreover, it follows from Section 2.1 that the
mapping x 
→ F ′(Φ)(x) is differentiable, thus proving that F (F ′(Φ)) =
Φ. Similarly, we have F ′(F (σ)) = σ.

3. Algebraic vector fields. Let p : E → M be a vector bundle.
We set S•(E∗) = Γ(M,S•(E∗)). We have a natural inclusion of
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S•(E∗) as a subalgebra S•(E∗) ⊂ C∞(E); that is, the sections of the
symmetric algebra of E∗ can be interpreted as differentiable functions
on the manifold E, simply by setting

e ∈ E 
−→ σ(e, (r. . ., e) ∈ R, ∀ e ∈ E, ∀σ ∈ Sr(E∗).

Accordingly, a C∞ vector bundle p : E → M is endowed with a
natural compatible algebraic structure since the elements of S•(E∗)
are understood to be polynomial functions on E. In fact, SpecS•(E∗)
is a C∞(M)-scheme in the sense of [8, I. Definition 2.6.1], see also
[8, I.9.4]. Moreover, from the Stone-Weierstrass-Nachbin theorem (see
[21]) it follows that S•(E∗) is a dense subalgebra of C∞(E) with respect
to the natural C∞ topology in such a way that the ring of the algebraic
functions on E approximates that of differentiable functions.

Definition 3.1. A vector field X ∈ X(E) is said to be algebraic if
it is p-vertical and leaves invariant the subalgebra S•(E∗) ⊂ C∞(E),
i.e., X(S•(E∗)) ⊆ S•(E∗). An algebraic vector field X is +said to be
homogeneous of degree r if X(Sk(E∗)) ⊆ Sk+r−1(E∗), for all k ∈ N.

Remark 3.1.1. It is not difficult to prove that algebraic vector fields
on E can be identified with DerC∞(M)(S•(E∗)).

Proposition 3.2. 1) A vector field X ∈ X(E) is algebraic if and
only if on every vector bundle chart (U ;xj , yi) we have

X|U =
m∑

i=1

Pi
∂

∂yi
, Pi ∈ C∞(U)[y1, . . . , ym].

2) X is homogeneous of degree r if and only if P1, . . . , Pm are
homogeneous polynomials of the same degree r.

3) There is a canonical isomorphism of C∞(M)-modules

λE : S•(E∗)⊗ S1(E) −→ DerC∞(M)(S•(E∗)).
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4) For every x ∈ M , there is a unique algebraic structure [ , ] on
S•(E∗

x)⊗ Ex such that

(∗) [tk ⊗ e, t′k′ ⊗ e′] = (ie′tk) · t′k′ ⊗ e− (iet′k′) · tk ⊗ e′,

for every tk ∈ Sk(E∗
x), t

′
k′ ∈ Sk′

(E∗
x), e, e

′ ∈ Ex with respect to which
λE is an anti-isomorphism, where ie stands for the interior product by
e on the symmetric algebra (cf. [5, III.11.6]).

Proof. Parts 1) and 2) follow from the definition taking into account
that the sheaf of sections of S•(E∗) is quasi-flasque in the sense of [24,
V.6. Appendice]. As for 3), the definition of λE is as follows. A section
of Sr(E∗) ⊗ E can be identified to a symmetric multilinear mapping
f : E ×M ··· ×ME → E (i.e., fx : Ex × · · · × Ex → Ex is a symmetric
multilinear map which smoothly depends on x ∈M), and this mapping
gives rise to a family of one-parameter vertical diffeomorphisms ϕt :
E → E, t ∈ R, defined by ϕt(e) = e+t·f(e, . . . , e). As ϕ0 is the identity
of E, ϕt induces a vertical vector field by simply taking derivatives at
t = 0. Note, however, that ϕs ◦ ϕt �= ϕs+t, in general; in other words,
ϕt is not the flow associated to λE(f). The rest of the properties are
easily checked.

Remark 3.2.1. The first homogeneous component of S•(E∗) ⊗ E
was introduced by Lecomte in studying the Lie algebra of infinitesimal
automorphisms of a vector bundle (see [11] and references therein).

Remark 3.2.2. The bracket defined by the formula (∗) on S•(E∗) ⊗
S1(E) is similar to the Richardson-Nijenhuis bracket (cf. [23, II.c.
Remarque 1], [12]), although our bracket does not take into account
the graded structure of the algebra S•(E∗)⊗ S1(E), as we wish λE to
be an anti-isomorphism.

4. Algebraic distributions.

Notations 4.1. We denote by XM the sheaf of germs of vector fields
on M . Let p : E → M be a fibered manifold, i.e., p is a surjective
submersion. We denote by Xv

E the subsheaf of p-vertical vector fields
in XE .
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Definition 4.2. A vertical distribution over a fibered manifold
p : E → M is a subsheaf of C∞

E -modules D ⊂ Xv
E . A vertical

distribution is said to be locally finitely generated if for every e ∈ E
there exist an open neighborhood U of x = p(e) in M and vector
fields X1, . . . , Xr ∈ Xv

E(p−1(U)) such that D(p−1(U)) is spanned as
a C∞(p−1(U))-module by X1, . . . , Xr. If p : E → M is a vector
bundle and the generators are homogeneous algebraic vector fields
(respectively, homogeneous algebraic vector fields of the same degree),
we say that D is an algebraic distribution (respectively, a homogeneous
algebraic distribution).

Remark 4.2.1. Note that, according to the above definition, a distri-
bution may be singular, i.e., the rank of the vector space De = {Xe |
X ∈ D(V )}, e ∈ V , need not be locally constant. In fact, this is usually
the case for algebraic distributions. The above notion of a distribution
corresponds to that of a generalized distribution given in [13, Appendix
3].

Remark 4.2.2. We shall repeatedly use the fact that, if X1, . . . , Xr

spanD(V ), then they also span D(W ) for each open subset W ⊂ V .
This is an easy consequence of the fact that Xv

E is a quasi-flasque sheaf
(cf. [24]).

Proposition 4.3. For each algebraic distribution D on p : E → M ,
there exists a dense open subset O ⊂ E such that D|O is homogeneous.

Proof. For every x ∈ M there exist an open neighborhood U and
algebraic vector fields X1, . . . , Xr ∈ Xv

E(p−1U) spanning D(p−1U).
Shrinking U , we can also assume that E|U is trivial and U is a
coordinate domain of M . Then, on a vector bundle chart (U ;xj , yi),
1 ≤ j ≤ n, 1 ≤ i ≤ m, we have

Xk =
m∑

i=1

Pik
∂

∂yi
, 1 ≤ k ≤ r,

where Pik ∈ C∞(U)[y1, . . . , ym] are homogeneous polynomials of de-
gree dk = degPik, 1 ≤ i ≤ m. Reordering these vector fields, we can
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assume d1 ≤ · · · ≤ dr. Then the vector fields

X̃k = ydr−dk
1 ·Xk, 1 ≤ k ≤ r,

have the same degree and span D over p−1(U) − {y1 = 0}, which is a
dense open subset of p−1(U).

Definition 4.4. Let p : E → M be a vector bundle. The Liouville
vector field on E is the infinitesimal generator χ ∈ Xv(E) of the one-
parameter group of homotheties, ϕt : E → E, ϕt(e) = exp(t) · e, for all
t ∈ R, for all e ∈ E.

Remark 4.4.1. It is easy to see that, on each vector bundle chart
(U ;xj , yi), 1 ≤ j ≤ n, 1 ≤ i ≤ m, we have

χ|U =
m∑

i=1

yi
∂

∂yi
.

Lemma 4.5. A vector field X ∈ Xv(E) is a homogeneous algebraic
vector field of degree d if and only if

[χ,X] = (d− 1)X.

Proof. If X is a homogeneous algebraic vector field of degree d,
locally we have (cf. Section 3.2) X =

∑m
i=1 Pi(∂/∂yi) with Pi ∈

C∞(U)[y1, . . . , ym], degPi = d, 1 ≤ i ≤ m, and the result follows
taking into account that
[
χ,

∂

∂yi

]
= − ∂

∂yi
and χ(yα1

1 · · · yαm
m ) = (α1 + · · ·+ αm)yα1

1 · · · yαm
m .

Conversely, assume [χ,X] = (d − 1)X. If X =
∑m

i=1 fi(∂/∂yi) is the
local expression ofX on a vector bundle chart, then the above condition
yields χ(fi) = dfi, 1 ≤ i ≤ m, and we can conclude by simply applying
the parametric form of the Euler theorem characterizing homogeneous
polynomials on Rm. In fact, as p−1(U) � U × Rm, for every y ∈ Rm
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we can define a function ϕt : U × R → R, ϕi(x, t) = fi(x, ty), which
satisfies

t
∂ϕi

∂t
(x, t) = χ(fi)(x, ty) = d · ϕi(x, t).

Hence fi(x, ty) = fi(x, y)·td, i.e., fi is a homogeneous function of degree
d on the variables y = (yi, . . . , ym), globally defined on U × Rm, and
accordingly it is an algebraic form of degree d in C∞(U)[y1, . . . , ym].

Theorem 4.6. Let D be a vertical distribution over a vector bundle
p : E → M , and let X1, . . . , Xr be p-vertical vector fields on p−1(U)
spanning D|p−1(U), and assume that E|U is trivial. Then a matrix
C ∈ GL(r;C∞(p−1U)), C = (cij)r

i,j=1, exists so that the vector fields

Yj =
r∑

i=1

cijXi, 1 ≤ j ≤ r,

are homogeneous algebraic of degree d, with (cij) = C−1, if and only if
an r × r matrix A = (aij), aij ∈ C∞(p−1U), exists such that

1. A(0x) = (d − 1)I, for all x ∈ U , where I stands for the r × r
identity matrix,

2. [χ,Xj ] =
∑r

i=1 aijXi, 1 ≤ j ≤ r.

Proof. Assume that C exists. Then we have

Xj =
r∑

i=1

cijYi, 1 ≤ j ≤ r.

If we compute the bracket of Xj with the vector field χ, from the
previous lemma we obtain

[χ,Xj ] =
r∑

i=1

χ(cij)Yi +
r∑

i=1

cij [χ, Yi]

=
r∑

i=1

χ(cij)Yi +
r∑

i=1

(d− 1)cijYi

=
r∑

i,k=1

χ(cij)ckiXk + (d− 1)Xj ,
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and setting A = C−1 ·χ(C)+(d−1)I, where χ(C) stands for the matrix
(χ(cj))r

i,j=1, taking into account that χ(f)(0x) = 0, for all f ∈ C∞(E)
and for all x ∈M , we can conclude.

Conversely, assume that A exists. Set B = A−(d−1)I, and let us fix
a point e ∈ p−1U . The mapping (t, e) 
→ B(te)/t is C∞ on R × p−1U
as B ∈ C∞(p−1U) and B(0x) = 0, for all x ∈M . Hence, the following
r × r matrix valued ordinary differential system

ϕ′(t) = ϕ(t) · B(te)
t

,

is not singular at t = 0. The theorems of existence, uniqueness and
differentiable dependence on parameters for linear systems (e.g., see [7,
II.2.2, II.3.6, II.3.7]) thus ensure the existence of a unique differentiable
mapping Φ : R × p−1U → GL(r;R) such that

∂Φ
∂t

(t, e) = Φ(t, e) · B(te)
t

,(i)

Φ(0, e) = I, ∀ e ∈ p−1U.(ii)

The matrix Φ(t, e) is invertible for all t, e since we have (cf. [7, II.
Proposition 2.3.1])

det (Φ(t, e)) = exp
∫ t

0

trace
(
B(τe)
τ

)
dτ,

and the righthand side of the above equation never vanishes.

Set C(e) = Φ(1, e) for all e ∈ p−1U . Let us consider the map
Φu(t, e) = Φ(tu, u−1e), u ∈ R∗. It is easy to check that the matrix
Φu verifies (i) (ii). Thus Φu = Φ by virtue of the uniqueness of the
solution. If we take the derivative with respect to u in the vector bundle
chart (U ;xj , yi), the chain rule yields

∂Φ
∂t

(tu, u−1e)t−
m∑

i=1

∂Φ
∂yi

(tu, u−1e) · yi · u−2 = 0.

Letting u = 1, we obtain t(∂Φ/∂t) = χ(Φ), which implies χ(Φ) = Φ ·B.
In particular, χ(C) = C ·B. Finally, we set Yj =

∑r
i=1 c

ijXi, 1 ≤ j ≤ r.
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Hence,

[χ, Yj ] =
r∑

i=1

χ(cij)Xi +
r∑

i,k=1

cijakiXk

=
r∑

i,l=1

(cliχ(cij) + clkakic
ij)Yl,

and computing into the expression of the matrix D = C ·χ(C−1) +C ·
A · C−1, we have

D = C · (−C−1 · χ(C) · C−1) + C · (B + (d− 1)I) · C−1

= −C ·B · C−1 + C ·B · C−1 + (d− 1)I
= (d− 1)I.

By applying Lemma 4.5, it follows that the vector fields Yj , 1 ≤ j ≤ r,
are degree-d homogeneous algebraic vector fields, thus finishing the
proof.

Remark 4.6.1. As an easy consequence of the above theorem, we can
conclude that if f is a first integral of an algebraic distribution D, then
χ(f) also is a first integral of D, but unfortunately this method does
not provide new algebraic first integral as we have χ(f) = d · f , if f is
a homogeneous polynomial of degree d.

Remark 4.6.2. For rank-1 distributions, the condition 1 in the above
theorem can be weakened. More precisely,

Proposition 4.7. Let X be a p-vertical vector field on p : E → M
such that supportX = E. Furthermore, assume that there exists a
function f ∈ C∞(E) such that [χ,M ] = fX. If M is connected, then
there exist an integer d ≥ 0 and an invertible function g ∈ C∞(E) such
that

1. f(0x) = d− 1 for all x ∈M ,

2. g−1X is a homogeneous algebraic vector field of degree d.

Proof. Let X =
∑m

i=1 hi(∂/∂yi) be the local expression of X in the
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vector bundle chart (U ;xj , yi). Then we have

[χ,X] =
m∑

i=1

χ(hi)
∂

∂yi
−

m∑
i=1

hi
∂

∂yi
,

which implies χ(hi) = (f +1)hi, 1 ≤ i ≤ m. Let k = f +1. Let us fix a
vector e ∈ p−1U , x = p(e). If we consider the function ϕi(t) = hi(te),
t ∈ R, by using the chain rule we obtain

(∗∗) ϕ′
i(t) =

1
t

m∑
s=1

∂hi

∂ys
(te) · tys = k(te)

ϕi(t)
t

, ∀ t ∈ R+.

Then it is not difficult to prove that the function

ϕi(t) = λi · tk(0x) exp
( ∫ t

0

k(τe)− k(0x)
τ

dτ

)
,

with

λi =
hi(e)
g(e)

, g(e) = exp
( ∫ 1

0

k(τe)− k(0x)
τ

dτ

)
,

is the unique solution of the differential equation (∗∗) with initial value
ϕi(1) = hi(e). Suppose that hi(e) �= 0. As

(†) tk(0x) = ϕi(t) · λ−1
i exp

(
−

∫ t

0

k(τe) − k(0x)
τ

dτ

)
, ∀ t > 0,

and ϕi(t) = hi(te), k(te) are C∞ on R, the limits of all derivatives
dr(tk(0x))/dtr must exist as t → 0+. Hence d = k(0x) ≥ 0. Let
r = [d] + 1, and suppose that d is not an integer. Taking derivatives r
times in (†) and letting t → 0+, it follows that the lefthand side goes
to infinity, which is not possible. Hence, d ∈ Z and f(0x) = d − 1
on a dense open subset of U , and by virtue of our hypotheses we
thus obtain condition 1 in the statement. Consider the functions
Pi(e) = hi(e)/g(e), 1 ≤ i ≤ m. Computing Pi(te), we have

Pi(te) =
hi(te)
g(te)

= ϕi(t) exp
(
−

∫ t

0

k(τe)− k(0x)
τ

dτ

)

= λi · td = tdPi(e),
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thus proving that Pi is a homogeneous function in the variables
y1, . . . , ym of degree d, globally defined. Hence Pi, 1 ≤ i ≤ m, are
homogeneous polynomials in C∞(E)[y1, . . . , ym] of degree d, thus fin-
ishing the proof.

5. Examples and applications.

Example 5.1. Let f1, . . . , fr be real analytic functions on Rm, and
let D ⊂ XRm be the involutive distribution of all vector fields X in Rm

such that Xfi = 0, 1 ≤ i ≤ r. The distribution D is finitely generated.
In fact, let ORm be the sheaf of germs of real analytic functions, and
let Xω

Rm be the sheaf of germs of analytic vector fields. We have an
exact sequence of sheaves of ORm-modules

0 −→ K −→ Xω
Rm

fω

−→ (ORm)r,

where K = ker fω and fω(X) = (Xf1, . . . , Xfr). From the Noetherian
properties of stalks of ORm and Xω

Rm (e.g., see [24, II. Théorème 1.5]
and remark that Xω

Rm
∼= (ORm)m) it follows that K is a finitely gener-

ated sheaf of ORm-modules. Moreover, we have a natural isomorphism
of sheaves of C∞

Rm-modules, C∞
Rm ⊗Xω

Rm
∼= XRm . Tensoring the above

exact sequence over C∞
Rm we obtain an exact sequence of sheaves of

C∞
Rm-modules,

0 −→ C∞
Rm ⊗ORm K −→ XRm

f∞
−→ (C∞

Rm)r,

where f∞ is given by f∞(X) = (Xf1, . . . , Xfr) for every X ∈
X(Rm), as follows from Malgrange’s division theorem taking into
account that ORm ↪→ C∞

Rm is a flat ring extension (see [24, VI.
Corollaire 1.3]). Accordingly, from the very definition of D, we have a
canonical isomorphism D ∼= C∞

Rm⊗ORm K. Hence D is locally generated
by a number of analytic vector fields and, recalling that D is a quasi-
flasque sheaf by using [24, V. Proposition 6.4] and a partition of unity,
we conclude that D is finitely generated.

Moreover, if f1, . . . , fr are homogeneous polynomials of common
degree d, then it can be proved that D is a homogeneous algebraic
distribution of degree (d−1)r, where we further assume that at least one
of the r × r determinants of the Jacobian matrix (∂fi/∂yj), 1 ≤ i ≤ r,
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1 ≤ j ≤ m, does not vanish identically. We also remark that the above
result can be generalized to the vertical bundle of an arbitrary analytic
morphism between Cω manifolds.

Next we confine ourselves to the case of homogeneous algebraic
distributions of degree 1, which correspond to linear representations
of Lie group families. Precisely,

Definition 5.2. A family of Lie groups on a manifold M is a
surjective submersion π : G → M endowed with two differentiable
mappings µ : G × G → G, ι : G → G, such that for every x ∈ M the
mappings µx : Gx ×Gx → Gx, ιx : Gx → Gx induced on the fiber, define
on Gx a structure of Lie group.

Definition 5.3. An operation of a family of Lie groups π : G → M
on a fibered manifold p : E →M is a differentiable map λ : G ×M E →
E such that

1. λ(1x, y) = y, for all x ∈M , for all y ∈ π−1(x),

2. λ(g′, λ(g′′, y)) = λ(g′, g′′, y), for all x ∈M , for all g′, g′′ ∈ π−1(x),
for all y ∈ p−1(x).

Example 5.4. Let us consider an operation of a family of Lie groups
π : G → M on a fibered manifold p : E → M . A vector bundle of Lie
algebras π̄ : G →M is defined by setting π̄−1(x) = Gx = Lie algebra of
π−1(x) = Gx. Each section ξ : U → G of π̄ induces a p-vertical vector
field ξ̃ ∈ Xv

E(p−1(U)) whose flow is given by

τt(e) = λ(exp(tξ(p(e))), e), ∀ e ∈ p−1(U).

Then the given operation λ induces a p-vertical distribution D on E
defined as follows. For every open subset V ⊆ E, D(V ) is the C∞(V )-
module spanned by the vector fields ξ̃, where ξ ∈ Γ(p(V ),G). Note that
D is involutive as we have [ξ1, ξ2]∼ = [ξ̃1, ξ̃2] for every ξ1, ξ2 ∈ Γ(G).

Example 5.5. In the previous example assume that p : E →M is a
vector bundle and also that, for every x ∈M , the operation induced on
the fiber λx : Gx × Ex → Ex is a linear representation. Then for every
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ξ ∈ Γ(G), we have [χ, ξ̃] = 0, and hence the associated distribution is
algebraic of degree 1. In fact, ξ̃ is linear as its flow is a one-parameter
group of linear automorphisms of the vector bundle E.

Lemma 5.6. With the above hypotheses and notations, let D be the
p-vertical distribution on E defined by λ : G ×M E → E. Assume that
on an open subset U ⊆M the following holds true

dimGx = max
e∈Ex

(rkDe), ∀x ∈ U.

If ξ1, . . . , ξr is a basis of sections of π̄ : G →M over U , then ξ̃1, . . . , ξ̃r
are linearly independent on a dense open subset in p−1(U).

Proof. According to our assumptions, we have

r = dimGx = max
e∈Ex

(rkDe), ∀x ∈ U.

We set C = {e ∈ p−1(U) | rkDe < r}. It follows that a vector
e ∈ p−1(U) belongs to C if and only if ξ̃1(e) ∧ · · · ∧ ξ̃r(e) = 0. Hence,
C is a closed subset in p−1(U) and, for every x ∈ U , the fiber Cx is
an algebraic submanifold in Ex. Consequently, we only need to prove
that Cx �= Ex, for all x ∈ U . In fact, if e ∈ Ex is a vector such that
dimGx = rkDe (this vector exists by virtue of the hypothesis), then
e /∈ Cx.

Proposition 5.7. If λ : G ×M E → E is a linear representation of
π : G →M on a vector bundle p : E →M and

dimGx = max
e∈Ex

(rkDe) = r, ∀x ∈M,

then a linear vector field X ∈ Xv(E) belongs to the distribution D
induced from λ if and only if a vector field ξ ∈ Γ(M,G) exists such that
X = ξ̃.

Proof. If X = ξ̃, then X is linear (see Example 5.5) and trivially
X ∈ D. Conversely, assume X is a linear vector field of D. Locally we
have X =

∑r
j=1 fj ξ̃j , where ξ1, . . . , ξr is a basis of Γ(U,G). Hence, as
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X is linear, we have 0 = [χ,X] =
∑r

j=1
χ(fj)ξ̃j (cf. Lemma 4.5 and

Example 5.5) and according to Lemma 5.5, the functions χ(fj) vanish
on an open dense subset and thus they identically vanish. Therefore,
every fj is constant.

Proposition 5.8. Let D be a homogeneous algebraic involutive
distribution of degree 1 over a vector bundle p : E →M . Then a family
of Lie groups π : G →M and a linear representation λ : G ×M E → E
exist such that D is the distribution induced by λ.

Proof. Let π : Aut (E) → M be the family of Lie groups with fibers
π−1(x) = Aut (Ex), and let π̄ : End (E) →M be the associated vector
bundle of Lie algebras (π̄−1(x) = End (Ex)). From Proposition 3.2 3)
we have a one-to-one correspondence between linear vector fields on
E and sections of S1(E∗) ⊗ E = E∗ ⊗ E = End (E). Consider the
subset Gx ⊆ End (Ex) of all linear vector fields X ∈ D defined on
p−1(U) where U is an open neighborhood of x. As D is an involutive
distribution, it is easy to check that Gx is a Lie subalgebra of End (Ex).
Let Gx be the connected Lie subgroup of Aut (Ex) corresponding to
Gx ⊆ End (Ex). The space G = ∪Gx ⊆ Aut (E), endowed with the
standard C∞ structure, is a Lie group family with a natural linear
representation on E which induces the distribution D.

Families of Lie groups appear in a natural way in the framework of
differential geometry and field theory. Let us describe some examples
of such a structure which are closely related to our present work.

Example 5.9. Each vector bundle p : E → M defines a Lie
group fiber bundle, precisely the bundle of its fibered automorphisms
π : Aut (E) → M whose standard fiber is Aut (Ex) ∼= GL(m;R),
m = rkE. Several Lie group subfamilies in Aut (E) are also interesting
when different geometric structures on E are considered. Also note
that Aut (E) admits a natural linear representation on E.

Example 5.10. Given a manifold M , let πr : Gr(M) → M be the
bundle of Lie groups whose fiber over x ∈ M is the group of r-jets
at x of differentiable mappings f : M → M such that f(x) = x and
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f∗ : TxM → TxM is an isomorphism. Then, Gr(M) is a Lie group
fiber bundle whose standard fiber is Gr(n), n = dimM , the rth order
linear group (see [10, 12.6]). Let p : M →M be the bundle of metrics
of a prescribed signature. An operation of the Lie group fiber bundle
Gr+1(M) on Jr(M) is defined by setting

jr+1
x f · jr

xg = jr
f(x)(f̄ ◦ g ◦ f−1),

for every jr+1
x f ∈ Gr+1(M) and every local section g of p : M → M ,

where f̄ : M → M stands for the natural lifting of f to the metric
bundle, i.e., f̄ · gx = (f−1)∗gx for gx ∈ Mx = p−1(x). Note that
M is a convex open subset in S2T ∗(M) and the above operation is the
restriction of the natural linear representation of πr+1 : Gr+1(M) →M
on pr : Jr(S2T ∗(M)) → M . It can be proved (cf. [20]) that the
determination of the rth order Diff (M)-invariant Lagrangians on the
metric bundle is reduced to calculate C∞ functions on the r-jet bundle
which are invariant under the above operation of the (r + 1)th order
linear group fiber bundle.

Example 5.11. The basic groups in the field theory are the group of
diffeomorphisms of a manifold and the group of vertical automorphisms
of a principal bundle. The previous example shows how Diff (M)
gives rise to natural operations of a family of Lie groups. Next we
consider the gauge groups. Let π : P → M be a principal bundle
with structure group G0, and let us consider an operation of G0 on
another Lie group F by acting on the left by automorphisms of F i.e.,
g · (f1f2) = (g · f1)(g · f2) for all g ∈ G0 for all f1, f2 ∈ F . Then the
associated bundle πF : G = P ×G0 F → M is endowed with a natural
structure of Lie group fiber bundle, uniquely determined by imposing
[u, f1] · [u, f2] = [u, f1f2] for every u ∈ P , f1, f2 ∈ F , where [u, f ] stands
for the coset defined by the pair (u, f) ∈ P×F in the quotient manifold
G = (P × F )/G0.

Example 5.12. The above situation is obtained when G0 acts onto
itself by conjugation, i.e., g · f = gfg−1 for all f, g ∈ G0. In this
case the associated bundle is called the adjoint bundle of P and is
denoted by πG0 : AdP → M . Its sections can be identified with
the gauge group, Γ(M,AdP ) = GauP . Similarly, if we consider
the adjoint representation of G0 onto its Lie algebra g0, then the
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associated fiber bundle π̄ = πg0 : G = adP = P ×G0 g0 → M is
endowed with a natural structure of Lie algebra fiber bundle given
by [[u, ξ1], [u, ξ2]] = [u, [ξ1, ξ2]] for u ∈ P , ξ1, ξ2 ∈ g0. With such a
structure, G = adP can be identified with the Lie algebra bundle of
G = AdP in the sense of Example 5.4. Also note that the global
sections of π̄ can be identified with the gauge algebra of P (see [4],
[9]). Let p : C(P ) → M be the bundle of connections on P (here a
connection is understood to be a splitting of the Atiyah sequence; cf. [1],
[17]). According to Utiyama’s theorem (see [3], [4]), the determination
of the gauge invariant Lagrangians on J1(C(P )) can be reduced to
calculate C∞ functions on the “curvature bundle,” ∧2T ∗(M) ⊗ adP
which are invariant under the natural representation of the adjoint
bundle πG0 : AdP →M on ∧2T ∗(M)⊗ ad (P ).

REFERENCES

1. M.F Atiyah, Complex analytic connections in fibre bundles, Trans. Amer.
Math. Soc. 85 (1957), 181 207.

2. , Geometry and physics: Where are we going?, Lecture Notes in Pure.
and Appl. Math. 184 (1997), 1 7.

3. D. Betounes, The geometry of gauge-particle field interaction: A generalization
of Utiyama’s theorem, J. Geom. Phys. 6 (1989), 107 125.

4. D. Bleecker, Gauge theory and variational principles, Addison-Wesley Publ.
Co., Inc., Reading, MA, 1981.
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