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THE EXTRAPOLATION METHOD FOR TWO-
DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS

BASED ON THE ASYMPTOTIC EXPANSION
OF ITERATED GALERKIN SOLUTIONS

GUOQIANG HAN AND RUIFANG WANG

ABSTRACT. In this paper we study the numerical solution
of two-dimensional Volterra integral equations by Galerkin
and the iterated Galerkin method. Asymptotic error expan-
sion of the iterated Galerkin solution is obtained. We show
that when piecewise polynomials of πp−1,q−1 are used, the it-
erated Galerkin solution admits an error expansion in powers
of the stepsizes h and k, beginning with terms in h2p and k2q .
Thus, Richardson’s extrapolation can be performed based on
this error expansion, and this will increase the accuracy of
the numerical solution greatly. The theoretical results are
confirmed by some numerical experiments.

1. Introduction. In this paper we are concerned with the Galerkin
method and the iterated Galerkin method for the two-dimensional
Volterra integral equation of the second kind

(1.1) u(x, y) = g(x, y)+
∫ x

0

∫ y

0

K(x, y, t, s)u(t, s) dt ds, (x, y) ∈ D,

where g(x, y), K(x, y, t, s) are given continuous functions defined, re-
spectively, on D = [0, X] × [0, Y ] and E = {(x, y, t, s) : 0 ≤ t ≤
x ≤ X, 0 ≤ s ≤ y ≤ Y }. It follows from the classical theory of
Volterra (see, for example, [2], [3]) that (1.1) possesses a unique so-
lution u∗(x, y) ∈ C(D). Especially when g and K are r times con-
tinuously differentiable on D and E, respectively, then u∗ is r times
continuously differentiable on D.
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Let
(Ku)(x, y) =

∫ x

0

∫ y

0

K(x, y, t, s)u(t, s) dt ds.

Then equation (1.1) becomes

(1.2) u = Ku+ g.

The study of superconvergence properties of numerical solutions for
Volterra integral equations and methods for accelerating the conver-
gence orders has received considerable attention since the early 1980’s
(see [1], [2], [4] [7], [11], [12] and the references therein). In a recent
paper [5], Brunner, Lin and Zhang studied the Richardson extrapo-
lation method and two defect correction schemes by an interpolation
post-processing technique for the numerical solution of one-dimensional
linear Volterra integral equations by iterated finite element methods.
Brunner and Kauthen [3] introduced collocation and iterated colloca-
tion methods for two-dimensional linear Volterra integral equations.
They gave an analysis of global and local convergence properties of
the collocation methods and the iterated collocation methods, and de-
rived results on attainable orders of global convergence and local su-
perconvergence. In [7], [6], asymptotic error expansions of iterated
collocation solutions for two-dimensional linear and nonlinear Volterra
integral equations were obtained, respectively. In this paper we discuss
the Galerkin method and the iterated Galerkin method for equation
(1.1). The asymptotic error expansion for the iterated Galerkin solu-
tion of (1.1) is obtained. We show that when piecewise polynomials
of πp−1,q−1 are used, the iterated Galerkin solution admits an error
expansion in powers of the stepsizes h and k, beginning with terms in
h2p and k2q. Thus, Richardson’s extrapolation can be performed on
the numerical solution, and this will increase the accuracy of the nu-
merical solution greatly. The theoretical results are confirmed by some
numerical experiments.

2. The asymptotic error expansion. Let ∆(1)
M and ∆(2)

N denote,
respectively, equidistant partitions of [0, X] and [0, Y ]

∆(1)
M : 0 = x0 < x1 < · · · < xM = X,

and

∆(2)
N : 0 = y0 < y1 < · · · < yN = Y,
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h = (xi+1 − xi) = X/M , k = (yj+1 − yj) = Y/N . h = ck, c is a
constant. These partitions define a grid for D.

∆M,N = ∆(1)
M ×∆(2)

N = {(xm, yn) : 0 ≤ m ≤M, 0 ≤ n ≤ N}.
Set

I
(1)
0 = [x0, x1], I(1)

m = (xm, xm+1], m = 1, 2, . . . ,M − 1,

I
(2)
0 = [y0, y1], I(2)

n = (yn, yn+1], n = 1, 2, . . . , N − 1,

and

Im,n = I(1)
m × I(2)

n , m = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1.

We denote the finite element space by

S
(−1)
p−1,q−1(∆M,N ) = {u : u|Im,n

= um,n ∈ πp−1,q−1,

0 ≤ m ≤M − 1, 0 ≤ n ≤ N − 1}.
Here πp−1,q−1 denotes the space of real polynomials of degree p− 1 in
x and degree q − 1 in y.

We use the superscript (−1) in the notation for the above finite
element space to emphasize that it is not a subspace of C(D).

The Galerkin method for solving (1.2) is defined as follows. Find
uhk ∈ S(−1)

p−1,q−1(∆M,N ) such that

(2.1) (uhk, v) = (g, v) + (Kuhk, v), ∀ v ∈ S(−1)
p−1,q−1(∆M,N ),

where (·, ·) denotes the usual inner product in L2(D).

Let Phk denote the orthogonal projection of L2(D) onto
S

(−1)
p−1,q−1(∆M,N ). Then problem (2.1) can be equivalently rewritten:

Find uhk ∈ S(−1)
p−1,q−1(∆M,N ) such that

(2.2) uhk = Phkg + PhkKu
hk.

Therefore, the iterated Galerkin solution, ũhk, corresponding to the
above Galerkin solution uhk, is given by

(2.3) ũhk(x, y) = g(x, y) + (Kuhk)(x, y), (x, y) ∈ D.
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For the iterated Galerkin solution ũhk, it is straightforward to show
that

(2.4) (I −KPhk)ũhk = g,

and that

(2.5) Phkũ
hk = uhk.

We first give an explicit formula for Phku. Denote the inner product
in the real Hilbert space L2[0, 1] by

(2.6) (u | v) =
∫ 1

0

u(t)v(t) dt.

Let ϕ0, ϕ1, . . . be a sequence of orthogonal polynomials associated with
the inner product (2.6), i.e., ϕi(t) is a polynomial of degree of i, and

(ϕi | ϕj) = δij , i, j ≥ 0.

In fact, let L0(t) = 1,

Li(t) =
1
2ii!

[
di

dti
(t2 − 1)i

]
, i ≥ 1

be the Legendre polynomial of degree i. Then the polynomial ϕi is
related to the Legendre polynomial Li by

ϕi(t) =
√
2i+ 1Li(2t− 1).

Now set
ψj(s) =

√
2j + 1Lj(2s− 1).

Define

ϕim(x) =

{
h−1/2ϕi((x− xm)/h) x ∈ [xm, xm+1]

0 x ∈ [0, X] \ [xm, xm+1]

and

ψjn(y) =

{
k−1/2ψj((y − yn)/k) y ∈ [yn, yn+1]

0 y ∈ [0, Y ] \ [yn, yn+1].
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Then the functions {ϕim(x)ψjn(y)}, 0 ≤ i ≤ p− 1, 0 ≤ m ≤ M − 1,
0 ≤ j ≤ q − 1 and 0 ≤ n ≤ N − 1, form an orthogonal basis for
S

(−1)
p−1,q−1(∆M,N ), therefore

(2.7) (Phku)(x, y) =
p−1∑
i=0

q−1∑
j=0

M−1∑
m=0

N−1∑
n=0

(ϕimψjn, u)ϕim(x)ψjn(y).

Lemma 1. Let u(x, y) ∈ Cr+1(D), r ≥ max(p, q) be an integer.
Then, for any (x, y) ∈ (xm, xm+1) × (yn, yn+1), m = 0, 1, . . . ,M − 1,
n = 0, 1, . . . , N − 1, we have

(2.8)

Phku(x, y) =
r∑

l=0

l∑
µ=0

hµkl−µu(µ,l−µ)(x, y)Φµ

(
x−xm

h

)
Ψl−µ

(
y−yn

k

)

+O(hr+1 + kr+1),

where

Φµ(τ ) =
∫ 1

0

p−1∑
i=0

ϕi(ξ)ϕi(τ )
(ξ − τ )µ

µ!
dξ

and

Ψν(θ) =
∫ 1

0

q−1∑
j=0

ψj(η)ψj(θ)
(η − θ)ν

ν!
dη.

Proof. Let (x, y) ∈ (xm, xm+1)× (yn, yn+1). From (2.7) we have

Phku(x, y)−u(x, y) =
p−1∑
i=0

q−1∑
j=0

ϕim(x)ψjn(y)

·
∫ xm+1

xm

∫ yn+1

yn

ϕim(t)ψjn(s)[u(t, s)−u(x, y)] dt ds.

Let t = xm + ξh, s = yn + ηk, x = xm + τh and y = yn + θk, then,
expanding u(xm + ξh, yn + ηk) in Taylor series at ξ = τ , η = θ and
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writing it as polynomials in h and k we obtain

Phku(x, y)− u(x, y)

=
∫ 1

0

∫ 1

0

p−1∑
i=0

ϕi(ξ)ϕi(τ )
q−1∑
j=0

ψj(η)ψj(θ)

· [u(xm + ξh, yn + ηk)− u(xm + τh, yn + θk)] dξ dη

=
r∑

l=1

l∑
µ=0

hµkl−µu(µ,l−µ)(x, y)
∫ 1

0

p−1∑
i=0

ϕi(ξ)ϕi(τ )
(ξ − τ )µ

µ!
dξ

·
∫ 1

0

q−1∑
j=0

ψj(η)ψj(θ)
(η − θ)l−µ

(l − µ)!
dη +O(hr+1 + kr+1)

=
r∑

l=1

l∑
µ=0

hµkl−µu(µ,l−µ)(x, y)Φµ

(
x− xm

h

)
Ψl−µ

(
y − yn

k

)

+O(hr+1 + kr+1).

The lemma is proved.

Using the Christoffel-Darboux identity [8, p. 342],

(2.9)
p−1∑
i=0

ϕi(ξ)ϕi(τ ) =
ap−1

ap
· ϕp(ξ)ϕp−1(τ )− ϕp−1(ξ)ϕp(τ )

ξ − τ
,

where ap denotes the leading coefficient of the polynomial ϕp(x). Note
that ϕ0, ϕ1, . . . is a sequence of orthogonal polynomials, and it is easy
to show that

Φµ(τ ) = 0, 1 ≤ µ ≤ p− 1,

and

Ψν(τ ) = 0, 1 ≤ ν ≤ q − 1.

From Lemma 1 we can obtain the following corollary.

Corollary 1. Let u(x, y) ∈ Cr+1(D), r ≥ max(p, q) be an integer.
Then, for any (x, y) ∈ (xm, xm+1) × (yn, yn+1), m = 0, 1, . . . ,M − 1,
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n = 0, 1, . . . , N − 1, we have

(Phk − I)u(x, y) =
r∑

µ=p

hµu(µ,0)(x, y)Φµ

(
x− xm

h

)

+
r∑

ν=q

kνu(0,ν)(x, y)Ψν

(
y − yn

k

)

+
r−q∑
µ=p

r−µ∑
ν=q

hµkνu(µ,ν)(x, y)Φµ

(
x−xm

h

)
Ψν

(
y−yn

k

)

+O(hr+1 + kr+1),

where Φµ(τ ), Ψν(θ) are defined in Lemma 1.

Lemma 2. Let V (x, y) =
∑r

i=0

∑r−i
j=0 h

ikjVi,j(x, y), Vi,j(x, y) ∈
Cr+1−i−j(D), i = 0, 1, . . . , r, j = 0, 1, . . . , r−i. Then, for any (x, y) ∈
(xm, xm+1)× (yn, yn+1), m = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1, we
have

PhkV (x, y) = V0,0(x, y) +
r∑

i=0

r−i∑
j=0

hikj Ṽi,j

(
x, y,

x− xm

h
,
y − yn

k

)

+O(hr+1 + kr+1),

where Ṽ0,0(x, y, t, s) = 0, for i 
= 0 or j 
= 0, Ṽi,j(x, y, t, s) =∑i
µ=0

∑j
ν=0 V

(µ,ν)
i−µ,j−ν(x, y)Φµ(t)Ψν(s).

Proof. For any (x, y) ∈ (xm, xm+1) × (yn, yn+1), from Lemma 1 we
have

(2.10)

PhkV (x, y) =
r∑

i=0

r−i∑
j=0

hikjPhkVi,j(x, y)

=
r∑

i=0

r−i∑
j=0

hikj

r−i−j∑
µ=0

r−i−j−µ∑
ν=0

hµkνV
(µ,ν)
i,j (x, y)

· Φµ

(
x− xm

h

)
Ψν

(
y − yn

k

)
+O(hr+1 + kr+1).
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Write (2.10) as polynomials in h and k:

PhkV (x, y) =
r∑

i=0

r−i∑
j=0

hikj
i∑

µ=0

j∑
ν=0

V
(µ,ν)
i−µ,j−ν(x, y)

· Φµ

(
x− xm

h

)
Ψν

(
y − yn

k

)
+O(hr+1 + kr+1).

Now let Ṽ0,0(x, y, t, s) = 0 and, for i 
= 0 or j 
= 0,

Ṽi,j(x, y, t, s) =
i∑

µ=0

j∑
ν=0

V
(µ,ν)
i−µ,j−ν(x, y)Φµ(t)Ψν(s)

we can obtain Lemma 2.

Lemma 3 (Euler-MacLaurin summation formula). Let f(x, y) ∈
Cr+1(D), 0 ≤ τ ≤ 1, 0 ≤ θ ≤ 1. Then

hk
m−1∑
µ=0

n−1∑
ν=0

f(xµ + τh, yν + θk)

=
r∑

i=0

r−i∑
j=0

hikj Bi(τ )
i!

Bj(θ)
j!

[f (i−1,j−1)(x, y)]xm yn

x=0,y=0

+O(hr+1 + kr+1)

where Bj(t) are Bernoulli polynomials, [f (−1,−1)(x, y)]xm yn

x=0,y=0 =∫ xm

0

∫ yn

0
f(x, y) dx dy, [f(x, y)]xm yn

x=0,y=0=f(xm, yn)−f(xm, 0)−f(0, yn)+
f(0, 0).

Proof. To establish the above expression, we use the general one-
dimensional Euler-MacLaurin summation formula

(∗) h
m−1∑
µ=0

g(xµ + τh) =
r∑

i=0

hi Bi(τ )
i!

[g(i−1)(x, y)]xm
x=0 +O(hr+1)

valid for 0 ≤ τ ≤ 1, see [10, p. 377]. Here Bi is the Bernoulli
polynomial of degree i, [g(−1)(x, y)]xm

x=0 =
∫ xm

0
g(x) dx, for i ≥ 0,

[g(i)(x)]xm
x=0 = g(i)(xm)− g(i)(0).
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Using the summation formula (∗), we find that

hk

m−1∑
µ=0

n−1∑
ν=0

f(xµ + τh, yν + θk)

= k

n−1∑
ν=0

r∑
i=0

hi Bi(τ )
i!

[f (i−1,0)(x, y)]xm
x=0 +O(hr+1)

=
r∑

i=0

r−i∑
j=0

hikj Bi(τ )
i!

Bj(θ)
j!

[f (i−1,j−1)(x, y)]xm yn

x=0,y=0

+O(hr+1 + kr+1),

which gives the result.

Next we turn to discussing the main theorem in this section, the
asymptotic expansion theorem.

Theorem 1. Suppose that the hypotheses of Lemma 2 are satisfied
and K(x, y, t, s) ∈ Cr+1(E). Then, for any (x, y) ∈ ∆M,N , we have

(2.11)

(KPhkV )(x, y)

=
∫ x

0

∫ y

0

K(x, y, t, s)V0,0(t, s) dt ds

+
r∑

i=0

r−i∑
j=0

hikj
i∑

α=0

j∑
β=0

∫ 1

0

∫ 1

0

Bα(ξ)
α!

Bβ(η)
β!

·
[

∂α+β−2

∂tα−1∂sβ−1

(
K(x, y, t, s)Ṽi−α,j−β(t, s, ξ, η)

)]xm yn

t=0,s=0

dξ dη

+O(hr+1 + kr+1).

Proof. Let (x, y) = (xm, yn) be a point on the grid ∆M,N . According
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to Lemma 2, we have

(KPhkV )(x, y) =
m−1∑
µ=0

n−1∑
ν=0

∫ xµ+1

xµ

∫ yν+1

yν

K(x, y, t, s)PhkV (t, s) dt ds

=
∫ x

0

∫ y

0

K(x, y, t, s)V0,0(t, s) dt ds

+
r∑

i=0

r−i∑
j=0

hikj
m−1∑
µ=0

n−1∑
ν=0

{ ∫ xµ+1

xµ

∫ yν+1

yν

·
[
K(x, y, t, s)Ṽi,j

(
t, s,

t−xµ

h
,
s−yν

k

)]
dt ds

}

+O(hr+1 + kr+1).

Let t = xµ + ξh, s = yν + ηk, then

(2.12)
(KPhkV )(x, y)

= (KV0,0)(x, y)

+
r∑

i=0

r−i∑
j=0

hikj

∫ 1

0

∫ 1

0

hk

m−1∑
µ=0

n−1∑
ν=0

· [K(x, y, xµ + ξh, yν + ηk)Ṽi,j(xµ + ξh, yν + ηk, ξ, η)] dξ dη

+O(hr+1 + kr+1).

Using Lemma 3 we find

hk
m−1∑
µ=0

n−1∑
ν=0

K(x, y, xµ + ξh, yν + ηk)Ṽi,j(xµ + ξh, yν + ηk, ξ, η)

=
r−i−j∑
α=0

r−i−j−α∑
β=0

hαkβBα(ξ)
α!

Bβ(η)
β!

·
[

∂α+β−2

∂tα−1∂sβ−1

(
K(x, y, t, s)Ṽi,j(t, s, ξ, η)

)]xm yn

t=0,s=0

+O(hr+1−i−j + kr+1−i−j).

Substituting this expression into (2.12) and writing it as polynomials
in h and k, we can obtain Theorem 1.
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From Lemma 2 we know

V (x, y) =
r∑

i=0

r−i∑
j=0

hikjVi,j(x, y).

Subtracting this expression from (2.11), we obtain
(2.13′)
V (x, y)− (KPhkV )(x, y)

= V0,0(x, y)−
∫ x

0

∫ y

0

K(x, y, t, s)V0,0(t, s) dt ds

+
r∑

p=1

∑
i+j=p

hikj

(
Vi,j(x, y)−

i∑
α=0

j∑
β=0

∫ 1

0

∫ 1

0

Bα(ξ)
α!

Bβ(η)
β!

·
[

∂α+β−2

∂tα−1∂sβ−1

(
K(x, y, t, s)(Ṽi−α,j−β(t, s, ξ, η))

)]x y

t=0,s=0

dξ dη

)

+O(hr+1 + kr+1).

Note that

Vi,j(x, y)−
i∑

α=0

j∑
β=0

∫ 1

0

∫ 1

0

Bα(ξ)
α!

Bβ(η)
β!

·
[

∂α+β−2

∂tα−1∂sβ−1

(
K(x, y, t, s)(Ṽi−α,j−β(t, s, ξ, η))

)]x y

t=0,s=0

dξ dη

= Vi,j(x, y)−
∫ x

0

∫ y

0

K(x, y, t, s)Vi,j(t, s) dt ds

−
i∑

α=0

j∑
β=0

∫ 1

0

∫ 1

0

Bα(ξ)
α!

Bβ(η)
β!

·
[

∂α+β−2

∂tα−1∂sβ−1

(
K(x, y, t, s)(Ṽi−α,j−β(t, s, ξ, η)

− (1− sgn (α+ β))Vi,j(t, s))
)]x y

t=0,s=0

dξ dη.

Now we choose V0,0(x, y) = u∗(x, y) and Vi,j(x, y), i 
= 0 or j 
= 0, to
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satisfy the following linear Volterra integral equations
(2.13)

Vi,j(x, y)−
∫ x

0

∫ y

0

K(x, y, t, s)Vi,j(t, s) dt ds

=
i∑

α=0

j∑
β=0

∫ 1

0

∫ 1

0

Bα(ξ)
α!

Bβ(η)
β!

·
[

∂α+β−2

∂tα−1∂sβ−1

(
K(x, y, t, s)(Ṽi−α,j−β(t, s, ξ, η)

− (1− sgn (α+β))Vi,j(t, s))
)]x y

t=0,s=0

dξ dη

where

sgn (x) =




−1 x < 0

0 x = 0

1 x > 0.

From (2.13′) we have

(2.14)
V (x, y)− (KPhkV )(x, y) = g(x, y) +O(hr+1 + kr+1),

(x, y) ∈ ∆M,N .

In the following, we will prove that the righthand side of equation
(2.13) does not contain the unknown function Vi,j(t, s) and its deriva-
tives.

For any 0 ≤ i ≤ r, 0 ≤ j ≤ r − i, let:

(i) α 
= 0 or β 
= 0.

In this case, 1−sgn (α+β)=0. From the definition of Ṽi−α,j−β(t, s, ξ, η),
we know that Ṽi−α,j−β(t, s, ξ, η) does not contain the function Vi,j(t, s)
and its derivatives.
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(ii) α = 0 and β = 0.

Ṽi,j(t, s, ξ, η)−Vi,j(t, s) =
i∑

µ=0

j∑
ν=0

V
(µ,ν)
i−µ,j−ν(t, s)Φµ(ξ)Ψν(η)−Vi,j(t, s)

=
j∑

ν=1

V
(0,ν)
i,j−ν(t, s)Ψν(η)

+
i∑

µ=1

j∑
ν=0

V
(µ,ν)
i−µ,j−ν(t, s)Φµ(ξ)Ψν(η)

Ṽi,j(t, s, ξ, η)− Vi,j(t, s) does not contain Vi,j(t, s) and its derivatives.

Combining (i) and (ii), it follows that the righthand side of equation
(2.13) does not contain the function Vi,j(t, s) and its derivatives.

Remark 1. For any 0 ≤ i ≤ r, 0 ≤ j ≤ r − i, it is easily seen that
the righthand side of equation (2.13) is r+1− i− j times continuously
differentiable when g(x, y) ∈ Cr+1(D) and K(x, y, t, s) ∈ Cr+1(E). It
now follows from the classical theory of Volterra (see, e.g., [2]) that
(2.13) possesses a unique solution Vi,j(x, y) ∈ Cr+1−i−j(D).

Theorem 2. Let g(x, y) ∈ Cr+1(D), K(x, y, t, s) ∈ Cr+1(E) and
u∗(x, y) be a solution of (1.1). Then, for sufficiently large M and N ,
the iterated Galerkin solution in mesh points ũhk(x, y), (x, y) ∈ ∆M,N ,
can be expanded as
(2.15)

ũhk(x, y) = u∗(x, y) +
[r/2]∑
i=p

h2iV2i,0(x, y) +
[r/2]∑
j=q

k2jV0,2j(x, y)

+
[r/2]−q∑

i=p

[r/2]−i∑
j=q

h2ik2jV2i,2j(x, y) +O(hr+1 + kr+1),

(x, y) ∈ ∆M,N

where the Vi,j(x, y), i 
= 0 or j 
= 0, satisfy the equations of (2.13).

Proof. For any mesh point (x, y) = (xm, yn) ∈ ∆M,N , let η(x, y) =
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V (x, y)− ũhk(x, y). Subtracting (2.4) from (2.14), we obtain

(2.16) (I −KPhk) η (x, y) = O(hr+1 + kr+1), (x, y) ∈ ∆M,N .

The operator series KPhk converges uniformly to K as h → 0+ and
k → 0+. Note that (I − K)−1 exists and is uniformly bounded. It
follows that (I − KPhk)−1 exists and is uniformly bounded for all
sufficiently small values h and k. So we have, for any mesh point,

ũhk(x, y) =
r∑

i=0

r−i∑
j=0

hikjVi,j(x, y) +O(hr+1 + kr+1),

(x, y) ∈ ∆M,N .

Thus, to complete the proof, we need only verify that Vi,j(x, y) = 0 if
i is odd or i ≤ 2p− 1, j is odd or j ≤ 2q − 1.

Let Rp−1(τ, ξ) =
∑p−1

m=0 ϕm(τ )ϕm(ξ). It is easily seen that the
righthand side of equation (2.13) is related to the sum of products
of ∫ 1

0

∫ 1

0

Bα(ξ)Rp−1(τ, ξ)(τ − ξ)µ dτ dξ

0 ≤ α ≤ i, 0 ≤ µ ≤ i− α,∫ 1

0

∫ 1

0

Bβ(η)Rq−1(θ, η)(θ − η)ν dθ dη,

θ ≤ β ≤ j, 0 ≤ ν ≤ j − β,

and the derivatives of Vi−α−µ,j−β−ν(x, y).

Note that
Lm(−τ ) = (−1)mLm(τ ),

ϕm(τ ) =
√
2m+ 1Lm(2τ − 1),

Bα(ξ) = (−1)αBα(1− ξ),

it follows that
ϕm(1− τ ) = (−1)mϕm(τ ),

Rp−1(1− τ, 1− ξ) = Rp−1(τ, ξ).

Hence, if τ ′ = 1− τ and ξ′ = 1− ξ, then

Bα(ξ)Rp−1(τ, ξ)(τ − ξ)µ = (−1)α+µBα(ξ′)Rp−1(τ ′, ξ′)(τ ′ − ξ′)µ,
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which leads to the formula

Aαµ =
∫ 1

0

∫ 1

0

Bα(ξ)Rp−1(τ, ξ)(τ − ξ)µ dτ dξ = (−1)α+µAαµ.

Now suppose that i is odd. If α + µ is odd, then Aαµ = 0. If α + µ
is even, then i − α − µ < i is odd. By using the induction method
we know that Vi−α−µ,j−β−ν(x, y) = 0. Therefore, we know that the
righthand term of equation (2.13) is equal to zero whenever i is odd.
So Vi,j(x, y) = 0 whenever i is odd.

To prove Vi,j(x, y) = 0 for i ≤ 2p − 1, use the Christoffel-Darboux
identity

Rp−1(τ, ξ) =
ap−1

ap
· ϕp(ξ)ϕp−1(τ )− ϕp−1(ξ)ϕp(τ )

ξ − τ
,

and note that ϕ0(τ ), ϕ1(τ ), . . . is a sequence of orthogonal polynomials.
Thus we can show that

Aαµ =
∫ 1

0

∫ 1

0

Bα(ξ)Rp−1(τ, ξ)(τ − ξ)µ dτ dξ = 0,

0 ≤ α ≤ i, 0 ≤ µ ≤ i− α,

hence Vi,j(x, y) = 0 whenever i ≤ 2p− 1.

Similarly we have Vi,j(x, y) = 0 if j is odd or j ≤ 2q−1. The theorem
is thus proved.

For the two-dimensional nonlinear Volterra integral equation of the
second kind,
(2.17)

u(x, y) = g(x, y) +
∫ x

0

∫ y

0

K(x, y, t, s, u(t, s)) dt ds, (x, y) ∈ D

where g(x, y), K(x, y, t, s, u) are given continuous functions defined,
respectively, on D = [0, X]× [0, Y ] and E = {(x, y, t, s, u) : 0 ≤ t ≤ x ≤
X, 0 ≤ s ≤ y ≤ Y,−∞ < u < +∞}, with K(x, y, t, s, u) nonlinear in
u. We can obtain a similar asymptotic error expansion of the iterated
Galerkin solution for equation (2.17).
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We choose W0,0(x, y) = u∗(x, y) and Wi,j(x, y), i 
= 0 or j 
= 0, to
satisfy the following linear Volterra integral equations
(2.18)

Wi,j(x, y)−
∫ x

0

∫ y

0

Ku(x, y, t, s, u∗(t, s))Wi,j(t, s) dt ds

=
i∑

α=0

j∑
β=0

∫ 1

0

∫ 1

0

Bα(ξ)
α!

Bβ(η)
β!

·
[

∂α+β−2

∂tα−1∂sβ−1

(
Ku(x, y, t, s, u∗(t, s))(W̃i−α,j−β(t, s, ξ, η)

− (1−sgn (α+β))Wi,j(t, s))+fi−α,j−β(x, y, t, s, ξ, η)
)]x y

t=0,s=0

dξ dη.

where W̃0,0(x, y, t, s) = 0 for i 
= 0 or j 
= 0, W̃i,j(x, y, t, s) =∑i
µ=0

∑j
ν=0W

(µ,ν)
i−µ,j−ν(x, y)Φµ(t)Ψν(s).

fi,j(x, y, t, s, ξ, η) =
i+j∑
p=2

1
p!

(
∂

∂u

)p

K(x, y, t, s, u∗(t, s))

·
( ∑

α1+···+αp=i

∑
β1+···+βp=j

p∏
n=1

W̃αn,βn
(t, s, ξ, η)

)
.

In analogy to Theorem 2, we obtain the following results.

Theorem 3. Let g(x, y) ∈ Cr+1(D), K(x, y, t, s, u) ∈ Cr+1(E)
and u∗(x, y) be a solution of (2.17). Then, for sufficiently large M
and N , the iterated Galerkin solution at the mesh points, ũhk(x, y),
(x, y) ∈ ∆M,N , can be expanded as

(2.19)

ũhk(x, y) = u∗(x, y) +
[r/2]∑
i=p

h2iW2i,0(x, y) +
[r/2]∑
j=q

k2jW0,2j(x, y)

+
[r/2]−q∑

i=p

[r/2]−i∑
j=q

h2ik2jW2i,2j(x, y)

+O(hr+1 + kr+1), (x, y) ∈ ∆M,N
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where the Wi,j(x, y), i 
= 0 or j 
= 0, satisfy the equations of (2.18).

Remark 2. Note that the asymptotic error expansion (2.19) (or (2.15))
holds only at the points of the mesh ∆M,N . The Richardson extrapola-
tion method can be used only at the same points. But by virtue of (3.2),
similar to [5], we can also construct the global extrapolation approxi-
mation of order 4 or higher order by an interpolation post-processing
method [9].

Remark 3. Based on asymptotic expansion, similarly to [5], an
iterative correction method for the interpolation post-processing for
the iterated Galerkin solution ũhk(x, y) of equation (1.1) (or (2.17)),
corresponding to the piecewise constant finite element solution can also
be given. The iterative technique is of high precision in that the (n−1)-
fold application of the iterative correction method will lead to a global
convergence rate of O(h2n + k2n).

Remark 4. In [6], asymptotic error expansion of the iterated colloca-
tion solution at mesh points for two-dimensional nonlinear Volterra in-
tegral equations was obtained. We showed that when piecewise polyno-
mials of πp−1,q−1 are used, the collocation points are the Gauss points,
the iterated collocation solution admits an error expansion in even pow-
ers of the stepsizes h and k, beginning with terms in h2p and k2q. In
this paper we prove that the iterated Galerkin solution at the mesh
points for equation (1.1) (or (2.17)) can also be expanded in even pow-
ers of the stepsizes h and k. These theoretical results are confirmed by
some numerical experiments in Section 3.

3. Numerical illustration.

Example 3.1 (Brunner [3]). Consider the linear Volterra integral
equation

(3.1)
u(x, y) = g(x, y) +

∫ x

0

∫ y

0

k(x, y, t, s)u(t, s) dt ds,

(x, y) ∈ [0, 1]× [0, 1]

where k(x, y, t, s) = exp(−(x−t)) cos(y−s), g(x, y) = exp(−x)(cos(y)−
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x(sin(y) + y cos(y))/2). Its exact solution is u∗(x, y) = exp(−x) cos(y).

Example 3.2. Consider the nonlinear Volterra integral equation

(3.2)
u(x, y) = g(x, y) +

∫ x

0

∫ y

0

(x+ y − t− s)u2(t, s) dt ds,

(x, y) ∈ [0, 1]× [0, 1]

where
g(x, y) = x+ y − xy(x3 + 4x2y + 4xy2 + y3)/12.

Its exact solution is u∗(x, y) = x+ y.

The solutions of (3.1) and (3.2) will be approximated by the iterated
Galerkin method in the space S(−1)

p−1,q−1(∆M,N ), with p = q = 1. This
space is the piecewise constant finite element space. We choose uniform
partitions with M = N , h = k = 1/N , N = 2, 4, 8, 16, 32, 64. The
maximum absolute errors of Example 3.1 and Example 3.2 are given in
Table 1 and Table 2, respectively.

Denoting by ũhk(x, y) the iterated Galerkin approximation with re-
spect to this partition, using Theorem 2 (or Theorem 3) for m =
1, 2, . . . , we derive the Richardson extrapolation formulas

(3.3) ũhk
m (x, y) =

4mũ
h/2,k/2
m−1 (x, y)− ũhk

m−1(x, y)
4m − 1

, (x, y) ∈ ∆M,N ,

where ũhk
0 (x, y) = ũhk(x, y).

These Richardson extrapolations yield a series of new approximations
which generate approximations of higher and higher order. In fact, from
the asymptotic error expansion, it is easily seen that the function ũhk

m

approximates u∗ with accuracy of order O(h2+2m + k2+2m).

The following tables exhibit a summary of the predicted convergence
orders.

For ease of notation, we define in the following tables: E
(m)
N =

max{|u∗(x, y)− ũhk
m (x, y)| : (x, y) ∈ ∆M,N} and α(i) = log2(E

(i)
N /E

(i)
2N )

has been used as an estimate of the convergence order.
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TABLE 1. Maximum absolute errors of Example 3.1.

N E
(0)
N α(0) E

(1)
N α(1) E

(2)
N α(2)

2 3.1407E-3 2.0027 4.8694E-5 3.9727 1.0005E-7 5.9750
4 7.8370E-4 2.0050 3.1016E-6 4.0094 1.5906E-9 5.9857
8 1.9525E-4 1.9967 1.9259E-7 4.0020 2.5100E-11 5.9946
16 4.8925E-5 2.0001 1.2020E-8 4.0011 3.9366E-13
32 1.2231E-5 2.0002 7.5073E-10
64 3.0573E-6

TABLE 2. Maximum absolute errors of Example 3.2.

N E
(0)
N α(0) E

(1)
N α(1) E

(2)
N α(2)

2 7.8266E-2 2.1342 2.3170E-3 4.0993 1.0277E-5 6.2009
4 1.7829E-2 2.0332 1.3518E-4 4.0225 1.3970E-7 6.0478
8 4.3558E-3 2.0083 8.3177E-6 4.0055 2.1116E-9 6.0137
16 1.0827E-3 2.0021 5.1788E-7 4.0013 3.2682E-11
32 2.7029E-4 2.0005 3.2338E-8
64 6.7548E-5
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