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AN INVERSION FORMULA IN
ENERGY DEPENDENT SCATTERING

YUTAKA KAMIMURA

ABSTRACT. The paper discusses the inverse scattering
problem to recover the potentials of an energy dependent
Schrödinger equation from the scattering data. A new inver-
sion formula is developed, by which the potentials are recov-
ered directly through the solution of a Marchenko equation.
It requires no differentiability assumptions on potentials.

1. Introduction. This paper is concerned with inverse scattering
problems for the energy dependent Schrödinger equation

(1.1) f ′′ + [k2 − (U(x) + 2kQ(x))]f = 0, x ∈ I, ′′ =
d2

dx2
,

where I = [0,∞) or I = R and U(x), Q(x) are real-valued functions
defined on I. As a special case where U(x) ≡ −Q(x)2, equation (1.1)
contains the time-independent Klein-Gordon equation for a particle
of zero mass and of energy k subject to a static potential Q(x). In
the case of Q = 0, equation (1.1) is the radial (or one-dimensional)
time-independent Schrödinger equation, where k2 denotes the energy
and U(x) is the interaction potential. Besides the quantum scattering
theory, equation (1.1) appears in a class of inverse spectral problems;
recently the author has applied an inverse scattering theory for (1.1)
with U = 0 to the reconstruction of an oceanic flow from the data of
an observable property in the ocean. That will be left to a later paper
[10].

The validity of the Marchenko method (see Marchenko [13] and
Chadan and Sabatier [3]) in the inverse scattering theory for relativistic
scattering problems was first suggested in Cornille [4] and Weiss and
Scharf [19]. More systematically, Jaulent and Jean [8, 9] and Jaulent
[5, 6] treated the inverse scattering problem for equation (1.1) and
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have established a procedure through which the potentials U and Q
are recovered from the scattering data, under the assumption that
U and Q are real-valued, differentiable functions belonging to spaces
of integrable functions together with the derivatives, when there are
no bound states. They derived a nonlinear differential equation for∫∞

x
Q(η) dη from the Marchenko equation and, based upon it, proved

that the potentials are uniquely determined from the scattering data.
Sattinger and Szmigielski [15] simplified the Jaulent-Jean procedure to
show the existence of isospectral flows in a nonlinear evolution equation.
Though we confine ourselves to the case U(x), Q(x) real-valued, the
Marchenko method has been applied also to the case where U(x) is real
and Q(x) is purely imaginary, see Jaulent [7], Aktosun, Klaus, and van
der Mee [1, 2], and furthermore to the energy dependent Schrödinger
equation with a positive mass parameter, see Kaup [11], Tsutsumi [17],
Sattinger and Szmigielski [16], van der Mee and Pivovarchik [18].

The purpose of the present paper is to develop a new recovery
formula of potentials from the scattering data. The formula has two
advantages. In the first place it requires no auxiliary differential
equations for the unknown potentials; we can recover the potentials
directly from the solution of a Marchenko equation. Secondly it requires
no differentiability assumptions on potentials; we just assume that

(1 + |x|)U(x), Q(x) ∈ L1(I),(1.2)
Q(x) ∈ BC(I),(1.3)

where L1(I) denotes the space of integrable functions on I, while BC(I)
denotes that of bounded, continuous functions there.

Let us describe the recovery formula in the case of I = [0,∞) without
embarking on the details, which we shall defer to later sections. First
we assume (1.2). Then, for each k in Im k ≥ 0, equation (1.1) admits
a unique solution f(x, k) with the asymptotic behavior

f(x, k) = eikx[1 + o(1)], x→ ∞.

The solution, which is referred to as the Jost solution, can be expressed
as

(1.4) f(x, k) = f(x, 0)eikx − ik

∫ ∞
x

K(x, t)eikt dt, Im k ≥ 0,
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in terms of a continuous, bounded function K(x, t) defined on 0 ≤
x ≤ t < ∞ with the derivative Kt(x, t) that belongs to L1(x,∞)
as a function of t. The function K(x, t), which is referred to as the
transformation kernel, is connected with the potential Q through the
relation

(1.5) f(x, 0) +K(x, x) = e
i
∫ ∞

x
Q(η) dη

, 0 ≤ x <∞.

The inverse problem we discuss here is: to recover U(x) and Q(x) in
(1.1) from the scattering data

S(k) :=
f(0, k)
f(0, k)

on the real axis, where f(0, k) denotes the complex conjugate of f(0, k).
Let us assume that f(0, 0) �= 0. Then, the data S(k) can be expressed
as

(1.6) S(k) = C +
∫ ∞
−∞

F (t)e−ikt dt, k ∈ R

in terms of a complex constant C with absolute value 1 and a function
F (t) ∈ L1(R). The pair (C,F (t)) is uniquely determined from S(k).

We deal with the inverse problem in the absence of bound states. In
other words, we suppose that f(0, k) has no zeros in the upper half-
plane Im k > 0. Then the transformation kernel K(x, t) and F (t) are
connected by a Marchenko equation of the following form:

K(x, t)+
∫ ∞

x

K(x, r)F (r + t) dr+f(x, 0)
∫ ∞

x

F (r+t) dr=0,(1.7)

x ≤ t.

This integral equation admits a unique solution K(x, ·) in the space
BC[x,∞) for each x ≥ 0. The solvability holds even if the third term
in (1.7) is replaced by a bounded continuous function. In particular,
the integral equation

(1.8) Δ(x, t) +
∫ ∞

x

Δ(x, r)F (r + t) dr +
∫ ∞

x

F (r + t) dr = 0, x ≤ t,



476 Y. KAMIMURA

has a unique solution Δ(x, t) in the space. Since f(x, 0) is real-valued
and the solution of (1.7) is unique, we obtain

(1.9) K(x, t) = f(x, 0)Δ(x, t).

We now employ the assumption (1.3). Then the derivative Kt(x, t) is
connected with the potentials U,Q through the formula

2Kt(x, x)e
−i

∫ ∞
x

Q(η) dη =
∫ ∞

x

[U(r) +Q(r)2] dr − iQ(x),(1.10)

0 ≤ x <∞.

This equality is a key to our approach; by a computation with (1.5),
(1.9) and (1.10) we deduce the formula

(1.11)
2Δt(x, x)

1 + Δ(x, x)
=

∫ ∞
x

[U(r) +Q(r)2] dr − iQ(x), 0 ≤ x <∞.

This formula recovers the potential U,Q in (1.1) with I = [0,∞)
from the solution Δ(x, t) of Marchenko’s equation of the form (1.8).
Actually, Q(x) is determined from the imaginary part of it:

Q(x) = −2 Im
Δt(x, x)

1 + Δ(x, x)
,

and, in turn, U(x) is determined by taking the derivative of the real
part of it:

U(x) = −2
d

dx
Re

(
Δt(x, x)

1 + Δ(x, x)

)
−Q(x)2.

In this way, for the Schrödinger equation (1.1) in the case I = [0,∞),
we arrive at the following result:

Theorem 1.1. If, for given data S(k) on R, there exists a pair
(U,Q) of real-valued functions U(x), Q(x) with (1.2), (1.3) for which
f(0, k) satisfies

f(0, k) �= 0, Im k > 0, k = 0;
f(0, k)
f(0, k)

= S(k), k ∈ R,
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then (U,Q) is recovered from S(k) by (1.11), where Δ(x, t) is the
solution of integral equation (1.8) with F defined by (1.6) from S(k).

There are three particular cases where: (I) Q(x) ≡ 0. In this case,
(1.5) combined with (1.9) yields f(x, 0)(1 + Δ(x, x)) = 1. Therefore,
(1.11) is rewritten as

U(x) = −2
d

dx
Kt(x, x).

This is a well-known formula (see [13, page 224]; note that Kt(x, t)
in our terminology is no other than K(x, t) there) in the original
Marchenko theory concerning the (nonrelativistic) inverse scattering
problem. When Q(x) ≡ 0, the transformation kernel K(x, t) and
the function F (t) in (1.6) are real-valued because the scattering data
S(k) has the symmetric relation: S(−k) = S(k). Hence, the original
Marchenko equation is deduced from (1.7) by differentiating it and
performing an integration by parts. In this way we can reproduce the
inverse scattering theory to restore the interaction potential U(x) in
classical quantum mechanics when there are no bound states.

(II) U(x) ≡ −Q(x)2. In this case, formula (1.11) yields

Q(x) = 2i
Δt(x, x)

1 + Δ(x, x)
.

This gives a recovery formula of the potential in the Klein-Gordon
equation from the solution Δ(x, t) of (1.8), originally from the scatter-
ing data S(k), which in k > 0 and k < 0 describes the scattering of the
particle and the anti-particle, respectively. With regard to (1.11), the
Klein-Gordon equation is a peculiar one in the sense that the lefthand
side of it becomes purely imaginary.

(III) U(x) ≡ 0. In this case, Q(x) is determined directly from (1.5)
as

Q(x) = i
d

dx
log(1 +K(x, x)).

Unlike in the general case, where U �= 0, neither the assumption (1.3)
nor the condition f(0, k) �= 0, Im k > 0, k = 0, need be imposed on
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Q(x) because the former is necessary only for (1.10) and the latter is
automatically fulfilled in this case, as will be shown in Appendix C,
where we shall study conditions on the potentials for the assumption of
the absence of bound states to be guaranteed, and prove, by a homotopy
trick, that if there are no bound states for a pair (U, 0) then the situation
is the same for any pair (U,Q) with arbitrary Q ∈ L1(0,∞).

When I = R we can follow the same steps as for the case of I = [0,∞)
and obtain an inversion formula (formulated as Theorem 5.5) by which
the potentials U(x) and Q(x) on R can be recovered from a reflection
coefficient in the S-matrix. It is also derived with no differentiability
assumptions on the potentials.

2. Transformation kernel. In this section we shall establish the
representation (1.4) of the Jost solution to (1.1) and relation (1.5)
for the kernel K(x, t), under the assumption (1.2). If (1 + |x|)U(x),
Q(x) ∈ L1(0, 1), then, for each k in Im k ≥ 0, the equation

(2.1) f ′′ + [k2 − (U(x) + 2kQ(x))]f = 0, 0 < x <∞,

admits a unique solution f(x, k) with asymptotic behavior

(2.2) f(x, k) = eikx[1 + o(1)], x→ ∞.

The solution f(x, k) satisfies

(2.3) f ′(x, k) = ikeikx[1 + o(1)], x→ ∞,

uniformly in Im k ≥ 0. Moreover, for each x ≥ 0, it is holomorphic
with respect to k in the upper half plane Im k > 0 and is continuous
in its closure Im k ≥ 0. The solution f(x, k) is referred to as the Jost
solution of (1.1).

The following lemma establishes the representation (1.4) of the Jost
solution and yields relation (1.5) of the transformation kernel K(x, t).
Let us use the notation

(2.4) σ(x) :=
∫ ∞

x

[(1 + |η|)|U(η)| + 2|Q(η)|] dη.
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Lemma 2.1. Under the assumption (1 + x)U(x), Q(x) ∈ L1(0,∞),
the Jost solution f(x, k) can be expressed as (1.4) in terms of a contin-
uous, bounded function K(x, t) defined on 0 ≤ x ≤ t < ∞. The kernel
K(x, t) is uniquely determined from U(x), Q(x) and

(1) K(x, t) tends to 0 as t→ ∞.

(2) For every x ∈ [0,∞), the transformation kernel K(x, t) is differ-
entiable with respect to t almost everywhere, and the derivative Kt(x, t)
satisfies the inequality

(2.5)
∫ ∞

x

|Kt(x, t)| dt ≤Mσ(x)

with some constant M .

(3) K(x, t) satisfies relation (1.5).

(4) The following identity holds:

(2.6) f(x, k) = e
i
∫ ∞

x
Q(η) dη

eikx +
∫ ∞

x

Kt(x, t)eikt dt, Im k ≥ 0.

In particular,

(2.7) f(0, k) = e
i
∫ ∞
0

Q(η) dη +
∫ ∞

0

Kt(0, t)eikt dt, Im k ≥ 0.

Proof. As was shown in Jaulent and Jean [8, Lemma 4.1], if A(x, t)
satisfies the integral equation

A(x, t) =
1
2

∫ ∞
(x+t)/2

U(s)ei
∫ ∞

s
Q(η) dη

ds(2.8)

− i

2
Q

(
x+ t

2

)
e

i
∫ ∞
(x+t)/2

Q(η) dη

+
1
2

∫ ∞
(x+t)/2

U(s) ds
∫ t+s−x

s

A(s, u) du

+
1
2

∫ (x+t)/2

x

U(s) ds
∫ t+s−x

t+x−s

A(s, u) du

+ i

∫ ∞
x

Q(s)A(s, t+ s− x) ds

− i

∫ (x+t)/2

x

Q(s)A(s, t+ x− s) ds,
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then the Jost solution f(x, k) is represented as

(2.9) f(x, k) = e
i
∫ ∞

x
Q(η) dη

eikx +
∫ ∞

x

A(x, t)eikt dt, Im k ≥ 0.

We solve equation (2.8) in the space L1(x,∞) for each x ≥ 0. For the
purpose we set

A0(x, t) =
1
2

∫ ∞
(x+t)/2

U(s)ei
∫ ∞

s
Q(η) dη

ds

− i

2
Q

(
x+ t

2

)
e

i
∫ ∞
(x+t)/2

Q(η) dη
,

An(x, t) =
1
2

∫ ∞
(x+t)/2

U(s) ds
∫ t+s−x

s

An−1(s, u) du

+
1
2

∫ (x+t)/2

x

U(s) ds
∫ t+s−x

t+x−s

An−1(s, u) du(2.10)

+ i

∫ ∞
x

Q(s)An−1(s, t+ s− x) ds

− i

∫ (x+t)/2

x

Q(s)An−1(s, t+ x− s) ds.

By the assumption (1+|x|)U(x), Q(x) ∈ L1(0,∞), we have
∫∞

x |A0(x, t)| dt
≤M0σ(x) with some constant M0. Since

∫ ∞
x

dt

{∫ ∞
(x+t)/2

ds

∫ t+s−x

s

du+
∫ (x+t)/2

x

ds

∫ t+s−x

t+x−s

du

}

=
∫ ∞

x

ds

∫ ∞
s

du

∫ u−x+s

u−s+x

dt,

we obtain

1
2

∫ ∞
x

dt

{ ∫ ∞
(x+t)/2

|U(s)| ds
∫ t+s−x

s

|An−1(s, u)| du

+
∫ (x+t)/2

x

|U(s)| ds
∫ t+s−x

t+x−s

|An−1(s, u)| du
}

=
∫ ∞

x

(s− x)|U(s)| ds
∫ ∞

s

|An−1(s, u)| du.
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Moreover, we get

∫ ∞
x

dt

{∫ ∞
x

|Q(s)||An−1(s, t+ s− x)| ds

+
∫ (x+t)/2

x

|Q(s)||An−1(s, t+ x− s)| ds
}

= 2
∫ ∞

x

|Q(s)| ds
∫ ∞

s

|An−1(s, u)| du.

Hence, if

(2.11)
∫ ∞

x

|An−1(x, t)| dt ≤ M0

(n− 1)!
σ(x)n,

then
∫ ∞

x

|An(x, t)| dt ≤
∫ ∞

x

[(s− x)|U(s)| + 2|Q(s)|] ds
∫ ∞

s

|An−1(s, u)| du

≤ M0

(n− 1)!

∫ ∞
x

[(1 + s)|U(s)| + 2|Q(s)|]σ(s)n ds

=
M0

n!
σ(x)n+1.

Therefore, An(x, t) belongs to L1(x,∞) as a function of t for each
x ≥ 0 and satisfies (2.11) for n = 1, 2, . . . . By (2.11), the series∑∞

n=0An(x, t) converges in L1(x,∞) and, moreover, A(x, t) defined
by this series satisfies (2.8) and

(2.12)
∫ ∞

x

|A(x, t)| dt ≤M0σ(x)eσ(x).

We now define a function K(x, t) by

(2.13) K(x, t) = −
∫ ∞

t

A(x, η) dη.

Assertion (1) is direct from this definition. Moreover, we have
Kt(x, t) = A(x, t) for almost every t and, by noting (2.12) and set-
ting M = M0e

σ(0), we obtain (2.5).
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Since K(x, t) → 0 as t → ∞, by performing an integration by parts
in (2.9), it follows that, for Im k ≥ 0,

f(x, k) = e
i
∫ ∞

x
Q(η) dη

eikx +
∫ ∞

x

Kt(x, t)eikt dt

=
(
e

i
∫ ∞

x
Q(η) dη −K(x, x)

)
eikx

− ik

∫ ∞
x

K(x, t)eikt dt.

Therefore, upon setting k = 0, we obtain (1.5) and (1.4).

The uniqueness ofK(x, t) follows from the uniqueness theorem for the
Fourier transform. Actually, if

∫∞
x
K1(x, t)eikt dt =

∫∞
x
K2(x, t)eikt dt,

then, for each η > 0,∫ ∞
x

(K1(x, t) −K2(x, t))e−ηteiξt dt = 0, −∞ < ξ <∞,

where (K1(x, t)−K2(x, t))e−ηt ∈ L1(x,∞). Hence, K1(x, t) = K2(x, t).

3. Separation formula. In this section we shall derive formula
(1.10) which separates Q from (U,Q) in the imaginary part.

Lemma 3.1. We assume, in addition to (1 + |x|)U(x), Q(x) ∈
L1(0,∞), that Q(x) ∈ BC[0,∞), i.e., that Q(x) is a bounded, con-
tinuous function on [0,∞). Then:

(1) Kt(x, t) is a continuous, bounded function on 0 ≤ x ≤ t < 1 as
well as Kt(x, ·) ∈ L1(x,∞).

(2) Kt(x, t) satisfies relation (1.10).

Proof. (1) The function Kt(x, t) = A(x, t) was obtained by A(x, t) =∑∞
n=0An(x, t) as a limit in L1(x,∞). Because of (2.8) and the assump-

tion that Q(x) is continuous on [0,∞), it is shown by induction that
An(x, t) is a continuous function on 0 ≤ x ≤ t <∞.

We use notation (2.4) and take M1 so large that

1
2

∫ ∞
0

|U(r)| dr +
1
2

sup
0≤x<∞

|Q(x)| ≤M1, σ(0) + 1 ≤M1
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and that (2.11) holds with M1 instead of M0. Then we obtain by
induction the estimate

(3.1) |An(x, t)| ≤ Mn+1
1

n!
σ(x)n, 0 ≤ x ≤ t <∞; n = 0, 1, 2, . . . .

In fact, clearly |A0(x, t)| ≤ M1, and moreover, assuming that (3.1)
holds for n− 1, we have, for 0 ≤ x ≤ t <∞,

|An(x, t)| ≤
∫ ∞

x

|U(s)| ds
∫ ∞

s

|An−1(s, u)| du

+ 2
∫ ∞

x

|Q(s)| Mn
1

(n− 1)!
σ(s)n−1 ds

≤
∫ ∞

x

|U(s)| M1

(n− 1)!
σ(s)n

+ 2
∫ ∞

x

|Q(s)| Mn
1

(n− 1)!
σ(s)n−1 ds

≤ {σ(0)M1 +Mn
1 }

1
(n− 1)!

∫ ∞
x

{|U(s)| + 2|Q(s)|}σ(s)n−1 ds

≤ {σ(0)M1 +Mn
1 }

1
n!
σ(x)n

≤ {σ(0) + 1}Mn
1

1
n!
σ(x)n

≤ Mn+1
1

n!
σ(x)n.

Estimate (3.1) shows that
∑∞

n=0An(x, t) converges uniformly in 0 ≤
x ≤ t < ∞. Hence, A(x, t) is continuous in 0 ≤ x ≤ t < ∞ and is
majorized by M1e

M1σ(0) there.

(2) From (2.8) and assertion (1) of this lemma, we have

(3.2) Kt(x, x) − i

∫ ∞
x

Q(s)Kt(s, s) ds =
1
2

∫ ∞
x

U(s)ei
∫ ∞

s
Q(η) dη

ds

− i

2
Q(x)ei

∫ ∞
x

Q(η) dη
.

It is easy to see that if h(x) ∈ BC[0,∞), then the integral equation

φ(x) − i

∫ ∞
x

Q(s)φ(s) ds = h(x), 0 ≤ x <∞
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admits a unique solution in the space BC[0,∞), and the solution is
given by

φ(x) = h(x) + i

∫ ∞
x

Q(r)e−i
∫ ∞

r
Q(η) dη

h(r) dr ei
∫ ∞

x
Q(η) dη

.

Hence equation (3.2) is solved as

Kt(x, x) =
1
2

∫ ∞
x

U(s)ei
∫ ∞

s
Q(η) dη

ds− i

2
Q(x)ei

∫ ∞
x

Q(η) dη

+
i

2

∫ ∞
x

Q(r)e−i
∫ ∞

r
Q(η) dη

dr

×
∫ ∞

r

U(s)ei
∫ ∞

s
Q(η) dη

ds e
i
∫ ∞

x
Q(η) dη

+
1
2

∫ ∞
x

Q(r)2 dr ei
∫ ∞

x
Q(η) dη

.

But, by integrating by parts, the second term of the righthand side can
be rewritten as

−1
2

∫ ∞
x

U(s)ei
∫ ∞

s
Q(η) dη

ds+
1
2

∫ ∞
x

U(r) drei
∫ ∞

x Q(η) dη.

Therefore, we obtain

Kt(x, x) =
1
2

{
− iQ(x) +

∫ ∞
x

U(r) dr +
∫ ∞

x

Q(r)2 dr
}
e

i
∫ ∞

x
Q(η) dη

.

This yields (1.10).

4. Inversion formula: on the half-line. In this section we shall
establish inversion formula (1.11) for equation (1.1) in the case where
I = [0,∞). For each k ∈ R, the complex conjugate function f(x, k)
satisfies (2.1) for each k ∈ R as well as f(x, k), because U and Q are
real-valued. With the aid of asymptotic behaviors (2.2) and (2.3), their
Wronskian is computed as

(4.1) W [f(x, k), f(x, k)] = −2ik, k ∈ R.
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Here the Wronskian is defined as W [f, g] := fg′ − f ′g. Identity (4.1)
leads to

(4.2) f(0, k) �= 0, k ∈ R \ {0}.

We assume that f(0, 0) �= 0 and define the scattering data S(k) by

(4.3) S(k) :=
f(0, k)
f(0, k)

, k ∈ R.

Then, by (2.7), the Wiener-Lévy theorem (see, e.g., Paley and Wiener
[14, page 63]) and the convolution theorem, it follows that S(k) is
represented as

(4.4) S(k) = e
−2i

∫ ∞
0

Q(η) dη +
∫ ∞
−∞

F (t)e−ikt dt, k ∈ R

in terms of a function F (t) in L1(R). Thus, we obtain expression
(1.6). In view of the Riemann-Lebesgue lemma, the constant C is
determined from S(k) as the limit of S(k) as |k| → ∞. Hence, by
means of the uniqueness theorem for the Fourier transform, F (t) is
uniquely determined from S(k).

We now derive a Marchenko equation (1.7). It is an integral form
of the Marchenko equation, see equation (4.10), that was derived by
Jaulent and Jean [8] under a differentiability assumption on Q.

Lemma 4.1. Let (1 + |x|)U(x), Q(x) ∈ L1(0,∞), and assume that

(4.5) f(0, 0) �= 0; f(0, k) �= 0, Im k > 0.

Then the transformation kernel K(x, t) and a function F (t) ∈ L1(R)
defined by (4.4) satisfy integral equation (1.7), i.e.,

K(x, t) +
∫ ∞

x

K(x, r)F (r + t) dr + f(x, 0)
∫ ∞

x

F (r + t) dr = 0

x ≤ t.

Proof. Let ϕ(x, k) be a solution of (2.1) satisfying the initial condition

(4.6) ϕ(0, k) = 0, ϕ′(0, k) = 1.
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The function ϕ(x, k) is represented as

2ikϕ(x, k) = e
−i

∫ x

0
Q(η) dη

eikx − e
i
∫ x

0
Q(η) dη

e−ikx(4.7)

−
∫ x

−x

H(x, t)eikt dt,

in terms of a function H(x, t) belonging to L1(−x, x) as a function of
t for each x ≥ 0. We leave the proof of this fact to Appendix A.

Since, in view of (4.1), f(x, k) and f(x, k) form a fundamental system
of solutions to equation (2.1) for any k ∈ R \ {0}, we obtain

ϕ(x, k) = − 1
2ik

{f(0, k)f(x, k)− f(0, k)f(x, k)}, k ∈ R \ {0},

and hence, we arrive at

(4.8) −2ik
ϕ(x, k)
f(0, k)

= f(x, k) − S(k)f(x, k), k ∈ R.

This remains valid for k = 0 because of S(0) = 1 and f(x, 0) = f(x, 0).

Insertion of (2.6) and (4.4) in (4.8) shows that

− 2ik
ϕ(x, k)
f(0, k)

+ e
−i

∫ ∞
0

Q(η) dη{e−i
∫ x

0
Q(η) dη

eikx − e
i
∫ x

0
Q(η) dη

e−ikx}

= −ei
∫ ∞

x
Q(η) dη

eikx

∫ ∞
−∞

F (t)e−ikt dt− e
−2i

∫ ∞
0

Q(η) dη
∫ ∞

x

Kt(x, t)eikt dt

+
∫ ∞

x

Kt(x, t)e−ikt dt−
∫ ∞
−∞

F (t)e−ikt dt

∫ ∞
x

Kt(x, t)eikt dt.

Let us denote the lefthand side by l(x, k, t):

l(x, t, k) := −2ik
ϕ(x, k)
f(0, k)

+ e
−i

∫ ∞
0

Q(η) dη{e−i
∫

x

0
Q(η) dη

eikx − e
i
∫

x

0
Q(η) dη

e−ikx},
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and rewrite the righthand side. Then we obtain

l(x, t, k) = −ei
∫ ∞

x
Q(η) dη

∫ ∞
−∞

F (x+ t)e−ikt dt

− e
−2i

∫ ∞
0

Q(η) dη
∫ −x

−∞
Kt(x,−t)e−ikt dt

+
∫ ∞

x

Kt(x, t)e−ikt dt

−
∫ ∞
−∞

( ∫ ∞
x

Kt(x, r)F (r + t) dr
)
e−ikt dt.

On the other hand, by (4.7) and (2.7), l(x, t, k) is rewritten as

l(x, t, k) =
1

f(0, k)

( ∫ x

−x

H(x, t)eikt dt+
∫ ∞

0

Kt(0, t)eikt dt

× e
−i

∫ ∞
0

Q(η) dη{e−i
∫ x

0
Q(η) dη

eikx − e
i
∫ x

0
Q(η) dη

e−ikx}
)

=

∫∞
−x H1(x, t)eikt dt

ei
∫∞
0 Q(η) dη +

∫∞
0 Kt(0, t)eikt dt

,

where H1(x, t) is a function of t in L1(−x,∞). By (4.2) and the
assumption (4.5), it follows that f(0, k) �= 0 for Im k ≥ 0. Therefore,
by the Paley-Wiener theorem, see Paley and Wiener [14, Theorem 18],
there exists a function H2(t) ∈ L1(0,∞) such that

1
f(0, k)

=
1

ei
∫∞
0 Q(η) dη

+
∫ ∞

0

Kt(0, t)eikt dt

= e
−i

∫ ∞
0

Q(η) dη +
∫ ∞

0

H2(t)eikt dt,

and hence, by the convolution theorem, the function l(x, t, k) is rewrit-
ten as

l(x, t, k) =
∫ ∞
−x

H1(x, t)eikt dt

(
e
−i

∫ ∞
0

Q(η) dη +
∫ ∞

0

H2(t)eikt dt

)

=
∫ ∞
−x

H3(x, t)eikt dt =
∫ x

−∞
H3(x,−t)e−ikt dt.
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Comparing this with (4.9) leads to

(4.10) Kt(x, t) −
∫ ∞

x

Kt(x, r)F (r + t) dr

− e
i
∫ ∞

x
Q(η) dη

F (x+ t) = 0, x < t.

By integrating both sides of this equation with respect to t from t to
∞ and noting the assertion (1) in Lemma 2.1, we get

K(x, t) +
∫ ∞

x

Kt(x, r) dr
∫ ∞

r+t

F (η) dη + e
i
∫ ∞

x
Q(η) dη

∫ ∞
x+t

F (η) dη = 0.

Hence, integrating by parts and using (1.5), we obtain (1.7).

We now consider an integral equation

(4.11) K(x, t) +
∫ ∞

x

K(x, r)F (r + t) dr = J(x, t), x ≤ t <∞,

with a function J(x, ·) in the space BC[x,∞). As is easily seen, a
solution K(x, ·) in L∞(x,∞) belongs also to BC[0,∞). Hence, by the
Riesz-Schauder theory, for the solvability of (4.11), it suffices to show
that the homogeneous adjoint equation

(4.12) L(x, t) +
∫ ∞

x

L(x, r)F (r + t) dr = 0, x < t <∞

has no nonzero solutions in the space L1(x,∞), where we view this
space as a real linear space. Provided that F (t) ∈ L1(R) is a function
for which S(k) in (1.6) with some constant C satisfies |S(k)| = 1 and
indS(k) = 0 (assumption (4.5) leads to this circumstance), there are
no nontrivial solutions to (4.12) in L1(x,∞). We shall include a proof
of this uniqueness in Appendix B for the convenience of the reader,
though it is essentially due to Jaulent [5, page 370].

The discussion above is summarized as:

Lemma 4.2. Under the same assumptions as in Lemma 4.1, given a
function J(x, ·) ∈ BC[x,∞), equation (4.11) admits a unique solution
K(x, ·) in the space BC[x,∞) for each x ≥ 0.
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This lemma assures that there exists a unique solution Δ(x, ·) of
equation (1.8) in the space BC[x,∞). Since f(x, 0) is real-valued,
which follows from the assumption that U(x) is real-valued and the
uniqueness of the Jost solutions, the function K(x, t) = f(x, 0)Δ(x, t)
satisfies (1.7). This, combined with the uniqueness of solutions to
(4.11), shows that the solution of equation (1.7) is given by (1.9). In
other words, the transformation kernel K(x, t) of (2.1) is written as
(1.9) in terms of the solution Δ(x, t) of a Marchenko equation (1.8).
This observation, together with (1.5), yields

(4.13) f(x, 0)(1 + Δ(x, x)) = e
i
∫ ∞

x
Q(η) dη

.

Notice that, as a consequence of this relation, we get

f(x, 0) �= 0, 1 + Δ(x, x) �= 0, 0 ≤ x <∞,

provided that (1 + |x|)U(x), Q(x) ∈ L1(0,∞) and (4.5).

Use of Lemma 3.1 now shows that the derivative Kt(x, t) satisfies
(1.10) provided that Q(x) ∈ BC[0,∞). Insertion of (1.9) in (1.10)
leads to

2f(x, 0)Δt(x, x)e
−i

∫ ∞
x

Q(η) dη =
∫ ∞

x

[U(r) +Q(r)2] dr − iQ(x),

0 ≤ x <∞.

Hence, by (4.13), we finally obtain (1.11) and Theorem 1.1.

We conclude this section with the following observation, which makes
it clear how the original inverse scattering theory (where Q(x) ≡ 0) is
included in that with energy dependent potentials.

Theorem 4.3. Under the assumptions and notations as in Theo-
rem 1.1, the following are equivalent:

(i) Q(x) ≡ 0;

(ii) S(−k) = S(k), k ∈ R;

(iii) F (t) is real-valued;

(iv) Δ(x, t) is real-valued.
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Proof. (i) ⇒ (ii). Assumption (i) leads to the relation f(x, k) =
f(x,−k) of the Jost function. From this relation and definition (4.3),
we easily deduce (ii).

(ii) ⇒ (iii). This follows from (1.6), the Riemann-Lebesgue lemma,
and the uniqueness theorem for the Fourier transform.

(iii) ⇒ (iv). Taking the complex conjugate of (1.8) shows that Δ(x, t)
satisfies (1.8). Because of the uniqueness of solutions to it, we get
Δ(x, t) = Δ(x, t).

(iv) ⇒ (i). This is immediate from formula (1.11).

5. Inversion formula: on the full line. In this section we shall
establish inversion formula (1.11) for equation (1.1) in the case where
I = R, i.e.,

(5.1) f ′′ + [k2 − (U(x) + 2kQ(x))]f = 0, −∞ < x <∞.

Here U(x), Q(x) are real-valued functions defined on R. Let (1 +
|x|)U(x), Q(x) ∈ L1(R), and let f±(x, k) be solutions of (5.1) for each
k in Im k ≥ 0 with the asymptotics

f±(x, k) = e±ikx[1 + o(1)],(5.2)
f±′(x, k) = ±ike±ikx[1 + o(1)], x→ ±∞.

These solutions are obtained by applying the method of successive
approximations to the following integral equations:

(5.3) f±(x, k) = e±ikx −
∫ ±∞

x

sink(x− t)
k

[U(t) + 2kQ(t)]f±(t, k) dt.

The solutions f±(x, k) are holomorphic in the upper half-plane Im k >
0 and continuous in its closure Im k ≥ 0. In view of Lemma 2.1 there
exist continuous, bounded functions K±(x, t) by which f±(x, k) are
represented as

f±(x, k) = e
±i

∫ +∞
x

Q(η) dη
e±ikx +

∫ ±∞
x

K±t (x, t)e±ikt dt(5.4)

Im k ≥ 0,
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where the almost everywhere existing derivatives K±t (x, ·) belong to
L1(x,±∞).

The Jost solutions of (5.1) analytic in the lower half-plane can be
defined as

(5.5) g±(x, k) = f±(x, k̄).

These solutions have the asymptotics

g±(x, k) = e∓ikx[1 + o(1)],(5.6)
g±′(x, k) = ∓ike∓ikx[1 + o(1)], x→ ±∞.

By (5.2) and (5.6), the Wronskian of each pair of the solutions f±(x, k),
g±(x, k) is computed as

W [f±(x, k), g±(x, k)] = ∓2ik, k ∈ R.

Hence, for real k �= 0,

(5.7) f−(x, k) = a(k)g+(x, k) + b(k)f+(x, k),

where

a(k) :=
W [f−(x, k), f+(x, k)]

2ik
,(5.8)

b(k) :=
W [f−(x, k), g+(x, k)]

−2ik
.

It should be noted that a(k) is a boundary value on the real line of a
holomorphic function in the upper half-plane.

By (5.7) and (5.5), we have, for real k �= 0,

(5.9) g−(x, k) = a(k)f+(x, k) + b(k)g+(x, k).

Insertion of this equality and (5.7) in W [f−(x, k), g−(x, k)] = 2ik shows
that

(5.10) |a(k)|2 = 1 + |b(k)|2.
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In a similar fashion for (5.7) one can show that

f+(x, k) = c(k)f−(x, k) + d(k)g−(x, k),

where

c(k) =
W [f+(x, k), g−(x, k)]

2ik
,(5.11)

d(k) =
W [f−(x, k), f+(x, k)]

2ik
.

This, together with (5.8) and (5.5), shows that

(5.12) d(k) = a(k), c(k) = −b(k).

Following the usual manner (see Marchenko [13, Section 3.5], Chadan
and Sabatier [3, Chapter 17]) we now introduce the functions:

s11(k) =
1

a(k)
, s12(k) =

b(k)
a(k)

,(5.13)

s21(k) =
c(k)
d(k)

, s22(k) =
1

d(k)
.

Then, by (5.7), (5.6) and (5.2), we get

ψ←(x, k) :=
f−(x, k)
a(k)

∼
{
e−ikx + s12(k)eikx x→ ∞,
s11(k)e−ikx x→ −∞.

The function ψ←(x, k) is referred to as the scattering solution to
the left; s12(k)eikx represents the reflected wave of the probability
amplitude s12(k) of the unit wave e−ikx incoming from the right.
Similarly, by (4.11), (4.7) and (4.3), we get the scattering solution to
the right:

ψ→(x, k) :=
g+(x, k)
d(k)

∼
{
eikx + s21(k)e−ikx x→ −∞,
s22(k)eikx x→ ∞.

The coefficients s12(k) and s21(k) are called the reflection coefficients;
while s11(k) (= s22(k)) is called the transmission coefficient. Relations
(5.10) and (5.12) are written as

s11(k) = s22(k),(5.14)
|s11(k)|2 + |s12(k)|2 = 1,

s11(k)s21(k) + s12(k)s22(k) = 0
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in terms of the reflection coefficients and the transmission coefficient.
This shows that the S-matrix

(
s11(k) s12(k)
s21(k) s22(k)

)

is unitary.

The inverse problem we shall discuss in this section is to recover U(x)
and Q(x) in (5.1) from the reflection coefficient s12(k). The first step
in our approach to this problem is to establish integral expressions of
the functions a(k), b(k) defined in (5.8):

Lemma 5.1. Let (1 + |x|)U(x), Q(x) ∈ L1(R). Then:

(1) a(k) is expressed as

(5.15) a(k) =
1 − ik

2ik

(
− 2e

i
∫ ∞
−∞ Q(η) dη

+
∫ 0

−∞
G(t)e−ikt dt

)

in terms of a function G(t) ∈ L1(−∞, 0).

(2) b(k) is expressed as

(5.16) b(k) =
1 − ik

2ik

∫ ∞
−∞

H(t)e−ikt dt

in terms of a function H(t) ∈ L1(R).

Proof. By equation (5.3) it follows that, for real k �= 0,

f−(x, k) = e−ikx − e−ikx

2ik

∫ ∞
−∞

[U(t) + 2kQ(t)]f−(t, k)eikt dt

+
eikx

2ik

∫ ∞
−∞

[U(t) + 2kQ(t)]f−(t, k)e−ikt dt+ o(1),

x→ ∞.

On the other hand, by (5.9) and (5.5), we have

f−(x, k) = a(k)e−ikx + b(k)eikx + o(1), x→ ∞.
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A comparison of corresponding terms shows that

a(k)=1− 1
2ik

∫ ∞
−∞

[U(x)+2kQ(x)]f−(x, k)eikxdx,(5.17)

b(k)=
1

2ik

∫ ∞
−∞

[U(x)+2kQ(x)]f−(x, k)e−ikxdx,(5.18)

for real k �= 0.

(1) Insertion in (5.17) of the expression

f−(x, k)eikx = e
i
∫ x

−∞ Q(η) dη −
∫ 0

−∞
K−t (x, t+ x)e−ikt dt,

see (5.4), leads to

a(k) = 1 + i

∫ ∞
−∞

Q(x)e
i
∫ x

−∞ Q(η) dη
dx

− 1
2ik

∫ ∞
−∞

U(x)e
i
∫

x

−∞ Q(η) dη
dx

+
1

2ik

∫ 0

−∞
e−ikt dt×

∫ ∞
−∞

U(x)K−t (x, t+ x) dx

+
1
i

∫ 0

−∞
e−ikt dt×

∫ ∞
−∞

Q(x)K−t (x, t+ x) dx

Hence, observing that

1 + i

∫ ∞
−∞

Q(x)e
i
∫

x

−∞ Q(η) dη
dx = e

i
∫ ∞
−∞ Q(η) dη

,

and setting

α := −2e
i
∫ ∞
−∞ Q(η) dη

,

β := −
∫ ∞
−∞

U(x)e
i
∫

x

−∞ Q(η) dη
dx,

GV (t) :=
∫ ∞
−∞

V (x)K−t (x, t+ x) dx,

V = U,Q,
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we obtain

a(k) = −α
2

+
β

2ik
+

1
2ik

∫ 0

−∞
GU (t)e−ikt dt(5.19)

+
1
i

∫ 0

−∞
GQ(t)e−ikt dt.

The function GU belongs to L1(−∞, 0), because

∫ 0

−∞
dt

∫ ∞
−∞

|U(x)K−t (x, t+ x)| dx

=
∫ ∞
−∞

|U(x)| dx
∫ x

−∞
|K−t (x, t)| dt <∞,

by estimate (2.5) for K−t (x, t). Similarly, GQ ∈ L1(0,∞).

By (5.19) we have

2ik
1 − ik

a(k) = α+
β − α

1 − ik

∫ 0

−∞
GU (t)e−ikt dt

+
2k

1 − ik

∫ 0

−∞
GQ(t)e−ikt dt

= α+
∫ 0

−∞
{(β − α)et + et ∗GU

+ 2iGQ − 2iet ∗GQ}e−ikt dt.

Setting
G(t) = (β − α)et + et ∗GU + 2iGQ − 2iet ∗GQ

completes the proof of (1).

(2) Insertion of (5.4) in (5.18) leads to

2ikb(k) =
∫ ∞
−∞

U(x)
(
e

i
∫

x

−∞ Q(η) dη
e−ikx

−
∫ x

−∞
K−t (x, t)e−ikt dt

)
e−ikx dx

+ 2k
∫ ∞
−∞

Q(x)
(
e

i
∫ x

−∞ Q(η) dη
e−ikx

−
∫ x

−∞
K−t (x, t)e−ikt dt

)
e−ikx dx.
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Since∫ ∞
−∞

U(x)e−ikx dx

∫ x

−∞
K−t (x, t)e−ikt dt

=
∫ ∞
−∞

e−ikt dt

∫ ∞
t/2

U(x)K−t (x, t− x) dx,

we get

(5.20) 2ikb(k) =
∫ ∞
−∞

HU (t)e−ikt dt+ 2k
∫ ∞
−∞

HQ(t)e−ikt dt,

where

HV (t) :=
1
2
V

(
t

2

)
e

i
∫ t/2

−∞ Q(η) dη −
∫ ∞

t/2

V (x)K−t (x, t− x) dx,

V = U,Q.

The function HU belongs to L1(R) because

∫ ∞
−∞

dt

∫ ∞
t/2

|U(x)K−t (x, t− x)| dx

=
∫ ∞
−∞

|U(x)| dx
∫ x

−∞
|K−t (x, t)| dt <∞.

Similarly, HQ ∈ L1(R).

Equation (5.20) yields

2ik
1 − ik

b(k) =
1

1 − ik

∫ ∞
−∞

HU (t)e−ikt dt

+
2k

1 − ik

∫ ∞
−∞

HQ(t)e−ikt dt

=
∫ 0

−∞
ete−ikt dt

∫ ∞
−∞

HU (t)e−ikt dt

+ 2i
(

1 −
∫ 0

−∞
ete−ikt dt

) ∫ ∞
−∞

HQ(t)e−ikt dt

=
∫ ∞
−∞

{et ∗HU + 2iHQ − 2iet ∗HQ}e−ikt dt,
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where et ∗HU denotes the convolution
∫ 0

−∞HU (t− s)es ds. Setting

H(t) = et ∗HU + 2iHQ − 2iet ∗HQ

leads us to (2).

By (5.8) and (5.10), the Wronskian W [f−(x, k), f+(x, k)] does not
vanish at real k �= 0. We assume that it does not vanish either at
k = 0. Under this assumption, we have the following result, which
asserts that the reflection coefficient s12(k) is the Fourier image of a
function in L1(R).

Lemma 5.2. Let (1 + |x|)U(x), Q(x) ∈ L1(R), and assume that
W [f−(x, k), f+(x, k)] does not vanish at k = 0. Then the reflection
coefficient s12(k) is expressed as

(5.21) s12(k) = −
∫ ∞
−∞

R(t)e−ikt dt

in terms of a function R ∈ L1(R).

Proof. By definition (5.13) and Lemma 5.1, we have

s12(k) =
b(k)
a(k)

=
− ∫∞
−∞H(t)e−ikt dt

−2e
i
∫ ∞
−∞ Q(η) dη

+
∫ 0

−∞G(t)e−ikt dt
.

By assumption, the denominator on the righthand side does not vanish
on R. Therefore, by the Wiener-Lévy theorem, there exists a function
G1 ∈ L1(R) such that

(5.22)
1

−2e
i
∫ ∞
−∞ Q(η) dη

+
∫ 0

−∞G(t)e−ikt dt

= −1
2
e
−i

∫ ∞
−∞ Q(η) dη

+
∫ ∞
−∞

G1(t)e−ikt dt.

This, with the aid of the convolution theorem, yields (5.21).
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We now assume that

(5.23) W [f−(x, k), f+(x, k)] �= 0, Im k > 0, k = 0.

This means that there are no bound states in equation (5.1). A
Marchenko equation of the same form as (1.7) can be derived under
this assumption.

Lemma 5.3. Let (1 + |x|)U(x), Q(x) ∈ L1(R), and assume (5.23).
Then K+(x, t) and the function R(t) ∈ L1(R) defined by (5.21) satisfy
the integral equation

(5.24) K+(x, t) +
∫ ∞

x

K+(x, r)R(r + t) dr

+ f+(x, 0)
∫ ∞

x

R(r + t) dr = 0, x ≤ t.

Proof. Relation (5.7) leads to

f−(x, k)
a(k)

− e
−i

∫ ∞
x

Q(η) dη
e−ikx(5.25)

= g+(x, k) − e
−i

∫ ∞
x

Q(η) dη
e−ikx + s12(k)f+(x, k)

for k ∈ R. It follows from (5.4) and (5.5) that

g+(x, k) − e
−i

∫ ∞
x

Q(η) dη
e−ikx =

∫ ∞
x

K+
t (x, t)e−ikt dt.

Hence, by use of (5.4) and (5.21), the righthand side of (5.25) is
computed as

g+(x, k) − e
−i

∫ ∞
x

Q(η) dη
e−ikx + s12(k)f+(x, k)

=
∫ ∞

x

K+
t (x, t)e−ikt dt

−
∫ ∞
−∞

R(t)e−ikt dt

(
e

i
∫ ∞

x
Q(η) dη

eikx +
∫ ∞

x

K+
t (x, t)eikt dt

)

=
∫ ∞

x

K+
t (x, t)e−ikt dt− e

i
∫ ∞
−∞ Q(η) dη

∫ ∞
−∞

R(x+ t)e−ikt dt

−
∫ ∞
−∞

( ∫ ∞
x

K+
t (x, r)R(t + r) dr

)
e−ikt dt.
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This shows that, for each x ∈ R, the right side of (5.25) is the Fourier
transform of the function

(5.26) K+
t (x, t) −

∫ ∞
x

K+
t (x, r)R(r + t) dr − e

i
∫ ∞

x
Q(η) dη

R(x+ t),

which belongs to L1(R) as a function of t.

We next compute the lefthand side of (5.25). Assumption (5.23)
enables us to apply the Paley-Wiener theorem to (5.22) and to find
that the function G1(t) in (5.22) must vanish for t > 0. In addition, by
(5.4), we have

f−(x, k) =
(
e

i
∫ x

−∞ Q(η) dη −
∫ 0

−∞
K−t (x, x+ t)e−ikt dt

)
e−ikx.

Hence, with the aid of (5.15), the first term of (5.25) is computed as

f−(x, k)
a(k)

=
2ik

1 − ik

(
α−1 +

∫ 0

−∞
G1(t)e−ikt dt

)

×
(
e

i
∫ x

−∞ Q(η) dη −
∫ 0

−∞
K−t (x, x + t)e−ikt dt

)
e−ikx

=
(
− 2 + 2

∫ 0

−∞
ete−ikt dt

)(
α−1 +

∫ 0

−∞
G1(t)e−ikt dt

)

×
(
e

i
∫

x

−∞ Q(η) dη −
∫ 0

−∞
K−t (x, x + t)e−ikt dt

)
e−ikx

=
(
e
−i

∫ ∞
x

Q(η) dη +
∫ 0

−∞
Ω(x, t)e−ikt dt

)
e−ikx,

where Ω(x, ·) is a function in L1(−∞, 0) for each x ∈ R. Thus we have

f−(x, k)
a(k)

− e
−i

∫ ∞
x

Q(η) dη
e−ikx =

∫ x

−∞
Ω(x, t− x)e−ikt dt,

where Ω(x, · − x) ∈ L1(−∞, x). This, combined with the fact that the
righthand side of (5.25) is the Fourier transform of (5.26), shows that

(5.27) K+
t (x, t) −

∫ ∞
x

K+
t (x, r)R(r + t) dr

− e
i
∫ ∞

x
Q(η) dη

R(x+ t) = 0, x < t.
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Integrating both sides of this equation, we get

K+(x, t) +
∫ ∞

x

K+
t (x, r) dr

∫ ∞
r+t

R(s) ds

+ e
i
∫ ∞

x
Q(η) dη

∫ ∞
x+t

R(s) ds = 0, x ≤ t.

Performing an integration by parts and observing that

−K+(x, x) + e
i
∫ ∞

x
Q(η) dη = f+(x, 0),

we obtain (5.24).

Our next task is to prove the solvability of a Marchenko equation
(5.24) in the space BC[x,∞). This is reduced to showing that the
corresponding homogeneous equation

(5.28) L(x, t) +
∫ ∞

x

L(x, r)R(r + t) dr = 0, x < t <∞,

has only the trivial solution in the space L1(x,∞), viewed as a real
linear space. As is verified in an analogous manner to that in Marchenko
[13, page 221], a solution L(x, ·) of (5.28) in L1(x,∞) belongs also
to L2(x,∞). Therefore, the absence of nontrivial solutions to (5.28)
follows from a lemma in Jaulent and Jean [9, page 124]. We have
shown:

Lemma 5.4. Under the same assumption as in Lemma 5.3, equation
(5.24) has a unique solution K+(x, ·) in the space BC[x,∞). The
solution is given by

(5.29) K+(x, t) = f+(x, 0)Δ+(x, t)

in terms of the solution Δ+(x, t) of

(5.30) Δ+(x, t) +
∫ ∞

x

Δ+(x, r)R(r + t) dr

+
∫ ∞

x

R(r + t) dr = 0, x ≤ t.
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If we suppose thatQ(x) ∈ BC(R), in addition to (1+|x|)U(x), Q(x) ∈
L1(R), then, by Lemma 3.1, we get

2K+
t (x, x)e−i

∫ ∞
x

Q(η) dη =
∫ ∞

x

[U(r) +Q(r)2] dr − iQ(x), x ∈ R.

Since the discussion in Section 4 for (1.11) now applies verbatim, we
can derive the formula

(5.31)
2Δ+

t (x, x)
1 + Δ+(x, x)

=
∫ ∞

x

[U(r) +Q(r)2] dr − iQ(x), x ∈ R,

and draw the following conclusion.

Theorem 5.5. If there exists a pair (U(x), Q(x)) of real-valued
functions with (1.2), (1.3) (where I = R) and (5.23) which has a
given function s12(k) on R as its reflection coefficient, then (U,Q)
is recovered from s12(k) by (5.31), where Δ+(x, t) is the solution of
integral equation (5.30) with R defined by (5.21) from s12(k).

APPENDIX

A. We shall establish the representation (4.7). Let ϕ(x, k) be a
solution of (2.1) satisfying condition (4.6).

Lemma A.1. Suppose that U(x), Q(x) are locally integrable func-
tions in the interval [0,∞). Then, for any k ∈ C, the solution ϕ(x, k)
can be represented as

(A.1) ϕ(x, k) = ψ0(x)
sin kx
k

+
1
2

∫ x

−x

Φ(x, t)eikt dt,

where ψ0(x) is a solution of ψ′′0 (x) = U(x)ψ0(x) satisfying ψ0(0) = 1,
ψ′0(0) = 0 and the integral kernel Φ(x, t) is a continuous function
defined on −x ≤ t ≤ x. The kernel possesses the following properties:

(1) Φ(x, t) has the following boundary values:

Φ(x, x) = −ψ0(x) + e
−i

∫ x

0
Q(η) dη

,(A.2)

Φ(x,−x) = −ψ0(x) + e
i
∫

x

0
Q(η) dη

.
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(2) Φ(x, t) has the partial derivative Φt(x, t), which belongs to L1(−x, x)
as a function of t for each x ≥ 0.

Proof. A function ϕ(x, k) is the solution of (2.1) satisfying (4.6) if
and only if ϕ(x, k) satisfies the integral equation

(A.3) ϕ(x, k) =
sinkx
k

+
∫ x

0

sink(x− s)
k

[U(s) + 2kQ(s)]ϕ(s, k) ds.

Substituting in (A.3) the righthand member of (A.1) instead of ϕ(x, k),
we get

ψ0(x)
sin kx
k

+
1
2

∫ x

−x

Φ(x, t)eikx dt

=
sin kx
k

+
1
k

∫ x

0

sink(x− s) sin ks
k

[U(s) + 2kQ(s)]ψ0(s) ds

+
1
2k

∫ x

0

sin k(x− s)U(s) ds
∫ s

−s

Φ(s, t)eikt dt

+
∫ x

0

sin k(x− s)Q(s) ds
∫ s

−s

Φ(s, t)eikt dt.

Let J2, J3, J4 denote the second, third and fourth terms on the right-
hand side of (A.4). Observing that

sin k(x− s) sin ks
k

= − i

4

{ ∫ x

2s−x

eikt dt−
∫ x−2s

−x

eikt dt

}
,

and noticing the formula for reversing the order of integration
∫ x

0

ds

∫ x

2s−x

dt−
∫ x

0

ds

∫ x−2s

−x

dt =
∫ x

−x

dt

∫ (x+t)/2

(x−t)/2

ds,

we obtain

J2 = − i

4k

∫ x

−x

eikt dt

∫ (x+t)/2

(x−t)/2

[U(s) + 2kQ(s)]ψ0(s) ds

= − i

4k

∫ x

−x

eikt dt

∫ (x+t)/2

(x−t)/2

U(s)ψ0(s) ds

− i

2

∫ x

−x

eikt dt

∫ (x+t)/2

(x−t)/2

Q(s)ψ0(s) ds.
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But, by an integration by parts, it follows that

i

4k

∫ x

−x

eikt dt

∫ (x−t)/2

0

U(s)ψ0(s) ds

=
i

4k
e−ikx

∫ x

−x

dη

∫ (x−η)/2

0

U(s)ψ0(s) ds

− 1
4

∫ x

−x

eikt dt

∫ x

t

dη

∫ (x−η)/2

0

U(s)ψ0(s) ds

=
i

2k
e−ikx

∫ x

0

(x− s)U(s)ψ0(s) ds

− 1
2

∫ x

−x

eikt dt

∫ (x−t)/2

0

(
x− t

2
− s

)
U(s)ψ0(s) ds,

and therefore that

− i

4k

∫ x

−x

eikt dt

∫ (x+t)/2

(x−t)/2

U(s)ψ0(s) ds

=
i

4k

∫ x

−x

eikt dt

∫ (x−t)/2

0

U(s)ψ0(s) ds

− i

4k

∫ x

−x

e−ikt dt

∫ (x−t)/2

0

U(s)ψ0(s) ds

=
i

2k
e−ikx

∫ x

0

(x− s)U(s)ψ0(s) ds

− i

2k
eikx

∫ x

0

(x− s)U(s)ψ0(s) ds

− 1
2

∫ x

−x

eikt dt

∫ (x−t)/2

0

(
x− t

2
− s

)
U(s)ψ0(s) ds

− 1
2

∫ x

−x

e−ikt dt

∫ (x−t)/2

0

(
x− t

2
− s

)
U(s)ψ0(s) ds

=
sin kx
k

∫ x

0

(x− s)U(s)ψ0(s) ds

− 1
2

∫ x

−x

eikt dt

∫ (x−t)/2

0

(
x− t

2
− s

)
U(s)ψ0(s) ds

− 1
2

∫ x

−x

eikt dt

∫ (x+t)/2

0

(
x+ t

2
− s

)
U(s)ψ0(s) ds.
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Hence, we have

(A.5)

J2 =
sinkx
k

∫ x

0

(x − s)U(s)ψ0(s) ds

− 1
2

∫ x

−x

eikt dt

∫ (x−t)/2

0

(
x− t

2
− s

)
U(s)ψ0(s) ds

− 1
2

∫ x

−x

eikt dt

∫ (x+t)/2

0

(
x+ t

2
− s

)
U(s)ψ0(s) ds

− i

2

∫ x

−x

eikt dt

∫ (x+t)/2

(x−t)/2

Q(s)ψ0(s) ds.

On the other hand,

J3 =
1
2k

∫ x

0

sin k(x− s)U(s) ds
∫ s

−s

Φ(s, τ)eikτ dτ

is rewritten as

J3 =
1
4

∫ x

0

U(s) ds
∫ s

−s

Φ(s, τ) dτ
∫ τ+x−s

τ+s−x

eikt dt

=
1
4

∫ x

0

U(s) ds
∫ x

−x

eikt dt

∫ min(s,t+x−s)

max(−s,t+s−x)

Φ(s, τ) dτ

=
1
4

∫ x

−x

eikt dt

∫ x

0

U(s) dsZ
∫ min(s,t+x−s)

max(−s,t+s−x)

Φ(s, τ) dτ.

This leads to

(A.6) J3 =
1
8

∫ x

−x

eikt dt

∫ x+t

0

dξ

∫ x−t

0

dηU

(
ξ + η

2

)
Φ

(
ξ + η

2
,
ξ − η

2

)
.

Moreover,

J4 = − i

2

∫ x

0

Q(s) ds
∫ s

−s

Φ(s, t)eik(t+x−s) dt

+
i

2

∫ x

0

Q(s) ds
∫ s

−s

Φ(s, t)eik(t+s−x) dt

= − i

2

∫ x

0

Q(s) ds
∫ x

x−2s

Φ(s, t+ s− x)eikt dt

+
i

2

∫ x

0

Q(s) ds
∫ 2s−x

−x

Φ(s, t+ x− s)eikt dt.
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Hence, by changing the order of integration, we have

(A.7) J4 =
1
2

∫ x

−x

eikt dt

{
− i

∫ x

(x−t)/2

Q(s)Φ(s, t+ s− x) ds

+ i

∫ x

(x+t)/2

Q(s)Φ(s, t+ x− s) ds
}
.

By (A.5), (A.6) and (A.7), equation (A.4) can be rewritten as

ψ0(x)
sin kx
k

+
1
2

∫ x

−x

Φ(x, t)eikt dt

=
(

1 +
∫ x

0

(x − s)U(s)ψ0(s) ds
)

sin kx
k

+
1
2

∫ x

−x

eikt dt

×
{
−

∫ (x−t)/2

0

(
x− t

2
− s

)
U(s)ψ0(s) ds

−
∫ (x+t)/2

0

(
x+ t

2
− s

)
U(s)ψ0(s) ds− i

∫ (x+t)/2

(x−t)/2

Q(s)ψ0(s) ds

+
1
4

∫ x+t

0

dξ

∫ x−t

0

dη U

(
ξ + η

2

)
Φ

(
ξ + η

2
,
ξ − η

2

)

− i

∫ x

(x−t)/2

Q(s)Φ(s, t+ s− x) ds + i

∫ x

(x+t)/2

Q(s)Φ(s, t+ x− s) ds
}
.

Since ψ0(x) satisfies

(A.8) ψ0(x) = 1 +
∫ x

0

(x− s)U(s)ψ0(s) ds,
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if a function Φ(x, t) satisfies the equation

(A.9)

Φ(x, t) = −
∫ (x−t)/2

0

(
x− t

2
− s

)
U(s)ψ0(s) ds

−
∫ (x+t)/2

0

(
x+ t

2
− s

)
U(s)ψ0(s) ds

− i

∫ (x+t)/2

(x−t)/2

Q(s)ψ0(s) ds

+
1
4

∫ x+t

0

dξ

∫ x−t

0

dη U

(
ξ + η

2

)
Φ

(
ξ + η

2
,
ξ − η

2

)

− i

∫ x

(x−t)/2

Q(s)Φ(s, t+ s− x) ds

+ i

∫ x

(x+t)/2

Q(s)Φ(s, t+ x− s) ds,

then ϕ(x, k) defined by (A.1) satisfies equation (A.3) and so is a solution
of (2.1) satisfying (4.6).

To solve (A.9) by the method of successive approximation, we put

Φ0(x, t) = −
∫ (x−t)/2

0

(
x− t

2
− s

)
U(s)ψ0(s) ds

−
∫ (x+t)/2

0

(
x+ t

2
− s

)
U(s)ψ0(s) ds

− i

∫ (x+t)/2

(x−t)/2

Q(s)ψ0(s) ds,

Φn(x, t) =
1
4

∫ x+t

0

dξ

∫ x−t

0

dη U

(
ξ + η

2

)
Φn−1

(
ξ + η

2
,
ξ − η

2

)

− i

∫ x

(x−t)/2

Q(s)Φn−1(s, t+ s− x) ds

+ i

∫ x

(x+t)/2

Q(s)Φn−1(s, t+ x− s) ds.

It is easy to show that, under the assumption that U(x), Q(x) are locally
integrable functions, the series

∑∞
n=0 Φn(x, t) converges uniformly in
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−x ≤ t ≤ x, and its sum Φ(x, t) is a continuous, bounded solution of
(A.9). By (A.8) and (A.9), we obtain

d

dx
(ψ0(x) + Φ(x, x)) = −iQ(x)(ψ0(x) + Φ(x, x)),

d

dx
(ψ0(x) + Φ(x,−x)) = iQ(x)(ψ0(x) + Φ(x,−x)).

On solving these equations under the condition Φ(0, 0) = 0, we get
(A.2). By the same manner as in the proof of Lemma 2.1, one can
prove assertion (2). The proof is complete.

Corollary A.2. Under the same assumption and the same notation
as in Lemma A.1, the following holds:

2ikϕ(x, k) = e
−i

∫
x

0
Q(η) dη

eikx − e
i
∫

x

0
Q(η) dη

e−ikx −
∫ x

−x

Φt(x, t)eikt dt.

Proof. By (A.1), after performing an integration by parts, we obtain

2ikϕ(x, k) = 2iψ0(x) sin kx− [Φ(x, t)eikt]x−x −
∫ x

−x

Φt(x, t)eikt dt.

This, together with (A.2), completes the proof.

B. We shall present the proof of the following:

Lemma B.1. Let F ∈ L1(R), and assume that the function S(k)
defined by (1.6) with a complex constant C of absolute value 1 satisfies
|S(k)| = 1, k ∈ R, and

(B.1) indS(k) :=
1
2π

∫ ∞
−∞

d[argS(k)] =
1
2π

[argS(k)]∞−∞ = 0.

Then equation (4.12) has no nontrivial solutions in L1(x,∞).

Proof. Let x be a fixed positive number, and let L(x, t) be a solution
of (4.12) in L1(x,∞). In analogy to Marchenko [13, page 221], one
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can show that L(x, ·) belongs also to L2(x,∞). We take the Fourier
transform of (4.12) and set

L̂(k) =
∫ ∞

x

L(x, t)eikt dt.

Then, by (1.6), we have

L̂(k) + L̂(k)(S(k) − C) =
∫ x

−∞
M(t)e−ikt dt,

where M(t) is a function on (−∞, x) defined by

M(t) =
∫ ∞

x

L(x, r)F (r + t) dr, t ≤ x.

Taking the inner product of this identity and L̂(k), we have

(B.2) (L̂(k), L̂(k)) + (S(k)L̂(k), L̂(k)) = 0,

since, by the Parseval equality,

(L̂(k), L̂(k)) =
( ∫ x

−∞
M(t)e−ikt dt, L̂(k)

)
= 0.

Here (f(k), g(k)) denotes the standard inner product in the space
L2(R). Because of |S(k)| = 1, equality (B.2) yields

(L̂(k) + S(k)L̂(k), L̂(k) + S(k)L̂(k)) = 0.

Hence L̂(k) + S(k)L̂(k) = 0.

By the assumption (B.1) and the Wiener-Hopf factorization, see, e.g.,
Krĕın [12, Theorem 2.1], the function S(k) is expressed as

S(k) = C
exp(

∫ 0

−∞ F−(t)e−ikt dt)

exp(
∫∞
0
F+(t)e−ikt dt)

,
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in terms of functions F± ∈ L1(0,±∞). This, combined with L̂(k) +
S(k)L̂(k) = 0, leads to

L̂(k) exp
( ∫ ∞

0

F+(t)e−ikt dt

)
= −CL̂(k) exp

( ∫ 0

−∞
F−(t)e−ikt dt

)
.

The function on the lefthand (righthand) side of this identity is holo-
morphic and bounded in the lower, respectively the upper, half plane
and is extended continuously up to the real axis. Hence, by Morera’s
theorem, it has a continuation to the whole complex plane as an en-
tire, bounded function. In view of Liouville’s theorem, this implies that
the function must be a constant, which is easily seen to be 0 by the
Riemann-Lebesgue lemma. Thus, we have L̂(k) = 0 and so L(x, ·) = 0
in L1(x,∞).

C. Throughout the paper we assume that there are no bound states.
We here ask under what conditions on the potentials such an assump-
tion is valid and the absence of bound states is guaranteed. As a general
answer we present the following:

Proposition C.1. Let (1+x)U(x) ∈ L1(0,∞), and assume that the
Jost solution f0(x, k) of

(C.1) f ′′ + [k2 − U(x)]f = 0, 0 < x < 1,

satisfies f0(0, 0) �= 0. Moreover, let f(x, k) be the Jost solution of (1.1)
with I = [0,∞) where Q(x) ∈ L1(0,∞). Then the number of zeros,
counted with multiplicities, of f(0, k) in the upper-half plane Im k > 0
equals that of f0(0, k) there. In particular, if f0(0, k) �= 0 (Im k > 0,
k = 0) then f(0, k) �= 0 (Im k > 0, k = 0).

Proof. Noting that f(x, 0) = f0(x, 0), we have f(0, 0) �= 0 by the
assumption f0(0, 0) �= 0. This, together with (4.2), means that f(0, k)
has no zeros for real k. Moreover, in view of (2.7) and the Riemann-
Lebesgue lemma, f(0, k) tends to a nonzero number (of absolute value
1) as |k| → ∞, and so, a curve γ defined by

z = f(0, k), −∞ ≤ k ≤ ∞,
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FIGURE 1. Winding number.

is a continuous, oriented, closed curve in the complex plane from a
point on the unit circle to itself, not passing through the origin z = 0.
Hence we can define the index

(C.2) ind f(0, k) :=
1
2π

∫ ∞
−∞

d[arg f(0, k)] =
1
2π

[arg f(0, k)]∞−∞.

This number indicates how many times the curve γ winds around the
origin in the counterclockwise direction, see Figure 1.

On the other hand, by the argument principle, the index ind f(0, k)
gives the number of zeros, counted with multiplicities, of f(0, k) in
the region Im k > 0, since f(0, k) is holomorphic in the region and is
continuous in its closure. Therefore, to prove the proposition, it suffices
to show that

(C.3) ind f(0, k) = ind f0(0, k).

To show (C.3), let 0 ≤ τ ≤ 1, and let f = f(x, k; τ) be the Jost
solution of

f ′′ + [k2 − (U(x) + 2kτQ(x))]f = 0, 0 ≤ x <∞,

for each τ ∈ [0, 1]. Since f(x, 0; τ) = f0(x, 0) and the discussion above
for f(0, k) applies verbatim, the winding number

ind f(0, k; τ) =
1
2π

∫ ∞
−∞

d [arg(f(0, k; τ)]
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can be defined for each τ ∈ [0, 1]. We shall show (C.3) by contradiction.
If ind f(0, k; 1) (= ind f(0, k)) were not equal to ind f(0, k; 0), then we
can define a number τ0 by

(C.4) τ0 := inf {τ ∈ [0, 1] | ind f(0, k; τ) �= ind f0(0, k)}.
Since f(0, 0; τ0) = f0(0, 0) �= 0, the curve γ(τ0) defined by

z = f(0, k; τ0), −∞ ≤ k ≤ ∞,

does not pass through the origin z = 0. But f(0, k; τ) is continuous in
τ , and therefore, the winding numbers ind f(0, k; τ) are invariant under
small perturbations of τ , in other words, ind f(0, k; τ) = ind f(0, k; τ0)
for τ sufficiently near τ0. This is incompatible with definition (C.4).
Thus, we obtain (C.3). The proof is complete.

By Proposition C.1, exploring the absence of bound states for (1.1)
can be reduced to the question whether there are bound states for a
corresponding equation with Q(x) ≡ 0. In particular, in the case of
U(x) ≡ 0 in (C.1), it is clear from f0(x, k) = eikx that ind f0(0, k) = 0.
Hence, we can draw the following conclusion from Proposition C.1.

Proposition C.2. Let f(x, k) be the Jost solution of

f ′′ + [k2 − 2kQ(x)]f = 0, 0 < x <∞,

where Q(x) ∈ L1(0,∞). Then f(0, k) �= 0 for any k in Im k ≥ 0.
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512 Y. KAMIMURA

6. M. Jaulent, Sur le problème inverse de la diffusion pour l’équation de
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