JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 13, Number 1, Spring 2001

FINITE ELEMENT APPROXIMATION WITH
QUADRATURE TO A TIME DEPENDENT
PARABOLIC INTEGRO-DIFFERENTIAL
EQUATION WITH NONSMOOTH INITIAL DATA

AMIYA K. PANI AND RAJEN K. SINHA

ABSTRACT. In this paper we analyze the effect of numeri-
cal quadrature in the finite element analysis for a time depen-
dent parabolic integro-differential equation with nonsmooth
initial data. Both semi-discrete and fully discrete schemes
are discussed and optimal order error estimates are derived in
L°(L?) and L*(H') norms using energy method when the
initial function is only in Hé Further, quasi-optimal maxi-
mum norm estimate is shown to hold for rough initial data.

1. Introduction. In this paper we consider a finite element
Galerkin method with spatial quadrature for the following time de-
pendent parabaolic integro-differential equation

t
ut + A(t)u = / B(t,s)u(s)ds in Q x J,
0

(1.1) u=0 on 9N x J,

u(-,0) =uo in Q,

where ) is a convex bounded domain in R? with boundary 99, u(x,t)
is a real valued function in R? and J denotes the time interval (0, 7]
with T < oo. Here A(t) is a time dependent, positive definite, self-
adjoint and uniformly elliptic second order partial differential operator
and B(t, s) is a general second order partial differential operator, both
with smooth coefficients.

Let H}(Q2) = {¢ € H'(Q) : ¢ = 00n 9N}, and let A(t;-,-) and
B(t, s;-,-) be the bilinear forms associated with the operators A and
B, respectively. The weak formulation of the problem (1.1) is defined

Received by the editors on June 18, 1997 and in revised form on September 28,
1998.

Copyright ©2001 Rocky Mountain Mathematics Consortium

35



36 A.K. PANI AND R.K. SINHA

as follows. Find u: J — H}(Q) such that

(us, @) + Aty u, @) = /0 B(t, s;u(s), ¢)ds

Voe Hy(Q), tel,
u(0) = up.

For the purpose of numerical solution we shall assume that we are
given a family of subspaces {Sy}, 0 < h < 1, of H}(Q) consisting of
continuous, piecewise linear functions on a quasi-uniform triangulation
Fr = {m} of  with its boundary vertices on 92 and which vanish
outside the polygonal domain ; C € determined by Fj,. Further, the
finite dimensional subspaces {S,} are such that for r = {1, 2},

inf {6 = x|+ hllé— x|} < CH"[|6]..
€ Hy(Q)NH"(Q).

Throughout this paper we shall work on the standard Sobolev spaces
H} () and H*(Q) with norm || - ||; and | - ||s, respectively. We shall
use the notations || - || and || - [0, to denote the norm on L?*(Q2) and
LP(Q), p # 2, respectively. The norm of the Sobolev space W# () is
denoted by || - ||s,00, and that of L>(Q) by || - ||oc-

We recall that the standard semi-discrete finite element approxima-
tion @, of u is a function @y : J — ), satisfying

(1.2)

(1.3)

t
(e, X) + At: i, X) = / B(t, 5: 7n(s), X) ds
0

VX ESy, tEJ,
up(0) = 0,

where o € Sj, is a suitable approximation to ug.

(1.4)

In practice, the spatial integrals appearing in (1.4) are evaluated
numerically by using some quadrature rules. In this paper we shall
apply the following numerical quadrature to approximate the inner
products and the bilinear forms in (1.4). Let p,, ;, j = 1,2,3, be
the vertices of a triangle 7, € Fj,. Define an approximation of the
inner product in Sy and induced norm by

3
(15 Guh= Y 5 aean) D 6pn )0,

ThEFn j=1
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and

Iolln = (6, 8)32,

respectively. For the purpose of applying quadrature rules to all the
terms in (1.4), we set Ap(t;-,-) and By(t,s;-,-) as the bilinear forms
with quadrature corresponding to the operators A and B, respectively.
Therefore, instead of (1.4), we consider the following semi-discrete finite
element method with quadrature: Find up(¢) € Si, such that

t
(s Xn + An(t: i, X) = / Bu(t, s:un(s), X) ds
0

VX ESy, tEJ,
uh(O) = PhUQ.

(1.6)

Here Pjug is the L?-projection of uy onto Sj, defined by
(1.7) (Pruo, X) = (u0,X), X € Sh.

Along with the semi-discrete approximation we shall also discuss the
time discretization of (1.6) based on the backward Euler method. Let
k > 0 be the time step, t, = nk with T = Nk, and let U™ = U(t,,) be
an approximation of u(t,). Then the discrete time Euler scheme is to

seek a function U™, n =1,2,..., N, satisfying
n—1
(@U", X)h + Ah(tn§ u", X) =k Z Bh(tnv tj; Uja X)
(1.8) J=0
VX € Sh,
U° = Pyug,

where 0;U" = k~1(U™ — U™ 1) and the integral term in (1.6) is
approximated by the rectangle rule

tn n—1
[ oeas =Y ot o<t <T.
0 =0

Earlier, Raviart [13] first studied the effect of quadrature on the finite
element solution to a parabolic differential equation, and the analysis
for nonlinear parabolic equation with quadrature was discussed in Chou
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and Li [4] and Nie and Thomée [9]. For the heat equation in two
space dimensions, Chen and Thomée [3] considered both semi-discrete
and fully discrete lumped mass Galerkin methods and obtained error
estimates of optimal order in L? and of almost optimal in L> when
the initial data is in H%(Q) N H (). Subsequently, Thomée et al. [16]
have obtained improved estimates with initial data only in H} () using
semi-group theoretic arguments.

Recently, Pani and Peterson [10] extended the results of Chen and
Thomée [3] to a time independent parabolic integro-differential equa-
tion, A(t) = A, with quadrature formula applied to all the terms ap-
pearing in the Galerkin formulation and obtained optimal error esti-
mates for both smooth and nonsmooth initial data. For the nonsmooth
case, it is assumed that the initial function ug € H?(2) N H}(Q). In
addition, almost optimal pointwise estimates are shown to hold under
strong compatibility assumptions on g, i.e., Aug = 0 on 9 (see [10],
p. 1095, last paragraph).

In the present paper an attempt has been made to improve upon
the results of Pani and Peterson [10] by requiring less regularity as-
sumptions on the initial function ug. More precisely, optimal estimates
in L>®°(H'), L>*(L?) norms and quasi-optimal estimate in L (L)
norm are derived using energy arguments, when the initial function
ug € H}(2). However, for optimal estimates, the initial condition is
implemented as an L2-projection of ug. Further, some results related to
the Ritz-Volterra projection are also explored, which are subsequently
used to obtain quasi-optimal L°°-error estimates. Compared to Pani
and Peterson [10], it is possible to avoid the stringent compatibility con-
dition for maximum norm estimate using modified pointwise estimates
of Ritz-Volterra projection and an auxiliary estimate || fot u(s)ds||s (see
(4.8) in Theorem 4.2).

The finite element error analysis without quadrature (i.e., in the case
of exact integration for the parabolic integro-differential equation with
nonsmooth initial data can be found in Crouzeix and Thomée [5], when
B is of lower order. For an arbitrary second order differential operator
B and time dependent A, Pani and Sinha [11] proved an optimal L?2-
estimate using energy arguments, when the initial data are in L2(f2).
Earlier, Thomée and Zhang [17] discussed the error analysis for time
independent A with ug € L? using the semi-group theoretic approach.
The numerical solution by means of finite element methods has been
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investigated by Le Roux and Thomée [6], Cannon and Lin [1, 2], Lin
et al. [7], Pani et al. [12] and Zhang [18].

The plan of this paper is as follows. Section 2 contains some
preliminary materials and a prior estimates for u and wup. Ritz-
Volterra projection and related estimates are derived in Section 3.
Section 4 is devoted to semi-discrete error analysis for nonsmooth initial
data. Finally, Section 5 deals with the discrete-in-time backward Euler
method and optimal error estimates are obtained for rough data.

2. Preliminaries. In this section we state some basic results
without proof. To begin with, we define the quadrature error

(@) (W) = (&, 9)n — (¢, ¥),

where (-, ) is given by (1.5). Similarly, define the quadrature error
associated with Ay, and By, by qa(¢)(¥) and gp(¢)(1)), respectively, in
the obvious way. Sometimes we shall use ||¢]|1,5 as

I6lln = (lol; +I1Val7) 2.

In the rest of the paper C and ¢ denote generic positive constants
independent of h and k£ but may depend on T and are not necessarily
the same at each occurrence.

The following lemmas will be frequently used in our analysis. For a
proof, see [3] and [10].

Lemma 2.1. For ¢, X € S},

a(6)(X)] < Ch?||¢l1]IX])1-

The above inequality also holds if q is replaced by either g4 or qp.

Lemma 2.2. On Sy the norms ||-|| and ||-||n are equivalent. Likewise,
fO'f' || : ||1 and || : | 1,h- For (baw € Sh7

[ Br(¢,¥), [An(t; ¢, ¥)| < Cllgll1[[¥]]1,

and
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provided that h is sufficiently small.

We shall also use the Ritz projection R;, = Ry(t) : Hi() — Sy
associated with the bilinear form A(¢; -, -) which is defined by

(2.1) A(t; Rpp — ¢,X) =0, X €Sy, tel.

It is now quite standard to prove that, for 2 < p < oo and r = {1, 2},
Ry u satisfies

[Rro — ¢l

0.p + h[Rnd — ¢ll1,p < Cph"||d
¢ € HE(Q) nWP(9).

|5

(2.2)
Let Inv be the linear interpolant of v with respect to the vertices of
Fp. Then, for v € WTP(Q) N HY(Q), r = {1, 2}, we have

(23)  [Hhv = vllop + Al = vll1p < CR[0]lrp, 2 <p < oo

Further, for X € Sy, the following inverse estimates

1 1

Ixllip < CR720 777 Jas
l<g<p<oo, 0<j<i<l,

)*(ifj)HX|

(2.4)

and Sobolev imbedding result
(2.5) IX]|os < C|log h"/?||X]x

hold.

In the rest of this section we shall discuss some a priori estimates for
u and its semi-discrete solution uy. It is easy to modify Theorem 4 of
Pani and Peterson [10] to obtain the following a priori bounds for w.
Therefore, we state the result in terms of a theorem without proof.

Theorem 2.1. Let u be the exact solution of (1.1). Further, let
0<i<4,0<j<3and0<k <2 Forte (0,7, the following
estimates hold.

(a) If 0 < k+2j—i<1, then

1D u(t)llz < C(T)[[uoll ya;—»
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(b) If0<k+2j—i—1<1, then

t
/0 S| Dfu(s)|2 ds < C(T) uollZ5s-1.

where DI = (d7 /dt7).

Below we shall prove the stability estimates for u; which will be used
in Section 5.

Lemma 2.3. Assume that up(0) = Pyug. Then, for ug € HE(S2),
we have
[un(0)l[x < Clluol]s-

Proof. Note that

lun(0)[ly = [[Pruolly

(2.6) 71 ) )
< Ch™ || Pruo — Tpuo|| + |[Tpuo — wollr + |luwoll1s

where Tjuq is a local averaging interpolation operator satisfying, [15,
p. 491] } ~

[nuo — uoll + Al Inuo — uollr < Chlluol:.
Since ||Phu0 — fh’U,()H < ||Phu0 — U()H + HU() — fh’u,oH < ChHUOHh the
desired estimate follows from (2.6), and this completes the proof. o

Finally, using the standard energy arguments and Lemma 2.3, we
obtain the following stability estimates.

Theorem 2.2. Let uy be the finite element solution of (1.6). Further,
let 0 <i<3,0<j<2and0<k<1. Then, for ug € H}(Q) and
t € (0,T], the following stability results hold:

(a) If 0<k+2j—1i<1, then

t| Dl un (IR < C(T)uolliy2;—s-
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) IfO<k+2j—i—1<1, then

t
L S Dfun(s) 2 ds < CT)[uol2 4211

3. Ritz-Volterra projection and related estimates. Following
Lin, Thomée and Wahlbin [7] (see also [1]-[2]), we now define the Ritz-
Volterra projection W), = Wp,(t) : H}(Q) — Sy, by

A(t; Whu — u)(t),X) = /0 B(t,s; Whu — u)(s), X) ds

VX €Sy ted.

(3.1)

Let p = Wjhu —u. In this section we shall modify the arguments of Lin
et al. [7] to derive some estimates of p in LP-norm. This, in return, will
be used to prove pointwise error estimates when the initial function
up € H}(Q). For the remaining part of this paper we shall use the

following notation
t
= / o(s)ds
0

Integrating (3.1) with respect to time ¢, we obtain

/A 5 pls ds+/tB( s 4(5),X) ds

// (s, p(T),X)dT ds, X € Sh.

Based on the analysis of Lin et al. [7, Theorem 2.1], it is easy to obtain
the following estimates for p.

(3.2)

Lemma 3.1. Let p satisfy (3.2) and 2 < p < oo. Then a constant
C, exists such that, for r = {1,2}, we have

1A()llo.p + AlIA@)|

t
1m§%WHMMW+AIM$MM4~
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Below we shall modify the arguments in Lin et al. [7] to obtain LP-
estimates for p(t) and p(¢).

Lemma 3.2. Let p satisfy (3.1) and 2 < p < co. Then a constant
C, exists such that, for r = {1,2}, we have

lp(2)]

t
o.p T Rlp®)1p < Cph” [||U(t)|r,p + la(®)lrp + /O [a(8)lrp ds] :
and

llot(®)llo.p + hlloe(B) |15

t
< Gl [”u(t)”np F llwe@llrp + @) + /0 [a(s)lrp dS} :

Proof. Let p,;, 1 < j < 2, be the jth component of Vp in LP().
With p~1 + ¢~ =1, we write

02, ll0.p = sup{(pz,,¢7); " € C5°(Q), [[6"]lo.g = 1}
Let ¥* be the solution of

A" = ¢ i Q,
»* =0 on 0f.

The following elliptic regularity estimate

(3.3) 9"

|1,q < Cp||¢*||07q

holds, see Schechter [14]. Using the definition of p, i.e., the equation
(3.1), it follows that

(pays ") = —(p,03,) = Alt; p, ¥7)

t
= A(t; p, " — RpYp™) + /0 B(t, s;p(s), Rptp™) ds

=0L+ 1.
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For I, using (2.1) and (2.2), we obtain

1] = At Rou —u,07)| = [(Bhw = u)a,, )] < Cph"H|ullrpll 6™ [loq

Integrating by parts with respect to s, we note that

t
t7t7ﬁ(t)7Rh'(/)*)_/ Bs(tasvﬁ(s)thw*)dS
0
tp(t), Rpy™ —4%) + B(L, 8 p(t), ¥")
t

Hence, using (2.2), (3.3) and Lemma 3.1, it follows that

t
L] < c(n,a(t)nl,p n / 1) 1 ds) (Rat* = ¥l + "

t
scph”(||a<t>||w+ / |a<s>||r,pds)||¢*||o,q-

Altogether, we obtain

|1,q)

1o(®)l1 < Cph™! (nu(t)u,p @+ [ 1) ds).

For the estimation of p in the LP-norm, we recall Aubin-Nitsche duality
arguments. Let ¢* be the solution of

Ay = ¢ 9,
»* =0 on 09,

where ¢* is smooth and [|¢*||o,, = 1. Then the following regularity
estimate

(3-4) 19" ll2,4 < Cpll¢™[lo.q
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holds, see again [14]. Now
(P, 9%) = Alt; p,9") = A(t; Rnu — u, ¢7)
[ Blasiot) B ) ds v [ Bl plo) 0
= (Rnu —u,¢") + B(t,t; p(t), Rat)™ — ¢%) + B(t, ; p(t), ")
~ [ Bttt R~ 0y = [ B o)) s
=L+ I+ s+ 14+ Is.
For I;, we use (2.1) and (2.2) to obtain

(L] < [[Bru = ullop

|¢*||O,q < Cphr||u||r,p||¢*

|0,Q‘

For I, and Iy, use of Lemma 3.1 with estimate (2.2) yields

t
[Io| + 1] < Czphr(llﬁ(t)llr,pJr/0 [a(s)lrp d8>ll¢*||o,q~

To estimate I3, we first note that

I3 = B(t7t§ ﬁ(f)7¢*) = (ﬁ(t)7 B*(t,t)’t/J*),

where B* is the formal adjoint of B and then use Lemma 3.1 with (3.4)
to obtain

3] < 1p)llo.pll9"|2,q

< 0t (101 + [ ats)

|0,q~

wwﬂw

Similarly, |I5| can be estimated as

t
\quwénmwwww*

|0,q~

Combining all these estimates, it follows that

t
W3£M@mwﬁ,

rp T [0(2)]

mmws@M@mm
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and this proves the first inequality. To prove the second estimate,
differentiate (3.1) with respect to time ¢ to have

t
At pe, X) = —Ay(t; p, X) + B(t, t; p(t), X) +/ By(t, s;p(s),X) ds,
0

X € Sp,.

Proceeding as in the proof of p, it is easy to derive LP-estimates for p;
in a similar way, and this completes the proof. ]

In the following lemma, we shall obtain an estimation of p in maxi-
mum norm.

Lemma 3.3. For e > 0 a constant C. exists depending on € such
that, for r = {1,2},

t
lo()lleo < Ch™ | [u(®)]lr,00 + [[@(t) 1,00 +/0 [a(s)]lr,00 dS}

Proof. Writing p as p = (Whu — Inu) + (Inu — u) = p1 + pe2, where
Inu is the linear interpolant of u satisfying (2.3). From (2.3), it follows
that

p2(t)lloc < CR"[u(t)

Further, an application of (2.4) yields

lroo, T €{1,2}.

lo1®)lloe < CR72Plp1(B)ll0.p < CH™* (o) 0,5 + llp2()lo0)-

Now use Lemma 3.2 to obtain

1o(®)lloo < o1 (D)oo + [lp2(#) o
< Ch=22(|lp(t) lop + A" () r,00)

t
< ChE <IIU(t)| roo T [[2() 7,00 +/0 [a(s)llr,00 d8>,

where ¢ = 2/p for large p, and this completes the proof. a
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4. Semi-discrete error estimates for nonsmooth data. In
this section we shall derive optimal error estimates when the initial
function uy € H} (). For optimal estimates, let us split the error as:
up(t) — u(t) = (up(t) = Wru(t)) + Whu(t) — u(t)) = 0(t) + p(t). From
(1.2), (1.6) and (3.1), we write an equation in 6 as

(4.1) (01, X)n+An(t;:0,X) = /Ot B(t, s;0(s), X) ds—(pt, X) +G(w)(X),

where G(6)(X) = —a(@)(X) = 4a()(X) + [y an(t,s;6(s))(X) ds and
w = Whu. Integrating with respect to time (1.2) and (1.6), ar}d using

(3.2) with up,(0) = Prug, we obtain the following equation in

(G(8), ) + An(t:6(1) /Ahsse X) ds

(4.2) / Bu(s,s:0(s),X) ds

//B;”—STQ X) drds

X) + G(w)(X) + q(Pnuo)(X),

where

Glw) (x) = —q(ioe) (%) — qa(®)(0) + / 4, (50(5)) (1) ds
—|—/Ot qB(s,s;w(s))(X) ds

- /ot /os 4. (5, 730(7))(X) dr ds.

Below we shall prove a series of lemmas which altogether lead to the
desired result. For a linear functional F' on Sy, define

F(x)

Fl_1,n = sup 7——.
= m

XES)

Lemma 4.1. With G(w) and G(w) as above, the following estimates

t
IG ()24, +/0 slIGs (w24, ds < Ch¥|luoll7,
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and
NG w)]12 15, + N Ge(w)]2 ), < Ch*luoll}

hold.
Proof. By Lemma 2.1 and Theorem 2.1, we have
o t
|Gwm1ﬁ<cthwwh+/|wwwhm]
0

t

< Chz{nu(t)nl +/ IIu(s)IldS]
0

< Ch?||uo 1.

Since
. t
1Ge(w)]|-1,n < CR? [IIUt(t)Ill + [Ju(®)]x +/0 [uls)ll1 dS}
we obtain using Theorem 2.1,
t J—
| SlG )R s < ol
Similarly,
, t
|G(w)[|-1,n < Ch [Hut(t)lh + [[u(®)[x +/O lu(t)]l1 ds]>
and
t
1Ge(w)|[ -1 < CR? {”utt(t)”l + ue @)l + u®)]l +/0 l[u®)]l2 dS]-

Now the desired results follow from Theorem 2.1, and this completes
the proof. a

Lemma 4.2. With 6 and 6 as above, there is a positive constant C
such that

t
to()]17 +/0 s[l6(s)|* ds < C(T)th*|[uol3-
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Proof. Take X = t0(t) in (4.2), and write

An(t;0,t0;) = % % {tAn(t:;60(2),0())} — %Aht(t’ o1t o)
_ %Ah(t;é(t)ﬁ(t))

Then an integration with respect to time from 0 to ¢ leads to

5An(E00)00) + [ sl ds

_ 1/ (s Ana(s: 0(s), 8(s)) ds + An(s: 0(s), 0(s))] ds

2 Jo
+/Ot /0s SAhT(T;é(T),éS(S))deS
+/Ot /O $By (7,71 0(7), By (s)) dr ds

t s T
—///SBhT/(T,T/;é(TI),éS(S))dTldeS
0o Jo Jo
t

- [ sto(s).005)) ds
0

t
+ [ GO ds+ [ alPruo)(sh.)) ds
0 0
=h+L+Is+ 14+ Is + Ig + I7.

The terms I, and I5 can be estimated as

(| + 15| < C/O sl10()I1F + () [1%] ds

t 1t
+C/ ||9(s)||%ds+—/ s|\9(s)||2ds.
0 2 /o

For I, integrate by parts with respect to s to have
t gt
I = / / $Ap (73 0(7),04(s)) ds dr
0o Jr
t . A t . A
- t/ Apr (5 6(7), 6(8)) dr —/ 7 A (73 0(), 0(7)) dr
0 0
t s
—/ / A (730(7),0(s)) dr ds.
o Jo
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Similarly, I3 and I, can be written as

t

I3:t/ Bh(T,T;é(T),é(t))dT—/o TBh(T,T;é(T),é(T))dT

0
t s
— / Bh(T,T;é(T),é(S))dT ds,
0o Jo
and

t ot
I, = —/ / t By (7,75 0(1"), 6(t)) dr' dr
o Jo
t ot . A
+ / / 7' B (1,75 0(7"),0(7)) dr’ dr
o Jo

t s T
w [ [ Butrrse i) i rds,
0 0 0

Hence, we obtain

1, toa -
[Lo| + [Is] + [1a] < §t||9(t)llzf+c/0 [10(s)IF + sl10(s)17] ds

t s
+C/ / 10(7)|2 dr ds.
0 JO

For the estimation of Ig, we integrate by parts with respect to s to find
that

I = (G (w) (B(t)) — / G(w)(6(s)) ds - / 5Ca(w)(0(s)) ds,

and then
| Is| < t]|G(w)]|—1.410()]1

+/ (IG(w)ll-1,n + G (w)]|-1.1]18(5) 11 ds

0

< %tl\é(t)H? + Ct|G(w)|2,, + C/O [(IG (w24,
+ 87| Go(w)|2 15 + 19(s)II5] ds.

Finally, for I7, an integration by parts yields

I = a(Pruo) (10(0)) = [ alPru)0(5) s
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and hence, using Lemmas 2.1 and 2.3, it follows that

1 4 b
|17 SCth“\IuOII?JrZtH@(t)H?ﬂL/O 16(s)|7 ds.

Combining the estimates of I, .

., I7, use Lemmas 3.2, 4.1 and Theo-
rem 2.1 to obtain

t t
H80)]2 + / S16()|? ds < Ot us 2 + C / 16(s)]2 ds

t
+ C/ s)|6(s)||3 ds.
0

Before we apply Gronwall’s lemma, we need to estimate the last but one
term on the righthand side of the above inequality. Now set x = 6(t)
n (4.2) and rewrite (p,0) = (d/dt)(p,0) — (p,0)

resulting equation from 0 to ¢ to obtain
. t R t s R
1613 + / |9<s>||%ds<c[ / / 161 116(s) |11 dr ds
t S T
4 / / / 1011 16(s) | d” dr ds
0 0 0
t
A0 I16] + / 1) [116(s)] ds
t
4 / IG(w)l|—14ll6()]11 ds
t
3 [ 1Paal606) ).
0

Here we have used Lemma 2.1 to estimate the last term. For the third
and fourth terms on the righthand side, we note that

IplIace ||—H/ 5)ds
<ot A |p<s>|2ds)1/2|é<t>

1
<5t [ s)iPas + 1601,

. Then integrate the

l6c)]
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and
/0 16()16(s) | ds = / / p(r) dr | 16(s)]| ds

< jgtsl/2(i/£5np<f>|2dr)]/2ne<s»ds
<o@ [ [ loiaras+ [ stopas

For the remaining terms, we apply Cauchy-Schwarz inequality. Alto-
gether, we obtain

t
AW@mws&wmm

+0@Pﬂm@ww+KAWmﬂ%ws

+Aﬂamﬁm@

t t S
+f/ 5H9(5)||2ds+0// 16(7)]2 dr ds.
2 0 0 0

Applying Lemmas 3.2, 4.1, Theorem 2.1 and then Gronwall’s lemma,
it follows that

t t
| 183 as < ce ol + C [ slots)| s
0 0

On substitution of the above estimate, we choose ¢ appropriately so
that (1 — Ce) > 0. Now an application of Gronwall’s lemma completes
the rest of the proof. ]

Remark 4.1. In fact, we now have from Lemmas 4.2 and 4.3,

t
(4.3) 10113 +/0 16(s)[|F ds < Cth*|luo|7.

Lemma 4.3. With 0 as above, the following estimates

t
o) +/0 s?[10(s)[11 ds < Cth*{|uoll7,
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and .
10|17 +/ 59)10s()]1* ds < Cth*||uo |1}
0

hold.

Proof. For the first estimate, set X = t?0 and, for the second
one, choose X = t30; in (4.1). With appropriate modifications of the
proofs of Lemmas 6 and 7 in Pani et al. [10, pp. 1094-1095] and with
straightforward estimates for the terms due to time dependence of A,
we obtain the required estimates. Note that we have to use (4.3),
Lemmas 3.2, 4.1, 4.2 and Theorem 2.1 to complete the proof. O

Theorem 4.1. Let u be the exact solution of (1.1), and let uy be the
corresponding semi-discrete approzimation defined by (1.6). Further,
let ug € HY(Q) and up(0) = Pyug. Then the following estimates

[un(t) = u(t)]| < Ct2h?|Jug|)1,
and
lun(t) = u(®)|lr < Ct~ hllug|lx

hold.

Proof. Writing wup, (t) — u(t) as up(t) — u(t) = 0(t) + p(t). The first
estimate is an immediate consequence of Lemmas 3.2, 4.3, Theorem 2.1
and the triangle inequality. The second inequality follows from Lemmas
3.2, 4.3 and Theorem 2.1. u]

Our final result in this section is an almost optimal pointwise estimate
of up — u. using the modified estimates of p in L*-norm and a priori
bounds for ||4(t)]s, it is possible to relax the stringent compatibility
conditions assumed in Pani and Peterson (see [10], p. 1095, the last
paragraph).

Theorem 4.2. Let u and uy be the solutions of (1.1) and (1.6),
respectively. Further, let ug € H}(Q) and up(0) = Pyug. Then, for
any € > 0, there is a constant C. such that

lun () = u(®)]loe < Cet™" A== lugll1.
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Proof. Writing

(4.4) [un(t) = u(®)lloo < [10(B)]lco + ll2()oo

we have by the Sobolev imbedding result and Lemma 4.3,
10 llo.p < Cplld@)l1 < Cph?t™Hluo]1,

and by (2.4)

(4.5) 16(t)]loc < Coh™>/P18(t) 0, < Ch?~t HJuollr,
where ¢ = 2/p for large p. From Lemma 3.3, we have
t
o0 < Ot [t la-con + 1002+ [ 05 ).

Again, use the Sobolev imbedding theorem to obtain
[u(®)ll2—c,00 < Cellu®)]ls  and  [[a(t)[l2—c,00 < Cella(t)]s.

Hence,

(4.6) t||p<t>||ooscahQ-%[tnu(t)ng+t||a<t>||3+t / ||a<s>|3ds].

Integrating the term on the right of (1.1) by parts with respect to s,
we have

A(tyu(t) = —ug + B(t, t)a(t) — /O Bu(t, s)i(s) ds.

By elliptic regularity
(4.7)

tlu(®)lls < CHA@u(®)[lr < tlue (Bl + Ctllat)lls + C/Ot [a(s)|s ds.

To estimate ||i(t)]|3, integrate (1.1) from 0 to ¢ to have

A(t)a(t) = —u(t) + uo + /Ot B(s, s)i(s) ds — /Ot /OSBT(S,T)a(T) dr ds
+ /Ot Ag(s)a(s)ds.
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Again an application of elliptic regularity property yields
la(t)l[s < CllA)a) ]l

< c[nu(t)nl ol o+ [ 1B 5)its) 1 ds

+/Ot/os|B(s,T)a(T)||1des+/0t IIAs(s)ﬁ(s)Ilds],

and this implies

()]s < C[Ilu(t)ll +luols + [ |a<s>||3ds]

Use Theorem 2.1 and then apply Gronwall’s lemma to obtain
(4.8) [a(t)]ls < Clluollz-

The desired estimate now follows from (4.4)—(4.8), and this completes
the proof. i

5. Backward Euler scheme. In this section we shall discuss the
backward Euler scheme (1.8) for the time discretization of the problem
(1.6). For ¢ € Sy, define ||¢]|—; 1 as

16l = sup {29

)
gesi. gl

j=0,1.

The following discrete version of Gronwall’s lemma will be used in our
subsequent analysis. For a proof, we refer to Pani et al. [12].

Lemma 5.1. If&, > 0, oy > a1, B =2 0 and &, < ap +
S0 Bi&j. then & < amexp(30g B)).

Let n™ = U™ — u}. Then, from (1.6) and (1.8), ™ satisfies

(51577”7 X)h + Ah(tnv 77"7 X)
n—1

(5.1) =k Bultn,t;;17,X) + Qi (un)(X) + (7", X)n,
J=0
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where 7" = u}, — Ouf, and Q% (up)(X) = kZ;:Ol Bh(tn,tj;uib,x) —
fot" Bi(tn, 8;un(s),X) ds. Define §* = kY7 /. Clearly, 0, = n"
and 7° = 0.

Multiply (1.8) by k and then sum with respect to n from 1 to m with
1<n<m<N to have

m m n—1
(5.2) U™ X0 +E > Ap(tn; U™ X) = k> Y > Biltn, t;;U7,X)
: n=1 n=1 j=0
+ (Pruo, X)n-

Integrate (1.6) from 0 to ¢ to obtain
t
(5.3) (un(t), X)n +/ An(s:un(s), X) ds
0

t s
= (Phuo,x)h—l—/ / Br(s, T;un(1), X) dr ds.
o Jo

Using (5.3) at t = ¢,, and (5.2), we find that

m n—1

@™ 00+ k> An(tn;n™,X) = K2 Y > Bultn, tysn7, X)
n=1 n=1 j=0

+ Q7 (un(X) + @ (un) (X),

where

m t7n
QN (un)(X) = —k ZAh(tn;uZ,X) +/O +Ap(s;un(s), X) ds,

n=1
and )
Q5 n)(X) = k>3 Bulta,tj;ui,, X)
n=1 j=0
tm s
— / / Bp(s, m;up(1), X) dr ds.

0 0

Note that

m

B An(t; 0™ %) = Antm; 17, X) = k> (0AR) (ta; 1", X),

n=1 n=1
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where (0A)(tn; ) = k7 Aw(tn; ) — Ap(tn_1;-,-)] is the backward
difference quotient of Ay (¢,-,-) with respect to first variable at t = t,,.
Hence, we obtain

(gtﬁma X)h + Ah(tm, ﬁm’ X) =k Z(éAh)(tna f}n_l’ X)
n=1

(5.4) m ol

+E2) N Bultn.tjin’,X)

n=1 j=0
+ Q7 (un) (X) + Qp (un) (X).

We shall prove the following lemmas for our subsequent use.

Lemma 5.2. With Q}, Q% and @Tg as above, we have for m =

1 N

ey

Q2 )1+ QB ) -1+ 1@ )] -1
1/2
<c@(i+ (togg) )l

Proof. Using the rectangle quadrature rule, it follows that

2’

Q% (un)(X)| =

S [ e -9 At ) s
g/1s|[Ah(s;uhs(s),X)+Ahs(8;uh(s)ax)]|d3

0
03 [ im0 + A 5), ) s
j=2"/ti-1

t1
< C/ slllunlly + lunslla] ds| x|y
0

m t;
+0k2/ (lunlly + lluns ] dsllXx][x
j=27ti-1

t1 1/2
sck( / s[||uh||%+|uhs||%]ds) Xl
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+Ck2(/ —ds>1/2
-([:ww@ﬁ+wwwﬂwfﬂwn

J

Apply Theorem 2.2 to obtain

N
)
1/2
(E;/ lllunll? + llunsl12)d )}
1
sm@mm+(mk)
tm 1/2
-(A wmﬁ+wmﬂm)}
1\ 1/2
gcdﬁ+@gg )MML

Similarly, using the left rectangle rule, we derive the required estimate
for Q5. Finally, we note that

@mw»1ﬁ<mﬂwm+(

Q5 (un)( i@g up)(
hz/znmma>m

tm
—/ / By (s, T;un(7), X) dr ds|.
o Jo

Again, using the estimate of Q% (u) and the right rectangle rule for the
second term on the righthand side, we complete the rest of the proof.
O
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Lemma 5.3. There is a constant C' independent of k such that, for
n=1,...,N,

» noo 1\ /2 2
I+ 3011 < ok (14 (1og ) ) Tl

j=1

Proof. Taking X = 7™ in (5.4) and using the fact (O™, ™)), =
(1/2)0:l5™ 17 + (k/2)[10y7™ |17, we obtain

15 A Am o am k a ~m
5 O™ + An(tms ™ 0™) + 5 1100 7
m B m n—1 )
= kY QAR ;™0™ + K2 Y D Bultn, tjin?,7™)
n=1 n=1 j=0

+ QU (un) (™) + Qp (un) (™).

Since 7 = 0, we now have for m = 1,

o ~ —1 o
1717 + Nkl 1F < k(IQA un) | —1n + 1Qp (wn) | -1, lI7" -

An application of Young’s inequality yields

~ ~ —1
(5.5) 17 1* + Kl 17 < CElIQA (un)l2 1 5 + 1Qp (un)lIZ 1 1]-

For m > 2, we note that

m n—1 m n—1
k? Z Z By(tn, tjsn ,X) = k? Z Z Bh(tn, tj; 0, X)
n=1j=0 n=2 j=1
=k Z Bh(tna tn—l; ﬁn_lv X)
n=2
m n—1 B
— k23 D (0B (st ),
n=2 j=1

where (02Bp)(tn,tj;+ ) = k7Y B(tn,tj;++) — B(tn,tj_1;-,-)] is the
backward difference quotient with respect to the second variable at
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t = t;, and hence we obtain
]- a Am A - AN — AN
3 O™+ el 1 < [k 3 1 il
n=1
m n—1
+E2Y O P ™
n=2 j=1

+ ([1Q% (un) | -1,n + ||@’§(uh)||1’h)|ﬁm||1].

Multiply by 2k and then sum m from 2 to [ with m <[ < N to find
that

7' + & Z 7™ (I3
m n—1

ol + S Y S5 e

m=2n=1 m=2n=2 j=1
l l
—m
S QR )P an + kS T <uh>|2_1,h]
m=2 m=2

Add E|7*|% to both sides of the above equation and use (5.5) to
obtain

l
QNP+ k Y A

m=1

< c[k Z QR o+ [T ) 4B 5 3 Wh}

= m=1n=1
Finally, use Lemma 5.2 and then apply the discrete version of Gron-
wall’s lemma to complete the rest of the proof. a

Lemma 5.4. For ¢ > 0, constants Cy exist depending on € and Co
such that

n _ » 1\ /2y 2
EX 61 + 1l < a1+ (tox ) ) ol
j=1

+ Cock y 82|13

J=1
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Proof. Choose X = t,,n™ in (5.4) and use identity

2t Ap(tms 1™ 1™) = Oultm An(tms 0 A’”?ﬁm)] + tnk Ap (tm; 0™, ™)
—tm— 1(8Ah)( ATt
_Ah( m 1,ﬁm 1)7

to obtain
(5.6)

1z NN tm A
tnlln™ [ + 5 Oultm An(ts 0™ ™)) + - kAR (b O™, O™

m n—1

Z n 1777m)+k2zzthh(tn7tj;nj7nm)

n=1 j=0
5 [tm—1(OAR) (b ™, A" Ap (b 77 )]
[QA (un) (tm™) + Qp (un) (tmn™)]
:Il+12+13+14.
For m =1, use of Young’s inequality yields
(5.7)  ktalln'|* + ta|lqll3

—1
< CekIQa(un) 2y 5 + 1@ (un)l2 1 1] + ekti|In' |-
For m > 2, we note that

1

m n—1

k2 Z Z thh(tn7tj;77j777m)

n=2 j=0

m n—1

= k2 Z Z thh(tna tj; 5tﬁj7 nm)

n=2 j=1

m
=k Z thh(tny tnfl; ’f]”_lu nm)
n=2

m n—1

=2 0 tm(02Br) (tas ts ¥ ™).

n=2 j=1
For I and I, we have

m n—1

n € m
1]+ L2 < C)R* DD Il + S tmln™ I3

n=2 j=1
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The term I3 can be written as
L] < CTIA™ 1T+t llg™ -

Further, for I, an application of Young’s inequality yields

[L1] < CEUQE @I 5+ 15 (un) 21 4] + 52, 0™ I

After substituting we now sum (5.6) with respect to m from 2 to [ to
obtain

l
kY ™12+t

m=2

-1
<>[t1|| W S SO kS
m=1

m=2n=1

l -1
kY (QR ()21 p + Q5 (un)Z10) + Y tmllﬁmlﬂ
m=2

m=1

+eC Z tonlln™ 13-

Now the term kt;||n'||> may be added to both sides of the above in-
equality and then use (5.7), Lemmas 5.2-5.3 and the discrete Gronwall’s
lemma to complete the rest of the proof. ]

Lemma 5.5. With 7" = wup(t,) — Oyun(ty), the following estimates
hold true.

(2) 51 7711215 < Clluoll3-
(b) ZJ 1 ]HTJH2 1,h +Z] 1 jHTjHQ < Ckty HUOHI

Proof. We write 77 as

(5.8) Tﬂ'zé/ (5 — 11 unss (s) ds.

tj—1
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Differentiating (1.6) with respect to ¢, we find that
(unte(t), X)n = — An(t; une(t), X) — Ane(t;un(t), X) + Ba(t, t; un(t), X)

t
+ / By (t, s;un(s), X) ds.
0

It now follows that

letnee ()1 < c[nuh(t)nl @l o+ [ (o)l ds]

Thus, using the above estimate, we obtain

, 1 [
171200 < 5 [ sllunse(s)IR s

tj71

tj S
<c / s{llun(8)12 + lluna()]2 + / lun ()12 dr} ds,
tj—1

and by Theorem 2.2,

ZIT”HQ W<€ [ s+ )17+ [ ()13 s

< Clluoll3,

which yields (a). To estimate (b), since (s — t;_1)t; < ks for s €
[tj—1,t;], we have

n n t.:
. 1 J
> 12 <) %/ (5 = tj—1)*t5 |lunss(s)]2 1, ds
j=1 j=1 tj—1

tn S
< Ck / {lun()[2 + uns() 2 + / lun ()12 dr} ds
S CtnkHuOH%

Further, we note that

n

SOEIFP = (85 + 3kt + 3k + k)| 72
- e

=L+ L+I+1,.
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From (5.8), we have for Iy
k- 7 s 2
I < 5;/ts lunss(s)2 ds

k tn
<5 [ S o) ds < Chtalluo.
0

Similarly, we obtain
12 + 13 S C’k:tn||u0||%

Finally to estimate I, we have
tn
Iy < k2/ 82 ||unss(8)]|? ds < Ck>{Jul|?.
0

Altogether the above estimates now imply (b), and this completes the
proof. i

Lemma 5.6. With n™ as above, a constant C' exists independent of
k and may depend on T such that

. n o 1\ 1/2\ 2 ,
™12+ &> 77|13 < C(D)k( 1+ log [luoll7-

J=1

Proof. Taking X = 7" in (5.1), use of identity (O™, ") =
(1/2)0:[In"™ 7] + (k/2)[10im™ ||}, leads to

1= k. =

LB ]+ Antuin ) + & oo

n—1

< I l-valln™ e+ Ch Dl [l e+ 1Q% (wn) -1l 1

j=0
Sum n from 1 to m and apply Young’s inequality to obtain

P+ kS 2 < c[k-z 11 1

n=1 n=1

R P kD IQB ()i

m—1 n m :|
n=1 j=1 n=1
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Use Lemmas 5.2, 5.5 and then apply the discrete Gronwall’s lemma to
complete the rest of the proof. mi

Below we shall obtain an estimate for 7™ in L°(L?).

Lemma 5.7. With n™ as above, we have for n™, n > 1,

n 1/2 2

. 1

Bl + k321 < i (1+ (log ) ) Tl
j=1

Proof. Setting X = t2n™ in (5.1) and using identity
to (O™ 0" n

LB I )+ 2 181 = a1 = £
= 5 Ocltnlln™ ] + == 10en™ Il = taalln™ Ml = 5 0™ la,

we obtain
1z n n n kt% AR ()
iat[tiﬂﬂ 3]+t2 A (tn;n™ )+7 0™ |17
n—1
=2(" ")+ k Z 2 Bp(tn, tj;n’,n™)
=0

_ k. o
+ Qb (un) (") + taa 0" G + 50" -

For n = 1, we have at once

(5.9 0P+ k0T < CRIEITHZ L + 1Q5 (un) 2 4]-

For n > 2, we note that

n—1

n—1
k Z t%Bh(tnv tj; 77j7 77") =k Z t?lBh(t’l'L’ tj; 5t77jﬂ ﬂn)
=0 j=1

= t?th(tnv tn—1; ﬁnila 77”)

n—1

-k Z ti(52Bh)(tnatj; ﬁjilvnn)a

j=1
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and hence, summing for n from 2 to m we have

toln™ P+(2¢ = )k Y 65 |ln" I3

n=2

< Bl |1? + Cle)k Y Ienllr™ 12y n + 1"

n=2

m n—1
LRy [kz 1702 19 (an) |21

n=2 j=1

+ Ok Y ftaalln™ P+ K2

n=2

Choose ¢ so that (2¢ —¢) > 0. Now add kt?||n!||? to both sides of
the above inequality and use (5.9). Finally, an application of Lemmas
5.2-5.6 completes the rest of the proof. ni

Remark 5.1. In fact we now have from Lemmas 5.4 and 5.7

n _ » 1\ 1/2\ 2
5100 K61+ a1 < O (14 (tog ) ) ol
j=1

In order to prove the L>°(H™) estimate of ™, the following lemmas will
prove convenient.

Lemma 5.8. A constant C' exists independent of k such that the
following estimate

no 1\ 1/2 2
e 1007 P+ 1 < )1+ (toe ) ) ual?

j=1

holds.
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Proof. Take X = 9yn™ in (5.1) and obtain

Y 15 n k 9,.n 9,..Nn
||3t77"||i+§3t[14h(tn;77n>7] )]+§Ah(tn;3ﬂ7 ,0m™)
n—1
=", 0m™")n+k Y Bp(tn,ti;n’,om"
(5.11) (", 0™ ) z_: n( 351175 O )
7=0
+ 0:[QF (un) (™)) = (BeQ (un)) (" ™)
1 -
+ 5 @A) (i ).

For n = 1, we find that

(5.12) k19 12+ 0117 < CIEIITHP + Q5 (un) |21 4)-
For n > 2, we note that
m n—1
ZZB}L tn7tj777 atn = kZBh tn7tn 1,7 —175”7”)
n=2 j=1 n=2
m n—1 _ B
— k) > (0aBn) (st O™
n=2 j=1
=11+ I5.

The terms I; and I> can be rewritten as

Il Bh( m 17 71,7lm) _kZBh(tn;tnfl;nnilannil)

n=2

—k Z[(ngh)(tny tnfl; ﬁn_27 77”_1)

n=2
+ (éQBh)(tnflv tn—1; 7771—2’ ﬂn_l)],

and

=—k22 Z (2B (tn, ti; 7, 0m™)

j=1 n=j+1
m—1 B ) m—1 B ) ‘
—k Y (0aBu)(tws ty; 0™ + k> (2Ba) (b, 5370
j:l =
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where (921 Bp)(tn, tj; -, ) = k= [(02Bn) (tn, tj; - -) = (02 Bn) (tn—1, tj5 -, )]
is the backward difference quotient of (02 B) with respect to the first
variable. Hence, summing (5.11) with respect to n from 2 to m and
using (5.12), we obtain

(5.13)
B 10 1P + ™13
n=1
m m—1
<C {k DA+ R 11T+ 1QE (wn) 21 s + 1QF wa) 1210
n=1 n=1
m B m—1
+ kD 0@ ) Z 1+ kD ™15+ 1™ I3 -
n=2 n=1

As in Pani et al. [10, p. 1100], rewrite
(5.14) B:(Q (un))(X) = k7 QE " (un) (X) + Qp, 5 (un) (),

where (01, By,) is the backward difference quotient of By, with respect
to the first variable. Apply Lemma 5.2 (replacing By, by 01 By, for the
second term) to obtain

10:(Q (wn))ll-1,n < Q" (un)ll-1,n + Q55 (un)l|-1,n

1 1/2

Note that ||77||* < (1/k) f:’il s?||unss(s)||? ds, and hence use Theo-
rem 2.2 to find that

m tm
EY I < / 5% ||unss (s)]|* ds < Clluolf3-
n=1 0

Using Lemma 5.2, for the third and fourth terms on the righthand side
of (5.13), Lemma 5.1 and (5.10), now leads to

mo . . 1 1/2\ 2 m—1 .
e 10+ I < (14 (tog g ) ) ol + 8 X 71
n=1

n=1
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Finally, apply the discrete Gronwall’s lemma to complete the rest of
the proof. mi

Lemma 5.9. With n™ as above, there is a constant C' such that

n - § 1\ /2y 2
E 101 4t < (14 (1o ) ) ol
j=1
holds.

Proof. The proof will proceed as in Lemma 5.8 taking X = t,0,n"
n (5.1). For the sake of clarity, we shall present a short proof of this
lemma. In view of Lemma 5.8, it is enough to consider the first and fifth
terms on the right of (5.13) as these terms lead to a loss of accuracy in
k. The first term in the present case is of the form

m m tn
kY a7 < CZ/ (5 — tn_1)?tn|[tunss(s)||? ds.
n=1 n=1"7tn—1

Since (s — tp—1)t, < sk for s € [t,,—1,tn], we have

Sl < Ok / || (5)|2 ds < ChlJuo]2.
n=1

Similarly, the fifth term in the present case is of the form
kX o tn—1]|0:(Q% (un))|2 1.n- Note that

tn a
£/2 1017 () ()] = ‘/ (5 — ) 51/216 (B (tn, s;un(s), X)] ds
‘n, 1

< Ck/t s (llun ()11 + luns(s)ll) dsll x|
n—1

Then, use of Theorem 2.2 yields
lztn IQE " )||%1,h

tn

<CI<:Z/ (lun(s) 12 + luns (s)]2) ds

tm
< Ck/o s([lun ()1 + lluns(s)3) ds
< Cklluoll7.
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Applying Lemma 5.2, replacing By, by 0By, we obtain

B 1\ /2
Q) < Ok(1+ (1og ) )il

Hence,

k Z tnfl‘lgt(Q%(uh))Hgl,h

n=2
1\ 1/2\ 2
< Cklluo||} + CK? (1 - (log E) ) l[aao]|3
1\ /2y 2
< Ck(l + <1og %) ) ol
and this completes the proof. O

The following lemma yields an estimate for ||n™||;.

Lemma 5.10. The following estimate holds for n™, n > 1,

. o 1\ /2 2
thé‘»II@mJIIQHiln"H?SCtn’“Q(H <logE> ) ol

j=1

Proof.  The proof is very similar to that of Lemma 5.9. Setting
X = t29;n™ in (5.1) and using identities

25 Ap(tn; ™, Oin™) = Oe[ts A (tn; 0™, n™)) + ty kAn (tn; O™, On'™)
— b5 (DAR) (b ")
— (317 _y 4 3ktn—1 + k) An(t; " 0" ),
and
t5 Q% (un)(0im™) = O[t3, Q% (un) (™)) — £, 1 (8:Q (un)) (")
— (3th_y + 3kt + k) QR (un) ("),
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we proceed as in Lemma 5.9 and apply Lemmas 5.1-5.9 to obtain the
desired estimates, and this completes the proof. ]

We are now in a position to prove the main result of this section.

Theorem 5.1. Let u be the exact solution of (1.1) and U™ the
backward Euler approximation defined by (1.8). Then, for n > 1, we
have

(a) [|U™ = ()]l < C(T)ta"*(h? + k(1 +1og(1/k))Y2)[[uo |1,
(b) U™ = u(ty)[ly < C(T)t; (h+ k(L + (log(1/k))"/?))|luol|1.-
Further, for any € > 0, there is a constant C. such that

()

IU™ = wu(tn)lloo < Ch?~5t5 |luolln
+ Cllog h|'?kt, (1 + (log(1/k))"/?)|luol |1

Proof. We write U™ —u(t,) as U™ —u(t,) = n+e(t,). The estimates
(a) and (b) follow from Theorem 4.1 and Lemmas 5.7 and 5.10. For
the estimation of (c¢), we have from (2.5) and Lemma 5.10

1\ /2
Il < Cllog P21 < Cliogf#he? (14 (1053 ) ol
and this in combination with Theorem 4.2 completes the proof. ]
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