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FINITE ELEMENT APPROXIMATION WITH
QUADRATURE TO A TIME DEPENDENT
PARABOLIC INTEGRO-DIFFERENTIAL

EQUATION WITH NONSMOOTH INITIAL DATA

AMIYA K. PANI AND RAJEN K. SINHA

ABSTRACT. In this paper we analyze the effect of numeri-
cal quadrature in the finite element analysis for a time depen-
dent parabolic integro-differential equation with nonsmooth
initial data. Both semi-discrete and fully discrete schemes
are discussed and optimal order error estimates are derived in
L∞(L2) and L∞(H1) norms using energy method when the
initial function is only in H1

0 . Further, quasi-optimal maxi-
mum norm estimate is shown to hold for rough initial data.

1. Introduction. In this paper we consider a finite element
Galerkin method with spatial quadrature for the following time de-
pendent parabaolic integro-differential equation

(1.1)
ut +A(t)u =

∫ t

0

B(t, s)u(s) ds in Ω× J,
u = 0 on ∂Ω× J,

u(·, 0) = u0 in Ω,

where Ω is a convex bounded domain in R2 with boundary ∂Ω, u(x, t)
is a real valued function in R2 and J denotes the time interval (0, T ]
with T < ∞. Here A(t) is a time dependent, positive definite, self-
adjoint and uniformly elliptic second order partial differential operator
and B(t, s) is a general second order partial differential operator, both
with smooth coefficients.

Let H1
0 (Ω) = {φ ∈ H1(Ω) : φ = 0 on ∂Ω}, and let A(t; ·, ·) and

B(t, s; ·, ·) be the bilinear forms associated with the operators A and
B, respectively. The weak formulation of the problem (1.1) is defined

Received by the editors on June 18, 1997 and in revised form on September 28,
1998.

Copyright c©2001 Rocky Mountain Mathematics Consortium

35



36 A.K. PANI AND R.K. SINHA

as follows. Find u : J̄ → H1
0 (Ω) such that

(1.2)
(ut, φ) +A(t;u, φ) =

∫ t

0

B(t, s;u(s), φ) ds

∀φ ∈ H1
0 (Ω), t ∈ J,

u(0) = u0.

For the purpose of numerical solution we shall assume that we are
given a family of subspaces {Sh}, 0 < h < 1, of H1

0 (Ω) consisting of
continuous, piecewise linear functions on a quasi-uniform triangulation
Fh = {τh} of Ω with its boundary vertices on ∂Ω and which vanish
outside the polygonal domain Ωh ⊂ Ω determined by Fh. Further, the
finite dimensional subspaces {Sh} are such that for r = {1, 2},

(1.3)
inf

χ∈Sh

{‖φ− χ‖+ h‖φ− χ‖1} ≤ Chr‖φ‖r,

φ ∈ H1
0 (Ω) ∩Hr(Ω).

Throughout this paper we shall work on the standard Sobolev spaces
H1

0 (Ω) and Hs(Ω) with norm ‖ · ‖1 and ‖ · ‖s, respectively. We shall
use the notations ‖ · ‖ and ‖ · ‖0,p to denote the norm on L2(Ω) and
Lp(Ω), p �= 2, respectively. The norm of the Sobolev space W s,∞(Ω) is
denoted by ‖ · ‖s,∞, and that of L∞(Ω) by ‖ · ‖∞.
We recall that the standard semi-discrete finite element approxima-

tion ūh of u is a function ūh : J̄ → Sh satisfying

(1.4)
(ūht, χ) +A(t; ūh, χ) =

∫ t

0

B(t, s; ūh(s), χ) ds

∀χ ∈Sh, t ∈ J,
ūh(0) = ūh,0,

where ūh,0 ∈ Sh is a suitable approximation to u0.

In practice, the spatial integrals appearing in (1.4) are evaluated
numerically by using some quadrature rules. In this paper we shall
apply the following numerical quadrature to approximate the inner
products and the bilinear forms in (1.4). Let pτh,j , j = 1, 2, 3, be
the vertices of a triangle τh ∈ Fh. Define an approximation of the
inner product in Sh and induced norm by

(1.5) (φ, ψ)h =
∑

τh∈Fh

1
3
area (τh)

3∑
j=1

φ(pτh,j)ψ(pτh,j),



FINITE ELEMENT APPROXIMATION 37

and
‖φ‖h = (φ, φ)

1/2
h ,

respectively. For the purpose of applying quadrature rules to all the
terms in (1.4), we set Ah(t; ·, ·) and Bh(t, s; ·, ·) as the bilinear forms
with quadrature corresponding to the operators A and B, respectively.
Therefore, instead of (1.4), we consider the following semi-discrete finite
element method with quadrature: Find uh(t) ∈ Sh such that

(1.6)
(uht, χ)h +Ah(t;uh, χ) =

∫ t

0

Bh(t, s;uh(s), χ) ds

∀χ ∈Sh, t ∈ J,
uh(0) = Phu0.

Here Phu0 is the L2-projection of u0 onto Sh defined by

(1.7) (Phu0, χ) = (u0, χ), χ ∈ Sh.

Along with the semi-discrete approximation we shall also discuss the
time discretization of (1.6) based on the backward Euler method. Let
k > 0 be the time step, tn = nk with T = Nk, and let Un = U(tn) be
an approximation of u(tn). Then the discrete time Euler scheme is to
seek a function Un, n = 1, 2, . . . , N , satisfying

(1.8)

(∂̄tU
n, χ)h +Ah(tn;Un, χ) = k

n−1∑
j=0

Bh(tn, tj ;U j , χ)

∀χ ∈ Sh,

U0 = Phu0,

where ∂̄tU
n = k−1(Un − Un−1) and the integral term in (1.6) is

approximated by the rectangle rule

∫ tn

0

φ(s) ds ≈ k
n−1∑
j=0

φ(tj), 0 < tn ≤ T.

Earlier, Raviart [13] first studied the effect of quadrature on the finite
element solution to a parabolic differential equation, and the analysis
for nonlinear parabolic equation with quadrature was discussed in Chou
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and Li [4] and Nie and Thomée [9]. For the heat equation in two
space dimensions, Chen and Thomée [3] considered both semi-discrete
and fully discrete lumped mass Galerkin methods and obtained error
estimates of optimal order in L2 and of almost optimal in L∞ when
the initial data is in H2(Ω)∩H1

0 (Ω). Subsequently, Thomée et al. [16]
have obtained improved estimates with initial data only inH1

0 (Ω) using
semi-group theoretic arguments.

Recently, Pani and Peterson [10] extended the results of Chen and
Thomée [3] to a time independent parabolic integro-differential equa-
tion, A(t) ≡ A, with quadrature formula applied to all the terms ap-
pearing in the Galerkin formulation and obtained optimal error esti-
mates for both smooth and nonsmooth initial data. For the nonsmooth
case, it is assumed that the initial function u0 ∈ H2(Ω) ∩ H1

0 (Ω). In
addition, almost optimal pointwise estimates are shown to hold under
strong compatibility assumptions on u0, i.e., Au0 = 0 on ∂Ω (see [10],
p. 1095, last paragraph).

In the present paper an attempt has been made to improve upon
the results of Pani and Peterson [10] by requiring less regularity as-
sumptions on the initial function u0. More precisely, optimal estimates
in L∞(H1), L∞(L2) norms and quasi-optimal estimate in L∞(L∞)
norm are derived using energy arguments, when the initial function
u0 ∈ H1

0 (Ω). However, for optimal estimates, the initial condition is
implemented as an L2-projection of u0. Further, some results related to
the Ritz-Volterra projection are also explored, which are subsequently
used to obtain quasi-optimal L∞-error estimates. Compared to Pani
and Peterson [10], it is possible to avoid the stringent compatibility con-
dition for maximum norm estimate using modified pointwise estimates
of Ritz-Volterra projection and an auxiliary estimate ‖ ∫ t

0
u(s) ds‖3 (see

(4.8) in Theorem 4.2).

The finite element error analysis without quadrature (i.e., in the case
of exact integration for the parabolic integro-differential equation with
nonsmooth initial data can be found in Crouzeix and Thomée [5], when
B is of lower order. For an arbitrary second order differential operator
B and time dependent A, Pani and Sinha [11] proved an optimal L2-
estimate using energy arguments, when the initial data are in L2(Ω).
Earlier, Thomée and Zhang [17] discussed the error analysis for time
independent A with u0 ∈ L2 using the semi-group theoretic approach.
The numerical solution by means of finite element methods has been
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investigated by Le Roux and Thomée [6], Cannon and Lin [1, 2], Lin
et al. [7], Pani et al. [12] and Zhang [18].

The plan of this paper is as follows. Section 2 contains some
preliminary materials and a prior estimates for u and uh. Ritz-
Volterra projection and related estimates are derived in Section 3.
Section 4 is devoted to semi-discrete error analysis for nonsmooth initial
data. Finally, Section 5 deals with the discrete-in-time backward Euler
method and optimal error estimates are obtained for rough data.

2. Preliminaries. In this section we state some basic results
without proof. To begin with, we define the quadrature error

q(φ)(ψ) = (φ, ψ)h − (φ, ψ),
where (·, ·)h is given by (1.5). Similarly, define the quadrature error
associated with Ah and Bh by qA(φ)(ψ) and qB(φ)(ψ), respectively, in
the obvious way. Sometimes we shall use ‖φ‖1,h as

‖φ‖1,h = (‖φ‖2
h + ‖∇φ‖2

h)
1/2.

In the rest of the paper C and c denote generic positive constants
independent of h and k but may depend on T and are not necessarily
the same at each occurrence.

The following lemmas will be frequently used in our analysis. For a
proof, see [3] and [10].

Lemma 2.1. For φ, χ ∈ Sh

|q(φ)(χ)| ≤ Ch2‖φ‖1‖χ‖1.

The above inequality also holds if q is replaced by either qA or qB.

Lemma 2.2. On Sh the norms ‖·‖ and ‖·‖h are equivalent. Likewise,
for ‖ · ‖1 and ‖ · ‖1,h. For φ, ψ ∈ Sh,

|Bh(φ, ψ)|, |Ah(t;φ, ψ)| ≤ C‖φ‖1‖ψ‖1,

and
c‖φ‖2

1 ≤ Ah(t;φ, φ),
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provided that h is sufficiently small.

We shall also use the Ritz projection Rh = Rh(t) : H1
0 (Ω) → Sh

associated with the bilinear form A(t; ·, ·) which is defined by

(2.1) A(t;Rhφ− φ, χ) = 0, χ ∈ Sh, t ∈ J̄ .

It is now quite standard to prove that, for 2 ≤ p < ∞ and r = {1, 2},
Rhu satisfies

(2.2)
‖Rhφ− φ‖0,p + h‖Rhφ− φ‖1,p ≤ Cph

r‖φ‖r,p,

φ ∈ H1
0 (Ω) ∩W r,p(Ω).

Let Ihv be the linear interpolant of v with respect to the vertices of
Fh. Then, for v ∈W r,p(Ω) ∩H1

0 (Ω), r = {1, 2}, we have

(2.3) ‖Ihv − v‖0,p + h‖Ihv − v‖1,p ≤ Chr‖v‖r,p, 2 ≤ p ≤ ∞.

Further, for χ ∈ Sh, the following inverse estimates

(2.4)
‖χ‖i,p ≤ Ch−2(q−1−p−1)−(i−j)‖χ‖j,q,

1 ≤ q ≤ p ≤ ∞, 0 ≤ j ≤ i ≤ 1,
and Sobolev imbedding result

(2.5) ‖χ‖∞ ≤ C| log h|1/2‖χ‖1

hold.

In the rest of this section we shall discuss some a priori estimates for
u and its semi-discrete solution uh. It is easy to modify Theorem 4 of
Pani and Peterson [10] to obtain the following a priori bounds for u.
Therefore, we state the result in terms of a theorem without proof.

Theorem 2.1. Let u be the exact solution of (1.1). Further, let
0 ≤ i ≤ 4, 0 ≤ j ≤ 3 and 0 ≤ k ≤ 2. For t ∈ (0, T ], the following
estimates hold.

(a) If 0 ≤ k + 2j − i ≤ 1, then

ti‖Dj
tu(t)‖2

k ≤ C(T )‖u0‖2
k+2j−i,
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(b) If 0 ≤ k + 2j − i− 1 ≤ 1, then

∫ t

0

si‖Dj
tu(s)‖2

k ds ≤ C(T )‖u0‖2
k+2j−i−1,

where Dj
t = (dj/dtj).

Below we shall prove the stability estimates for uh which will be used
in Section 5.

Lemma 2.3. Assume that uh(0) = Phu0. Then, for u0 ∈ H1
0 (Ω),

we have
‖uh(0)‖1 ≤ C‖u0‖1.

Proof. Note that

(2.6)
‖uh(0)‖1 = ‖Phu0‖1

≤ Ch−1‖Phu0 − Ĩhu0‖+ ‖Ĩhu0 − u0‖1 + ‖u0‖1,

where Ĩhu0 is a local averaging interpolation operator satisfying, [15,
p. 491]

‖Ĩhu0 − u0‖+ h‖Ĩhu0 − u0‖1 ≤ Ch‖u0‖1.

Since ‖Phu0 − Ĩhu0‖ ≤ ‖Phu0 − u0‖ + ‖u0 − Ĩhu0‖ ≤ Ch‖u0‖1, the
desired estimate follows from (2.6), and this completes the proof.

Finally, using the standard energy arguments and Lemma 2.3, we
obtain the following stability estimates.

Theorem 2.2. Let uh be the finite element solution of (1.6). Further,
let 0 ≤ i ≤ 3, 0 ≤ j ≤ 2 and 0 ≤ k ≤ 1. Then, for u0 ∈ H1

0 (Ω) and
t ∈ (0, T ], the following stability results hold:

(a) If 0 ≤ k + 2j − i ≤ 1, then

ti‖Dj
tuh(t)‖2

k ≤ C(T )‖u0‖2
k+2j−i.



42 A.K. PANI AND R.K. SINHA

(b) If 0 ≤ k + 2j − i− 1 ≤ 1, then

∫ t

0

si‖Dj
tuh(s)‖2

k ds ≤ C(T )‖u0‖2
k+2j−i−1.

3. Ritz-Volterra projection and related estimates. Following
Lin, Thomée and Wahlbin [7] (see also [1] [2]), we now define the Ritz-
Volterra projection Wh =Wh(t) : H1

0 (Ω)→ Sh by

(3.1)
A(t; (Whu− u)(t), χ) =

∫ t

0

B(t, s; (Whu− u)(s), χ) ds
∀χ ∈ Sh, t ∈ J̄ .

Let ρ =Whu− u. In this section we shall modify the arguments of Lin
et al. [7] to derive some estimates of ρ in Lp-norm. This, in return, will
be used to prove pointwise error estimates when the initial function
u0 ∈ H1

0 (Ω). For the remaining part of this paper we shall use the
following notation

φ̂(t) =
∫ t

0

φ(s) ds.

Integrating (3.1) with respect to time t, we obtain

(3.2)
A(t; ρ̂(t), χ) =

∫ t

0

As(s; ρ̂(s), χ) ds+
∫ t

0

B(s, s; ρ̂(s), χ) ds

−
∫ t

0

∫ s

0

Bτ (s, τ ; ρ̂(τ ), χ) dτ ds, χ ∈ Sh.

Based on the analysis of Lin et al. [7, Theorem 2.1], it is easy to obtain
the following estimates for ρ̂.

Lemma 3.1. Let ρ̂ satisfy (3.2) and 2 ≤ p < ∞. Then a constant
Cp exists such that, for r = {1, 2}, we have

‖ρ̂(t)‖0,p + h‖ρ̂(t)‖1,p ≤ Cph
r

[
‖û(t)‖r,p +

∫ t

0

‖û(s)‖r,p ds

]
.



FINITE ELEMENT APPROXIMATION 43

Below we shall modify the arguments in Lin et al. [7] to obtain Lp-
estimates for ρ(t) and ρt(t).

Lemma 3.2. Let ρ satisfy (3.1) and 2 ≤ p < ∞. Then a constant
Cp exists such that, for r = {1, 2}, we have

‖ρ(t)‖0,p + h‖ρ(t)‖1,p ≤ Cph
r

[
‖u(t)‖r,p + ‖û(t)‖r,p +

∫ t

0

‖û(s)‖r,p ds

]
,

and

‖ρt(t)‖0,p + h‖ρt(t)‖1,p

≤ Cph
r

[
‖u(t)‖r,p + ‖ut(t)‖r,p + ‖û(t)‖r,p +

∫ t

0

‖û(s)‖r,p ds

]
.

Proof. Let ρxj
, 1 ≤ j ≤ 2, be the jth component of ∇ρ in Lp(Ω).

With p−1 + q−1 = 1, we write

‖ρxj
‖0,p = sup{(ρxj

, φ∗);φ∗ ∈ C∞
0 (Ω), ‖φ∗‖0,q = 1}.

Let ψ∗ be the solution of

A(t)ψ∗ = −φ∗xj
in Ω,

ψ∗ = 0 on ∂Ω.

The following elliptic regularity estimate

(3.3) ‖ψ∗‖1,q ≤ Cp‖φ∗‖0,q

holds, see Schechter [14]. Using the definition of ρ, i.e., the equation
(3.1), it follows that

(ρxj
, φ∗) = −(ρ, φ∗xj

) = A(t; ρ, ψ∗)

= A(t; ρ, ψ∗ −Rhψ
∗) +

∫ t

0

B(t, s; ρ(s), Rhψ
∗) ds

= I1 + I2.
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For I1, using (2.1) and (2.2), we obtain

|I1| = |A(t;Rhu−u, ψ∗)| = |((Rhu−u)xj
, φ∗)| ≤ Cph

r−1‖u‖r,p‖φ∗‖0,q.

Integrating by parts with respect to s, we note that

I2 = B(t, t; ρ̂(t), Rhψ
∗)−

∫ t

0

Bs(t, s; ρ̂(s), Rhψ
∗) ds

= B(t, t; ρ̂(t), Rhψ
∗ − ψ∗) +B(t, t; ρ̂(t), ψ∗)

−
∫ t

0

Bs(t, s; ρ̂(s), Rhψ
∗ − ψ∗) ds

−
∫ t

0

Bs(t, s; ρ̂(s), ψ∗) ds.

Hence, using (2.2), (3.3) and Lemma 3.1, it follows that

|I2| ≤ C
(
‖ρ̂(t)‖1,p +

∫ t

0

‖ρ̂(s)‖1,p ds

)
(‖Rhψ

∗ − ψ∗‖1,q + ‖ψ∗‖1,q)

≤ Cph
r−1

(
‖û(t)‖r,p +

∫ t

0

‖û(s)‖r,p ds

)
‖φ∗‖0,q.

Altogether, we obtain

‖ρ(t)‖1,p ≤ Cph
r−1

(
‖u(t)‖r,p + ‖û(t)‖r,p +

∫ t

0

‖û(s)‖r,p ds

)
.

For the estimation of ρ in the Lp-norm, we recall Aubin-Nitsche duality
arguments. Let ψ∗ be the solution of

A(t)ψ∗ = φ∗ in Ω,
ψ∗ = 0 on ∂Ω,

where φ∗ is smooth and ‖φ∗‖0,q = 1. Then the following regularity
estimate

(3.4) ‖ψ∗‖2,q ≤ Cp‖φ∗‖0,q
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holds, see again [14]. Now

(ρ, φ∗) = A(t; ρ, ψ∗) = A(t;Rhu− u, ψ∗)

+
∫ t

0

B(t, s; ρ(s), Rhψ
∗ − ψ∗) ds+

∫ t

0

B(t, s; ρ(s), ψ∗) ds

= (Rhu− u, φ∗) +B(t, t; ρ̂(t), Rhψ
∗ − ψ∗) +B(t, t; ρ̂(t), ψ∗)

−
∫ t

0

Bs(t, s; ρ̂(s), Rhψ
∗ − ψ∗) ds−

∫ t

0

Bs(t, s; ρ̂(s), ψ∗) ds

= I1 + I2 + I3 + I4 + I5.

For I1, we use (2.1) and (2.2) to obtain

|I1| ≤ ‖Rhu− u‖0,p‖φ∗‖0,q ≤ Cph
r‖u‖r,p‖φ∗‖0,q.

For I2 and I4, use of Lemma 3.1 with estimate (2.2) yields

|I2|+ |I4| ≤ Cph
r

(
‖û(t)‖r,p +

∫ t

0

‖û(s)‖r,p ds

)
‖φ∗‖0,q.

To estimate I3, we first note that

I3 = B(t, t; ρ̂(t), ψ∗) = (ρ̂(t), B∗(t, t)ψ∗),

where B∗ is the formal adjoint of B and then use Lemma 3.1 with (3.4)
to obtain

|I3| ≤ ‖ρ̂(t)‖0,p‖ψ∗‖2,q

≤ Cph
r

(
‖û(t)‖r,p +

∫ t

0

‖û(s)‖r,p ds

)
‖φ∗‖0,q.

Similarly, |I5| can be estimated as

|I5| ≤ Cph
r

∫ t

0

‖û(s)‖r,p ds‖φ∗‖0,q.

Combining all these estimates, it follows that

‖ρ‖0,p ≤ Cph
r

(
‖u(t)‖r,p + ‖û(t)‖r,p +

∫ t

0

‖û(s)‖r,p ds

)
,
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and this proves the first inequality. To prove the second estimate,
differentiate (3.1) with respect to time t to have

A(t; ρt, χ) = −At(t; ρ, χ) +B(t, t; ρ(t), χ) +
∫ t

0

Bt(t, s; ρ(s), χ) ds,

χ ∈ Sh.

Proceeding as in the proof of ρ, it is easy to derive Lp-estimates for ρt

in a similar way, and this completes the proof.

In the following lemma, we shall obtain an estimation of ρ in maxi-
mum norm.

Lemma 3.3. For ε > 0 a constant Cε exists depending on ε such
that, for r = {1, 2},

‖ρ(t)‖∞ ≤ Cεh
r−ε

[
‖u(t)‖r,∞ + ‖û(t)‖r,∞ +

∫ t

0

‖û(s)‖r,∞ ds
]
.

Proof. Writing ρ as ρ = (Whu − Ihu) + (Ihu − u) = ρ1 + ρ2, where
Ihu is the linear interpolant of u satisfying (2.3). From (2.3), it follows
that

‖ρ2(t)‖∞ ≤ Chr‖u(t)‖r,∞, r ∈ {1, 2}.
Further, an application of (2.4) yields

‖ρ1(t)‖∞ ≤ Ch−2/p‖ρ1(t)‖0,p ≤ Ch−2/p(‖ρ(t)‖0,p + ‖ρ2(t)‖∞).

Now use Lemma 3.2 to obtain

‖ρ(t)‖∞ ≤ ‖ρ1(t)‖∞ + ‖ρ2(t)‖∞
≤ Ch−2/p(‖ρ(t)‖0,p + hr‖u(t)‖r,∞)

≤ Cεh
r−ε

(
‖u(t)‖r,∞ + ‖û(t)‖r,∞ +

∫ t

0

‖û(s)‖r,∞ ds
)
,

where ε = 2/p for large p, and this completes the proof.
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4. Semi-discrete error estimates for nonsmooth data. In
this section we shall derive optimal error estimates when the initial
function u0 ∈ H1

0 (Ω). For optimal estimates, let us split the error as:
uh(t)− u(t) = (uh(t)−Whu(t)) + (Whu(t)− u(t)) = θ(t) + ρ(t). From
(1.2), (1.6) and (3.1), we write an equation in θ as

(4.1) (θt, χ)h+Ah(t; θ, χ) =
∫ t

0

Bh(t, s; θ(s), χ) ds−(ρt, χ)+G(w)(χ),

where G(φ)(χ) = −q(φt)(χ) − qA(φ)(χ) +
∫ t

0
qB(t, s;φ(s))(χ) ds and

w = Whu. Integrating with respect to time (1.2) and (1.6), and using
(3.2) with uh(0) = Phu0, we obtain the following equation in θ̂

(4.2)

(θ̂t(t), χ)h +Ah(t; θ̂(t), χ) =
∫ t

0

Ahs(s; θ̂(s), χ) ds

+
∫ t

0

Bh(s, s; θ̂(s), χ) ds

−
∫ t

0

∫ s

0

Bhτ (s, τ ; θ̂(τ ), χ) dτ ds

− (ρ, χ) +G(w)(χ) + q(Phu0)(χ),

where

G(w)(χ) = −q(ŵt)(χ)− qA(ŵ)(χ) +
∫ t

0

qAs
(s; ŵ(s))(χ) ds

+
∫ t

0

qB(s, s; ŵ(s))(χ) ds

−
∫ t

0

∫ s

0

qBτ
(s, τ ; ŵ(τ ))(χ) dτ ds.

Below we shall prove a series of lemmas which altogether lead to the
desired result. For a linear functional F on Sh, define

‖F‖−1,h = sup
χ∈Sh

F (χ)
‖χ‖1,h

.

Lemma 4.1. With G(w) and G(w) as above, the following estimates

‖G(w)‖2
−1,h +

∫ t

0

s‖Gs(w)‖2
−1,h ds ≤ Ch4‖u0‖2

1,
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and
t2‖G(w)‖2

−1,h + t
4‖Gt(w)‖2

−1,h ≤ Ch4‖u0‖2
1

hold.

Proof. By Lemma 2.1 and Theorem 2.1, we have

‖G(w)‖−1,h ≤ Ch2

[
‖Whu(t)‖1 +

∫ t

0

‖Whu(t)‖1 ds

]

≤ Ch2

[
‖u(t)‖1 +

∫ t

0

‖u(s)‖1 ds

]

≤ Ch2‖u0‖1.

Since

‖Gt(w)‖−1,h ≤ Ch2

[
‖ut(t)‖1 + ‖u(t)‖1 +

∫ t

0

‖u(s)‖1 ds

]
,

we obtain using Theorem 2.1,
∫ t

0

s‖Gs(w)‖2
−1,h ds ≤ Ch4‖u0‖2

1.

Similarly,

‖G(w)‖−1,h ≤ Ch2

[
‖ut(t)‖1 + ‖u(t)‖1 +

∫ t

0

‖u(t)‖1 ds

]
,

and

‖Gt(w)‖−1,h ≤ Ch2

[
‖utt(t)‖1 + ‖ut(t)‖1 + ‖u(t)‖1 +

∫ t

0

‖u(t)‖1 ds

]
.

Now the desired results follow from Theorem 2.1, and this completes
the proof.

Lemma 4.2. With θ and θ̂ as above, there is a positive constant C
such that

t‖θ̂(t)‖2
1 +

∫ t

0

s‖θ(s)‖2 ds ≤ C(T )th4‖u0‖2
1.
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Proof. Take χ = tθ(t) in (4.2), and write

Ah(t; θ̂, tθ̂t) =
1
2
d

dt
{tAh(t; θ̂(t), θ̂(t))} − t

2
Aht(t; θ̂(t), θ̂(t))

− 1
2
Ah(t; θ̂(t), θ̂(t)).

Then an integration with respect to time from 0 to t leads to

t

2
Ah(t; θ̂(t),θ̂(t)) +

∫ t

0

s‖θ(s)‖2 ds

=
1
2

∫ t

0

[sAhs(s; θ̂(s), θ̂(s)) ds+Ah(s; θ̂(s), θ̂(s))] ds

+
∫ t

0

∫ s

0

sAhτ (τ ; θ̂(τ ), θ̂s(s)) dτ ds

+
∫ t

0

∫ s

0

sBh(τ, τ ; θ̂(τ ), θ̂s(s)) dτ ds

−
∫ t

0

∫ s

0

∫ τ

0

sBhτ ′(τ, τ ′; θ̂(τ ′), θ̂s(s)) dτ ′ dτ ds

−
∫ t

0

s(ρ(s), θ(s)) ds

+
∫ t

0

sG(w)(θ̂s(s)) ds+
∫ t

0

q(Phu0)(sθ̂s)) ds

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

The terms I1 and I5 can be estimated as

|I1|+ |I5| ≤ C
∫ t

0

s[‖θ̂(s)‖2
1 + ‖ρ(s)‖2] ds

+ C
∫ t

0

‖θ̂(s)‖2
1 ds+

1
2

∫ t

0

s‖θ(s)‖2 ds.

For I2, integrate by parts with respect to s to have

I2 =
∫ t

0

∫ t

τ

sAhτ (τ ; θ̂(τ ), θ̂s(s)) ds dτ

= t
∫ t

0

Ahτ (τ ; θ̂(τ ), θ̂(t)) dτ −
∫ t

0

τAhτ (τ ; θ̂(τ ), θ̂(τ )) dτ

−
∫ t

0

∫ s

0

Ahτ (τ ; θ̂(τ ), θ̂(s)) dτ ds.
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Similarly, I3 and I4 can be written as

I3 = t
∫ t

0

Bh(τ, τ ; θ̂(τ ), θ̂(t)) dτ −
∫ t

0

τBh(τ, τ ; θ̂(τ ), θ̂(τ )) dτ

−
∫ t

0

∫ s

0

Bh(τ, τ ; θ̂(τ ), θ̂(s)) dτ ds,

and

I4 = −
∫ t

0

∫ t

0

tBhτ ′(τ, τ ′; θ̂(τ ′), θ̂(t)) dτ ′ dτ

+
∫ t

0

∫ t

0

τ ′Bhτ ′(τ, τ ′; θ̂(τ ′), θ̂(τ ′)) dτ ′ dτ

+
∫ t

0

∫ s

0

∫ τ

0

Bhτ ′(τ, τ ′; θ̂(τ ′), θ̂(s)) dτ ′ dτ ds.

Hence, we obtain

|I2|+ |I3|+ |I4| ≤ 1
8
t‖θ̂(t)‖2

1 + C
∫ t

0

[‖θ̂(s)‖2
1 + s‖θ̂(s)‖2

1] ds

+ C
∫ t

0

∫ s

0

‖θ̂(τ )‖2
1 dτ ds.

For the estimation of I6, we integrate by parts with respect to s to find
that

I6 = tG(w)(θ̂(t))−
∫ t

0

G(w)(θ̂(s)) ds−
∫ t

0

sGs(w)(θ̂(s)) ds,

and then

|I6| ≤ t‖G(w)‖−1,h‖θ̂(t)‖1

+
∫ t

0

[‖G(w)‖−1,h + s‖Gs(w)‖−1,h]‖θ̂(s)‖1 ds

≤ 1
8
t‖θ̂(t)‖2

1 + Ct‖G(w)‖2
−1,h + C

∫ t

0

[‖G(w)‖2
−1,h

+ s2‖Gs(w)‖2
−1,h + ‖θ̂(s)‖2

1] ds.

Finally, for I7, an integration by parts yields

I7 = q(Phu0)(tθ̂(t))−
∫ t

0

q(Phu0)(θ̂(s)) ds,
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and hence, using Lemmas 2.1 and 2.3, it follows that

|I7| ≤ Cth4‖u0‖2
1 +

1
4
t‖θ̂(t)‖2

1 +
∫ t

0

‖θ̂(s)‖2
1 ds.

Combining the estimates of I1, . . . , I7, use Lemmas 3.2, 4.1 and Theo-
rem 2.1 to obtain

t‖θ̂(t)‖2
1 +

∫ t

0

s‖θ(s)‖2 ds ≤ Cth4‖u0‖2
1 + C

∫ t

0

‖θ̂(s)‖2
1 ds

+ C
∫ t

0

s‖θ̂(s)‖2
1 ds.

Before we apply Gronwall’s lemma, we need to estimate the last but one
term on the righthand side of the above inequality. Now set χ = θ̂(t)
in (4.2) and rewrite (ρ, θ̂) = (d/dt)(ρ̂, θ̂) − (ρ̂, θ). Then integrate the
resulting equation from 0 to t to obtain

‖θ̂(t)‖2
h +

∫ t

0

‖θ̂(s)‖2
1 ds ≤ C

[ ∫ t

0

∫ s

0

‖θ̂(τ )‖1‖θ̂(s)‖1 dτ ds

+
∫ t

0

∫ s

0

∫ τ

0

‖θ̂(τ ′)‖1‖θ̂(s)‖1 dτ
′ dτ ds

+ ‖ρ̂(t)‖‖θ̂(t)‖+
∫ t

0

‖ρ̂(s)‖‖θ(s)‖ ds

+
∫ t

0

‖G(w)‖−1,h‖θ̂(s)‖1 ds

+ h2

∫ t

0

‖Phu0‖1‖θ̂(s)‖1 ds

]
.

Here we have used Lemma 2.1 to estimate the last term. For the third
and fourth terms on the righthand side, we note that

‖ρ̂(t)‖‖θ̂(t)‖ =
∥∥∥∥

∫ t

0

ρ(s) ds
∥∥∥∥‖θ̂(t)‖

≤ t1/2

( ∫ t

0

‖ρ(s)‖2 ds

)1/2

‖θ̂(t)‖

≤ 1
2
t

∫ t

0

‖ρ(s)‖2 ds+
1
2
‖θ̂(t)‖2,
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and∫ t

0

‖ρ̂(s)‖‖θ(s)‖ ds =
∫ t

0

∥∥∥∥
∫ s

0

ρ(τ ) dτ
∥∥∥∥‖θ(s)‖ ds

≤
∫ t

0

s1/2

( ∫ s

0

‖ρ(τ )‖2 dτ

)1/2

‖θ(s)‖ ds

≤ C(ε)
∫ t

0

∫ s

0

‖ρ(τ )‖2 dτ ds+
ε

2

∫ t

0

s‖θ(s)‖2 ds.

For the remaining terms, we apply Cauchy-Schwarz inequality. Alto-
gether, we obtain

∫ t

0

‖θ̂(s)‖2
1 ds ≤ Cth4‖u0‖2

1

+ C(ε)
[
t

∫ t

0

‖ρ(s)‖2 ds+
∫ t

0

∫ s

0

‖ρ(τ )‖2 dτ ds

+
∫ t

0

‖G(w)‖2
−1,h ds

]

+
ε

2

∫ t

0

s‖θ(s)‖2 ds+ C
∫ t

0

∫ s

0

‖θ̂(τ )‖2
1 dτ ds.

Applying Lemmas 3.2, 4.1, Theorem 2.1 and then Gronwall’s lemma,
it follows that∫ t

0

‖θ̂(s)‖2
1 ds ≤ C(ε)th4‖u0‖2

1 + Cε
∫ t

0

s‖θ(s)‖2 ds.

On substitution of the above estimate, we choose ε appropriately so
that (1−Cε) > 0. Now an application of Gronwall’s lemma completes
the rest of the proof.

Remark 4.1. In fact, we now have from Lemmas 4.2 and 4.3,

(4.3) ‖θ̂(t)‖2
1 +

∫ t

0

‖θ̂(s)‖2
1 ds ≤ Cth4‖u0‖2

1.

Lemma 4.3. With θ as above, the following estimates

t2‖θ(t)‖2 +
∫ t

0

s2‖θ(s)‖2
1 ds ≤ Cth4‖u0‖2

1,
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and

t3‖θ(t)‖2
1 +

∫ t

0

s3‖θs(s)‖2 ds ≤ Cth4‖u0‖2
1

hold.

Proof. For the first estimate, set χ = t2θ and, for the second
one, choose χ = t3θt in (4.1). With appropriate modifications of the
proofs of Lemmas 6 and 7 in Pani et al. [10, pp. 1094 1095] and with
straightforward estimates for the terms due to time dependence of A,
we obtain the required estimates. Note that we have to use (4.3),
Lemmas 3.2, 4.1, 4.2 and Theorem 2.1 to complete the proof.

Theorem 4.1. Let u be the exact solution of (1.1), and let uh be the
corresponding semi-discrete approximation defined by (1.6). Further,
let u0 ∈ H1

0 (Ω) and uh(0) = Phu0. Then the following estimates

‖uh(t)− u(t)‖ ≤ Ct−1/2h2‖u0‖1,
and

‖uh(t)− u(t)‖1 ≤ Ct−1h‖u0‖1

hold.

Proof. Writing uh(t) − u(t) as uh(t) − u(t) = θ(t) + ρ(t). The first
estimate is an immediate consequence of Lemmas 3.2, 4.3, Theorem 2.1
and the triangle inequality. The second inequality follows from Lemmas
3.2, 4.3 and Theorem 2.1.

Our final result in this section is an almost optimal pointwise estimate
of uh − u. using the modified estimates of ρ in L∞-norm and a priori
bounds for ‖û(t)‖3, it is possible to relax the stringent compatibility
conditions assumed in Pani and Peterson (see [10], p. 1095, the last
paragraph).

Theorem 4.2. Let u and uh be the solutions of (1.1) and (1.6),
respectively. Further, let u0 ∈ H1

0 (Ω) and uh(0) = Phu0. Then, for
any ε > 0, there is a constant Cε such that

‖uh(t)− u(t)‖∞ ≤ Cεt
−1h2−ε‖u0‖1.
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Proof. Writing

(4.4) ‖uh(t)− u(t)‖∞ ≤ ‖θ(t)‖∞ + ‖ρ(t)‖∞,
we have by the Sobolev imbedding result and Lemma 4.3,

‖θ(t)‖0,p ≤ Cp‖θ(t)‖1 ≤ Cph
2t−1‖u0‖1,

and by (2.4)

(4.5) ‖θ(t)‖∞ ≤ Cph
−2/p‖θ(t)‖0,p ≤ Cεh

2−εt−1‖u0‖1,

where ε = 2/p for large p. From Lemma 3.3, we have

‖ρ(t)‖∞ ≤ Cεh
2−2ε

[
‖u(t)‖2−ε,∞ + ‖û(t)‖2−ε,∞ +

∫ t

0

‖û(s)‖2−ε,∞ ds
]
.

Again, use the Sobolev imbedding theorem to obtain

‖u(t)‖2−ε,∞ ≤ Cε‖u(t)‖3 and ‖û(t)‖2−ε,∞ ≤ Cε‖û(t)‖3.

Hence,

(4.6) t‖ρ(t)‖∞ ≤ Cεh
2−2ε

[
t‖u(t)‖3 + t‖û(t)‖3 + t

∫ t

0

‖û(s)‖3 ds

]
.

Integrating the term on the right of (1.1) by parts with respect to s,
we have

A(t)u(t) = −ut +B(t, t)û(t)−
∫ t

0

Bs(t, s)û(s) ds.

By elliptic regularity
(4.7)

t‖u(t)‖3 ≤ Ct‖A(t)u(t)‖1 ≤ t‖ut(t)‖1 + Ct‖û(t)‖3 + C
∫ t

0

‖û(s)‖3 ds.

To estimate ‖û(t)‖3, integrate (1.1) from 0 to t to have

A(t)û(t) = −u(t) + u0 +
∫ t

0

B(s, s)û(s) ds−
∫ t

0

∫ s

0

Bτ (s, τ)û(τ ) dτ ds

+
∫ t

0

As(s)û(s) ds.
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Again an application of elliptic regularity property yields

‖û(t)‖3 ≤ C‖A(t)û(t)‖1

≤ C
[
‖u(t)‖1 + ‖u0‖1 +

∫ t

0

‖B(s, s)û(s)‖1 ds

+
∫ t

0

∫ s

0

‖B(s, τ)û(τ )‖1 dτ ds+
∫ t

0

‖As(s)û(s)‖1 ds

]
,

and this implies

‖û(t)‖3 ≤ C
[
‖u(t)‖1 + ‖u0‖1 +

∫ t

0

‖û(s)‖3 ds

]
.

Use Theorem 2.1 and then apply Gronwall’s lemma to obtain

(4.8) ‖û(t)‖3 ≤ C‖u0‖1.

The desired estimate now follows from (4.4) (4.8), and this completes
the proof.

5. Backward Euler scheme. In this section we shall discuss the
backward Euler scheme (1.8) for the time discretization of the problem
(1.6). For φ ∈ Sh, define ‖φ‖−j,h as

‖φ‖−j,h = sup
g∈Sh

(φ, g)
‖g‖j

, j = 0, 1.

The following discrete version of Gronwall’s lemma will be used in our
subsequent analysis. For a proof, we refer to Pani et al. [12].

Lemma 5.1. If ξn ≥ 0, αn ≥ αn−1, βj ≥ 0 and ξn ≤ αn +∑n−1
j=0 βjξj, then ξn ≤ αn exp(

∑n−1
j=0 βj).

Let ηn = Un − un
h. Then, from (1.6) and (1.8), ηn satisfies

(5.1)

(∂̄tη
n, χ)h +Ah(tn; ηn, χ)

= k
n−1∑
j=0

Bh(tn, tj ; ηj , χ) +Qn
B(uh)(χ) + (τn, χ)h,

η0 = 0,
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where τn = un
ht − ∂̄tu

n
h, and Q

n
B(uh)(χ) = k

∑n−1
j=0 Bh(tn, tj ;u

j
h, χ) −∫ tn

0
Bh(tn, s;uh(s), χ) ds. Define η̂n = k

∑n
j=0 η

j . Clearly, ∂̄tη̂
n = ηn

and η̂0 = 0.

Multiply (1.8) by k and then sum with respect to n from 1 to m with
1 ≤ n ≤ m ≤ N to have

(5.2)
(Um, χ)h + k

m∑
n=1

Ah(tn;Un, χ) = k2
m∑

n=1

n−1∑
j=0

Bh(tn, tj ;U j , χ)

+ (Phu0, χ)h.

Integrate (1.6) from 0 to t to obtain

(5.3) (uh(t), χ)h +
∫ t

0

Ah(s;uh(s), χ) ds

= (Phu0, χ)h +
∫ t

0

∫ s

0

Bh(s, τ ;uh(τ ), χ) dτ ds.

Using (5.3) at t = tm and (5.2), we find that

(∂̄tη̂
m, χ)h + k

m∑
n=1

Ah(tn; ηn, χ) = k2
m∑

n=1

n−1∑
j=0

Bh(tn, tj ; ηj , χ)

+Qm
A (uh(χ) + Q̄m

B (uh)(χ),

where

Qm
A (uh)(χ) = − k

m∑
n=1

Ah(tn;un
h, χ) +

∫ tm

0

+Ah(s;uh(s), χ) ds,

and

Q
m

B (uh)(χ) = k2
m∑

n=1

n−1∑
j=0

Bh(tn, tj ;u
j
h, χ)

−
∫ tm

0

∫ s

0

Bh(s, τ ;uh(τ ), χ) dτ ds.

Note that

k

m∑
n=1

Ah(tn; ηn, χ) = Ah(tm; η̂m, χ)− k
m∑

n=1

(∂̄Ah)(tn; η̂n−1, χ),
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where (∂̄Ah)(tn; ·, ·) = k−1[Ah(tn; ·, ·) − Ah(tn−1; ·, ·)] is the backward
difference quotient of Ah(t, ·, ·) with respect to first variable at t = tn.
Hence, we obtain

(5.4)

(∂̄tη̂
m, χ)h +Ah(tm; η̂m, χ) = k

m∑
n=1

(∂̄Ah)(tn; η̂n−1, χ)

+ k2
m∑

n=1

n−1∑
j=0

Bh(tn, tj ; ηj , χ)

+Qm
A (uh)(χ) +Q

m

B (uh)(χ).

We shall prove the following lemmas for our subsequent use.

Lemma 5.2. With Qm
A , Qm

B and Q
m

B as above, we have for m =
1, . . . , N ,

‖Qm
A (uh)‖−1,h + ‖Qm

B (uh)‖−1,h + ‖QB(uh)‖−1,h

≤ C(T )k
(
1 +

(
log

1
k

)1/2)
‖u0‖1.

Proof. Using the rectangle quadrature rule, it follows that

|Qm
A (uh)(χ)| =

∣∣∣∣
m∑

j=1

∫ tj

tj−1

(tj−1 − s) ∂
∂s
[Ah(s;uh(s), χ)] ds

∣∣∣∣

≤
∫ t1

0

s|[Ah(s;uhs(s), χ) +Ahs(s;uh(s), χ)]| ds

+ k
m∑

j=2

∫ tj

tj−1

|[Ah(s;uhs(s), χ) +Ahs(s;uh(s), χ)]| ds

≤ C
∫ t1

0

s[‖uh‖1 + ‖uhs‖1] ds‖χ‖1

+ Ck
m∑

j=2

∫ tj

tj−1

[‖uh‖1 + ‖uhs‖1] ds‖χ‖1

≤ Ck
( ∫ t1

0

s[‖uh‖2
1 + ‖uhs‖2

1] ds
)1/2

‖χ‖1
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+ Ck
m∑

j=2

( ∫ tj

tj−1

1
s
ds

)1/2

·
( ∫ tj

tj−1

s[‖uh(s)‖2
1 + ‖uhs(s)‖2

1] ds
)1/2

‖χ‖1.

Apply Theorem 2.2 to obtain

‖Qm
A (uh)‖−1,h ≤ Ck

[
‖u0‖1 +

( m∑
j=2

log
tj
tj−1

)1/2

·
( m∑

j=2

∫ tj

tj−1

s[‖uh‖2
1 + ‖uhs‖2

1] ds
)1/2]

≤ Ck
[
‖u0‖1 +

(
log

1
k

)1/2

·
( ∫ tm

0

s[‖uh‖2
1 + ‖uhs‖2

1] ds
)1/2]

≤ Ck
(
1 +

(
log

1
k

)1/2)
‖u0‖1.

Similarly, using the left rectangle rule, we derive the required estimate
for Qm

B . Finally, we note that

Q
m

B (uh)(χ) = k
m∑

n=1

Qn
B(uh)(χ)

+
[
k

m∑
n=1

∫ tn

0

Bh(tn, s;uh(s), χ) ds

−
∫ tm

0

∫ s

0

Bh(s, τ ;uh(τ ), χ) dτ ds
]
.

Again, using the estimate of Qn
B(uh) and the right rectangle rule for the

second term on the righthand side, we complete the rest of the proof.
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Lemma 5.3. There is a constant C independent of k such that, for
n = 1, . . . , N ,

‖η̂n‖2 + k
n∑

j=1

‖η̂j‖2
1 ≤ C(T )tnk2

(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1.

Proof. Taking χ = η̂m in (5.4) and using the fact (∂̄tη̂
m, η̂m)h =

(1/2)∂̄t‖η̂m‖2
h + (k/2)‖∂̄tη̂

m‖2
h, we obtain

1
2
∂̄t‖η̂m‖2

h +Ah(tm; η̂m, η̂m) +
k

2
‖∂̄tη̂

m‖2
h

= k
m∑

n=1

(∂̄Ah)(tn; η̂n−1, η̂m) + k2
m∑

n=1

n−1∑
j=0

Bh(tn, tj ; ηj , η̂m)

+Qm
A (uh)(η̂m) +Q

m

B (uh)(η̂m).

Since η̂0 = 0, we now have for m = 1,

‖η̂1‖2 + ‖ck‖η̂1‖2
1 ≤ k(‖Q1

A(uh)‖−1,h + ‖Q1

B(uh)‖−1,h)‖η̂1‖1.

An application of Young’s inequality yields

(5.5) ‖η̂1‖2 + k‖η̂1‖2
1 ≤ Ck[‖Q1

A(uh)‖2
−1,h + ‖Q1

B(uh)‖2
−1,h].

For m ≥ 2, we note that

k2
m∑

n=1

n−1∑
j=0

Bh(tn, tj ; ηj , χ) = k2
m∑

n=2

n−1∑
j=1

Bh(tn, tj ; ∂̄tη̂
j , χ)

= k
m∑

n=2

Bh(tn, tn−1; η̂n−1, χ)

− k2
m∑

n=2

n−1∑
j=1

(∂̄2Bh)(tn, tj ; η̂j−1, χ),

where (∂̄2Bh)(tn, tj ; ·, ·) = k−1[B(tn, tj ; ·, ·) − B(tn, tj−1; ·, ·)] is the
backward difference quotient with respect to the second variable at
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t = tj , and hence we obtain

1
2
∂̄t‖η̂m‖2

h + c‖η̂m‖2
1 ≤ C

[
k

m∑
n=1

‖η̂n−1‖1‖η̂m‖1

+ k2
m∑

n=2

n−1∑
j=1

‖η̂j−1‖1‖η̂m‖1

+ (‖Qm
A (uh)‖−1,h + ‖Qm

B (uh)‖−1,h)‖η̂m‖1

]
.

Multiply by 2k and then sum m from 2 to l with m ≤ l ≤ N to find
that

‖η̂l‖2 + k
l∑

m=2

‖η̂m‖2
1

≤ C
[
‖η̂1‖2 + k2

l∑
m=2

m∑
n=1

‖η̂n−1‖2
1 + k

3
l∑

m=2

m∑
n=2

n−1∑
j=1

‖η̂j−1‖2
1

+ k
l∑

m=2

‖Qm
A (uh)‖2

−1,h + k
l∑

m=2

‖Qm

B (uh)‖2
−1,h

]
.

Add k‖η̂1‖2
1 to both sides of the above equation and use (5.5) to

obtain

‖η̂l‖2 + k
l∑

m=1

‖η̂m‖2
1

≤ C
[
k

l∑
m=1

(‖Qm
A (uh)‖2

−1,h + ‖Qm

B (uh)‖2
−1,h) + k

2
l−1∑
m=1

m∑
n=1

‖η̂n‖2
1

]
.

Finally, use Lemma 5.2 and then apply the discrete version of Gron-
wall’s lemma to complete the rest of the proof.

Lemma 5.4. For ε > 0, constants C1 exist depending on ε and C2

such that

k
n∑

j=1

tj‖ηj‖2 + tn‖η̂n‖2
1 ≤ C1(ε)tnk2

(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1

+ C2εk
n∑

j=1

t2j‖ηj‖2
1.
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Proof. Choose χ = tmηm in (5.4) and use identity

2tmAh(tm; η̂m, ηm) = ∂̄t[tmAh(tm; η̂m, η̂m)] + tmkAh(tm; ∂̄tη̂
m, ∂̄tη̂

m)
− tm−1(∂̄Ah)(tm; η̂m−1, η̂m−1)
−Ah(tm; η̂m−1, η̂m−1),

to obtain
(5.6)

tm‖ηm‖2
h +

1
2
∂̄t[tmAh(tm; η̂m, η̂m)] +

tm
2
kAh(tm; ∂̄tη̂

m, ∂̄tη̂
m)

= k
m∑

n=1

tm(∂̄Ah)(tn; η̂n−1, ηm) + k2
m∑

n=1

n−1∑
j=0

tmBh(tn, tj ; ηj , ηm)

+
1
2
[tm−1(∂̄Ah)(tm; η̂m−1, η̂m−1)Ah(tm; η̂m−1, η̂m−1)]

+ [Qm
A (uh)(tmηm) +Q

m

B (uh)(tmηm)]
= I1 + I2 + I3 + I4.

For m = 1, use of Young’s inequality yields

(5.7) kt1‖η1‖2 + t1‖η̂‖2
1

≤ C(ε)k[‖Q1
A(uh)‖2

−1,h + ‖Q1

B(uh)‖2
−1,h] + εkt

2
1‖η1‖2

1.

For m ≥ 2, we note that

k2
m∑

n=2

n−1∑
j=0

tmBh(tn, tj ; ηj , ηm)

= k2
m∑

n=2

n−1∑
j=1

tmBh(tn, tj ; ∂̄tη̂
j , ηm)

= k
m∑

n=2

tmBh(tn, tn−1; η̂n−1, ηm)

− k2
m∑

n=2

n−1∑
j=1

tm(∂̄2Bh)(tn, tj ; η̂j−1, ηm).

For I1 and I2, we have

|I1|+ |I2| ≤ C(ε)k2
m∑

n=2

n−1∑
j=1

‖η̂n‖2
1 +

ε

2
t2m‖ηm‖2

1.
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The term I3 can be written as

|I3| ≤ C[‖η̂m−1‖2
1 + tm−1‖η̂m−1‖2

1].

Further, for I4, an application of Young’s inequality yields

|I4| ≤ C(ε)[‖Qm
A (uh)‖2

−1,h + ‖Qm

B (uh)‖2
−1,h] +

ε

2
t2m‖ηm‖2

1.

After substituting we now sum (5.6) with respect to m from 2 to l to
obtain

k

l∑
m=2

tm‖ηm‖2 + tl‖η̂l‖2
1

≤ C(ε)
[
t1‖η̂1‖2

1 + k
2

l−1∑
m=2

m∑
n=1

‖η̂n‖2
1 + k

l−1∑
m=1

‖η̂m‖2
1

+ k
l∑

m=2

(‖Qm
A (uh)‖2

−1,h + ‖Qm

B (uh)‖2
−1,h) + k

l−1∑
m=1

tm‖η̂m‖2
1

]

+ εCk

l∑
m=2

t2m‖ηm‖2
1.

Now the term kt1‖η1‖2 may be added to both sides of the above in-
equality and then use (5.7), Lemmas 5.2 5.3 and the discrete Gronwall’s
lemma to complete the rest of the proof.

Lemma 5.5. With τn = uht(tn)− ∂̄tuh(tn), the following estimates
hold true.

(a)
∑n

j=1 ‖τ j‖2
−1,h ≤ C‖u0‖2

1.

(b)
∑n

j=1 t
2
j‖τ j‖2

−1,h +
∑n

j=1 t
3
j‖τ j‖2 ≤ Cktn‖u0‖2

1.

Proof. We write τ j as

(5.8) τ j =
1
k

∫ tj

tj−1

(s− tj−1)uhss(s) ds.
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Differentiating (1.6) with respect to t, we find that

(uhtt(t), χ)h = −Ah(t;uht(t), χ)−Aht(t;uh(t), χ) +Bh(t, t;uh(t), χ)

+
∫ t

0

Bht(t, s;uh(s), χ) ds.

It now follows that

‖uhtt(t)‖−1,h ≤ C
[
‖uh(t)‖1 + ‖uht(t)‖1 +

∫ t

0

‖uh(s)‖1 ds

]
.

Thus, using the above estimate, we obtain

‖τ j‖2
−1,h ≤ 1

2

∫ tj

tj−1

s‖uhss(s)‖2
−1,h ds

≤ C
∫ tj

tj−1

s{‖uh(s)‖2
1 + ‖uhs(s)‖2

1 +
∫ s

0

‖uh(τ )‖2
1 dτ} ds,

and by Theorem 2.2,

n∑
j=1

‖τ j‖2
−1,h ≤ C

∫ tn

0

s(‖uh(s)‖2
1 + ‖uhs(s)‖2

1 +
∫ s

0

‖uh(τ )‖2
1 dτ ) ds

≤ C‖u0‖2
1,

which yields (a). To estimate (b), since (s − tj−1)tj ≤ ks for s ∈
[tj−1, tj ], we have

n∑
j=1

t2j‖τ j‖2
−1,h ≤

n∑
j=1

1
k

∫ tj

tj−1

(s− tj−1)2t2j‖uhss(s)‖2
−1,h ds

≤ Ck
∫ tn

0

s2{‖uh(s)‖2
1 + ‖uhs(s)‖2

1 +
∫ s

0

‖uh(τ )‖2
1 dτ} ds

≤ Ctnk‖u0‖2
1.

Further, we note that

n∑
j=1

t3j‖τ j‖2 =
n∑

j=1

(t3j−1 + 3kt
2
j−1 + 3k

2tj−1 + k3)‖τ j‖2

= I1 + I2 + I3 + I4.
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From (5.8), we have for I1

I1 ≤ k

3

n∑
j=1

∫ tj

tj−1

s3‖uhss(s)‖2 ds

≤ k

3

∫ tn

0

s3‖uhss(s)‖2 ds ≤ Cktn‖u0‖2
1.

Similarly, we obtain

I2 + I3 ≤ Cktn‖u0‖2
1.

Finally to estimate I4, we have

I4 ≤ k2

∫ tn

0

s2‖uhss(s)‖2 ds ≤ Ck2‖u0‖2
1.

Altogether the above estimates now imply (b), and this completes the
proof.

Lemma 5.6. With ηn as above, a constant C exists independent of
k and may depend on T such that

‖ηn‖2 + k
n∑

j=1

‖ηj‖2
1 ≤ C(T )k

(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1.

Proof. Taking χ = ηn in (5.1), use of identity (∂̄tη
n, ηn)h =

(1/2)∂̄t[‖ηn‖2
h] + (k/2)‖∂̄tη

n‖2
h leads to

1
2
∂̄t[‖ηn‖2

h] +Ah(tn; ηn, ηn) +
k

2
‖∂̄tη

n‖2
h

≤ ‖τn‖−1,h‖ηn‖1 + Ck
n−1∑
j=0

‖ηj‖1‖ηn‖1 + ‖Qn
B(uh)‖−1,h‖ηn‖1.

Sum n from 1 to m and apply Young’s inequality to obtain

‖ηm‖2 + k
m∑

n=1

‖ηn‖2
1 ≤ C

[
k

m∑
n=1

‖τn‖2
−1,h

+ k2
m−1∑
n=1

n∑
j=1

‖ηj‖2
1 + k

m∑
n=1

‖Qn
B(uh)‖2

−1,h

]
.
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Use Lemmas 5.2, 5.5 and then apply the discrete Gronwall’s lemma to
complete the rest of the proof.

Below we shall obtain an estimate for ηn in L∞(L2).

Lemma 5.7. With ηn as above, we have for ηn, n ≥ 1,

t2n‖ηn‖2 + k
n∑

j=1

t2j‖ηj‖2
1 ≤ C(T )tnk2

(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1.

Proof. Setting χ = t2nηn in (5.1) and using identity

t2n(∂̄tη
n, ηn)h

=
1
2
∂̄t[t2n‖ηn‖2

h] +
kt2n
2

‖∂̄tη
n‖2

h − tn−1‖ηn−1‖2
h − k

2
‖ηn−1‖2

h,

we obtain

1
2
∂̄t[t2n‖ηn‖2

h]+t
2
nAh(tn; ηn, ηn) +

kt2n
2

‖∂̄tη
n‖2

h

= t2n(τ
n, ηn)h + k

n−1∑
j=0

t2nBh(tn, tj ; ηj , ηn)

+Qn
B(uh)(t2nη

n) + tn−1‖ηn−1‖2
h +

k

2
‖ηn−1‖2

h.

For n = 1, we have at once

(5.9) t21‖η1‖2 + kt21‖η1‖2
1 ≤ Ck[t21‖τ1‖2

−1,h + ‖Q1
B(uh)‖2

−1,h].

For n ≥ 2, we note that

k

n−1∑
j=0

t2nBh(tn, tj ; ηj , ηn) = k
n−1∑
j=1

t2nBh(tn, tj ; ∂̄tη̂
j , ηn)

= t2nBh(tn, tn−1; η̂n−1, ηn)

− k
n−1∑
j=1

t2n(∂̄2Bh)(tn, tj ; η̂j−1, ηn),
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and hence, summing for n from 2 to m we have

t2m‖ηm‖2+(2c− ε)k
m∑

n=2

t2n‖ηn‖2
1

≤ t21‖η1‖2 + C(ε)k
m∑

n=2

[t2n‖τn‖2
−1,h + ‖η̂n−1‖2

1]

+ C(ε)k
m∑

n=2

[
k

n−1∑
j=1

‖η̂j−1‖2
1 + ‖Qn

B(uh)‖2
−1,h

]

+ Ck
m∑

n=2

[tn−1‖ηn−1‖2 + k2‖ηn−1‖2].

Choose ε so that (2c − ε) > 0. Now add kt21‖η1‖2
1 to both sides of

the above inequality and use (5.9). Finally, an application of Lemmas
5.2 5.6 completes the rest of the proof.

Remark 5.1. In fact we now have from Lemmas 5.4 and 5.7

(5.10) k
n∑

j=1

tj‖ηj‖2 + tn‖η̂n‖2
1 ≤ C(T )tnk2

(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1.

In order to prove the L∞(H1) estimate of ηn, the following lemmas will
prove convenient.

Lemma 5.8. A constant C exists independent of k such that the
following estimate

k
n∑

j=1

‖∂̄tη
j‖2 + ‖ηn‖2

1 ≤ C(T )
(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1

holds.
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Proof. Take χ = ∂̄tη
n in (5.1) and obtain

(5.11)

‖∂̄tη
n‖2

h +
1
2
∂̄t[Ah(tn; ηn, ηn)] +

k

2
Ah(tn; ∂̄tη

n, ∂̄tη
n)

= (τn, ∂̄tη
n)h + k

n−1∑
j=0

Bh(tn, tj ; ηj , ∂̄tη
n)

+ ∂̄t[Qn
B(uh)(ηn)]− (∂̄tQ

n
B(uh))(ηn−1)

+
1
2
(∂̄Ah)(tn; ηn−1, ηn−1).

For n = 1, we find that

(5.12) k‖∂̄tη
1‖2 + ‖η1‖2

1 ≤ C[k‖τ1‖2 + ‖Q1
B(uh)‖2

−1,h].

For n ≥ 2, we note that

k2
m∑

n=2

n−1∑
j=1

Bh(tn, tj ; ηj , ∂̄tη
n) = k

m∑
n=2

Bh(tn, tn−1; η̂n−1, ∂̄tη
n)

− k2
m∑

n=2

n−1∑
j=1

(∂̄2Bh)(tn, tj ; η̂j−1, ∂̄tη
n)

= I1 + I2.

The terms I1 and I2 can be rewritten as

I1 = Bh(tm, tm−1; η̂m−1, ηm)− k
m∑

n=2

Bh(tn, tn−1; ηn−1, ηn−1)

− k
m∑

n=2

[(∂̄1Bh)(tn, tn−1; η̂n−2, ηn−1)

+ (∂̄2Bh)(tn−1, tn−1; η̂n−2, ηn−1)],

and

I2 = −k2
m−1∑
j=1

m∑
n=j+1

(∂̄2Bh)(tn, tj ; η̂j−1, ∂̄tη
n)

= −k
m−1∑
j=1

(∂̄2Bh)(tm, tj ; η̂j−1, ηm) + k
m−1∑
j=1

(∂̄2Bh)(tj , tj ; η̂j−1, ηj)

+ k2
m−1∑
n=2

n−1∑
j=1

(∂̄21Bh)(tn, tj ; η̂j−1, ηn−1),
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where (∂̄21Bh)(tn, tj ; ·, ·) = k−1[(∂̄2Bh)(tn, tj ; ·, ·)−(∂̄2Bh)(tn−1, tj ; ·, ·)]
is the backward difference quotient of (∂̄2B) with respect to the first
variable. Hence, summing (5.11) with respect to n from 2 to m and
using (5.12), we obtain

(5.13)

k
m∑

n=1

‖∂̄tη
n‖2 + ‖ηm‖2

1

≤ C
[
k

m∑
n=1

‖τn‖2 + k
m−1∑
n=1

‖η̂n‖2
1 + ‖Q1

B(uh)‖2
−1,h + ‖Qm

B (uh)‖2
−1,h

+ k
m∑

n=2

‖∂̄t(Qn
B(uh))‖2

−1,h + k
m−1∑
n=1

‖ηn‖2
1 + ‖η̂m−1‖2

1

]
.

As in Pani et al. [10, p. 1100], rewrite

(5.14) ∂̄t(Qn
B(uh))(χ) = k−1Qn−1,n

B (uh)(χ) +Qn−1
∂̄1B

(uh)(χ),

where (∂̄1, Bh) is the backward difference quotient of Bh with respect
to the first variable. Apply Lemma 5.2 (replacing Bh by ∂̄1Bh for the
second term) to obtain

‖∂̄t(Qn
B(uh))‖−1,h ≤ k−1‖Qn−1,n

B (uh)‖−1,h + ‖Qn−1
∂̄1B

(uh)‖−1,h

≤ C
(
1 +

(
log

1
k

)1/2)
‖u0‖1.

Note that ‖τn‖2 ≤ (1/k)
∫ tn

tn−1
s2‖uhss(s)‖2 ds, and hence use Theo-

rem 2.2 to find that

k
m∑

n=1

‖τn‖2 ≤
∫ tm

0

s2‖uhss(s)‖2 ds ≤ C‖u0‖2
1.

Using Lemma 5.2, for the third and fourth terms on the righthand side
of (5.13), Lemma 5.1 and (5.10), now leads to

k

m∑
n=1

‖∂̄tη
n‖2 + ‖ηm‖2

1 ≤ C
(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1 + k

m−1∑
n=1

‖ηn‖2
1.
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Finally, apply the discrete Gronwall’s lemma to complete the rest of
the proof.

Lemma 5.9. With ηn as above, there is a constant C such that

k

n∑
j=1

tj‖∂̄tη
j‖2 + tn‖ηn‖2

1 ≤ Ck
(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1

holds.

Proof. The proof will proceed as in Lemma 5.8 taking χ = tn∂̄tη
n

in (5.1). For the sake of clarity, we shall present a short proof of this
lemma. In view of Lemma 5.8, it is enough to consider the first and fifth
terms on the right of (5.13) as these terms lead to a loss of accuracy in
k. The first term in the present case is of the form

k

m∑
n=1

tn‖τn‖2 ≤ C
m∑

n=1

∫ tn

tn−1

(s− tn−1)2tn‖uhss(s)‖2 ds.

Since (s− tn−1)tn ≤ sk for s ∈ [tn−1, tn], we have

k

m∑
n=1

tn‖τn‖2 ≤ Ck
∫ tm

0

s2‖uhss(s)‖2 ds ≤ Ck‖u0‖2
1.

Similarly, the fifth term in the present case is of the form
k

∑m
n=2 tn−1‖∂̄t(Qn

B(uh))‖2
−1,h. Note that

t
1/2
n−1|Qn−1,n

B (uh)(χ)| =
∣∣∣
∫ tn

tn−1

(s− tn)t1/2
n−1

∂

∂s
[Bh(tn, s;uh(s), χ)] ds

∣∣∣
≤ Ck

∫ tn

tn−1

s1/2(‖uh(s)‖1 + ‖uhs(s)‖1) ds‖χ‖1.

Then, use of Theorem 2.2 yields

k−1
m∑

n=2

tn−1‖Qn−1,n
B (uh)‖2

−1,h

≤ Ck
m∑

n=2

∫ tn

tn−1

s(‖uh(s)‖2
1 + ‖uhs(s)‖2

1) ds

≤ Ck
∫ tm

0

s(‖uh(s)‖2
1 + ‖uhs(s)‖2

1) ds

≤ Ck‖u0‖2
1.
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Applying Lemma 5.2, replacing Bh by ∂̄1Bh, we obtain

tn−1‖Qn−1
∂̄1B

(uh)‖−1,h ≤ Ck
(
1 +

(
log

1
k

)1/2)
‖u0‖1.

Hence,

k

m∑
n=2

tn−1‖∂̄t(Qn
B(uh))‖2

−1,h

≤ Ck‖u0‖2
1 + Ck

2

(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1

≤ Ck
(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1,

and this completes the proof.

The following lemma yields an estimate for ‖ηn‖1.

Lemma 5.10. The following estimate holds for ηn, n ≥ 1,

k

n∑
j=1

t3j‖∂̄tη
j‖2 + t3n‖ηn‖2

1 ≤ Ctnk2

(
1 +

(
log

1
k

)1/2)2

‖u0‖2
1.

Proof. The proof is very similar to that of Lemma 5.9. Setting
χ = t3n∂̄tη

n in (5.1) and using identities

2t3nAh(tn; ηn, ∂̄tη
n) = ∂̄t[t3nAh(tn; ηn, ηn)] + t3nkAh(tn; ∂̄tη

n, ∂̄tη
n)

− t3n−1(∂̄Ah)(tn; ηn−1, ηn−1)

− (3t2n−1 + 3ktn−1 + k2)Ah(tn; ηn−1, ηn−1),

and

t3nQ
n
B(uh)(∂̄tη

n) = ∂̄t[t3nQ
n
B(uh)(ηn)]− t3n−1(∂̄tQ

n
B(uh))(ηn−1)

− (3t2n−1 + 3ktn−1 + k2)Qn
B(uh)(ηn−1),
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we proceed as in Lemma 5.9 and apply Lemmas 5.1 5.9 to obtain the
desired estimates, and this completes the proof.

We are now in a position to prove the main result of this section.

Theorem 5.1. Let u be the exact solution of (1.1) and Un the
backward Euler approximation defined by (1.8). Then, for n ≥ 1, we
have

(a) ‖Un − u(tn)‖ ≤ C(T )t−1/2
n (h2 + k(1 + log(1/k))1/2))‖u0‖1,

(b) ‖Un − u(tn)‖1 ≤ C(T )t−1
n (h+ k(1 + (log(1/k))1/2))‖u0‖1.

Further, for any ε > 0, there is a constant Cε such that

(c)

‖Un − u(tn)‖∞ ≤ Cεh
2−εt−1

n ‖u0‖1

+ C| log h|1/2kt−1
n (1 + (log(1/k))1/2)‖u0‖1.

Proof. We write Un−u(tn) as Un−u(tn) = ηn+e(tn). The estimates
(a) and (b) follow from Theorem 4.1 and Lemmas 5.7 and 5.10. For
the estimation of (c), we have from (2.5) and Lemma 5.10

‖ηn‖∞ ≤ C| log h|1/2‖ηn‖1 ≤ C| log h|1/2kt−1
n

(
1+

(
log

1
k

)1/2)
‖u0‖1,

and this in combination with Theorem 4.2 completes the proof.
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