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ATTRACTION PROPERTIES OF
UNBOUNDED SOLUTIONS FOR

A NONLINEAR ABEL INTEGRAL EQUATION

M.R. ARIAS, R. BENÍTEZ AND V.J. BOLÓS

ABSTRACT. In this paper a nonlinear Abel integral equa-
tion with a power nonlinearity is considered. This equation
has a solution which is unbounded in zero, i.e., is unbounded
on [0, δ), for every positive δ. Attraction properties for this
solution are studied. We show that it is always possible to
find functions attracted by the unbounded solution, as well as
functions not attracted by such a solution.

1. Introduction. In this paper we consider the Abel integral
equation

(1) u(x) =
∫ x

0

(x − s)αu(s)β ds,

where x ≥ 0 and (α, β) ∈ (−1, 0) × (−1/α, +∞). This equation
is a particular case of a nonlinear Volterra integral equation with
convolution kernel

(2) u(x) =
∫ x

0

k(x − s)g(u(s)) ds;

where the kernel k and the nonlinearity g satisfy the following proper-
ties:

• k is a positive function of L1
loc(R

+), such that K(x) =
∫ x

0
k(s) ds

is a strictly increasing function.

• g is a continuous strictly increasing function, such that g(0) = 0,
g′ > 0 almost everywhere, and transforms null sets into null sets.
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Function zero is a solution of (2), known as trivial solution. Let u be a
solution of equation (2). For every c > 0, function

uc(x) =
{

0 if x ∈ [0, c)
u(x − c) if x ≥ c,

is also a solution of (2); this kind of solution is known as a horizontally
translated solution. In this paper we are only interested in nontrivial
solutions, i.e., neither in the trivial solution nor in horizontally trans-
lated solutions. Therefore, when we refer to the uniqueness of solutions,
we must not forget that we are just considering nontrivial solutions.

It is known that equation (1) has a positive solution, u, such that
limx→0+ u(x) = +∞, see [2]. Indeed, u has the form

(3) u(x) = Kxγ ,

being K = B(α + 1, γ − α)1/(1−β), γ = (α + 1)/(1 − β) and B is the
Euler beta function. Since (α, β) ∈ (−1, 0)×(−1/α, +∞), we have that
K > 0 and γ < 0.

Solutions of equation (1) are the fixed points of the nonlinear integral
operator

Tf(x) =
∫ x

0

(x − s)αf(s)β ds.

Therefore, the integral equation (1) can be considered as the fixed point
equation u = Tu. Since β is positive, it is immediate that T is a
monotone increasing operator in the following sense: if f1 ≤ f2 on R+,
then Tf1 ≤ Tf2 on R+.

In the study of fixed point equations, it is interesting to know whether
solutions are attractors or not. Recall that it is said that a fixed point
u, of the operator T , is a global attractor of a family of functions F if,
for every f ∈ F , limn→∞ T nf(x) = u(x), on R+; here T n denotes, as
usual, the composition of T with itself, n times. Analogously, it is said
that u is a local attractor of F if we can only assure the convergence of
(T nf(x))n∈N to u(x), near zero. In this paper we say that a property
P is held near zero if there exists a positive δ such that P holds on
(0, ε), for every 0 < ε < δ.

In [3] the attractive behavior of the solution defined in (3) and
the attractive behavior of continuous solutions for Volterra integral
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equation (2) were compared when the kernel is bounded near zero, see
[1, 4]. In this case, the solutions of (2) are global attractors of all
positive and measurable functions different from zero near zero. When
kernels are just positive measurable functions, continuous solutions of
Volterra integral equation (2) are global attractors of all positive and
locally bounded functions not vanishing near zero, see [2]. In [3] it is
shown that there is a family of functions not attracted by u. In light
of that result, it was pointed out that solution u could actually be a
repellor, that is, a solution such that for any positive and measurable
function f �= u almost everywhere, the sequence (T nf)n∈N converges
to the trivial solution, or diverges to +∞.

In this paper we are going to study the attractive character of the
unbounded solution u, and we shall show that it is not a repellor by
determining a part of its attraction basin. To that aim we introduce
the following definition.

Definition 1.1. A positive function f , defined on R+ is u-separable,
if there exists a positive constant a �= 1 such that

• f > au near zero, if a > 1,

• f < au near zero, if 0 < a < 1.

The next result was already proved in [3, Theorem 2]. The proof
presented here is much shorter and easier.

Lemma 1.1. Let f = au, where a > 0. Then, for every x > 0,

• limn→∞ T nf(x) = +∞, for a > 1.

• limn→∞ T nf(x) = 0, for 0 < a < 1.

Proof. The proof is straightforward. Note that

T nf(x) = T n−1[aβu](x) = aβn

u(x) = aβn−1f(x).

Hence, since β > 1, the proposition is proved.

From Lemma 1.1 and the monotone increasing character of T , we can
assure that functions u-separable are repelled by u. This fact suggests
that the unbounded solution for equation (1) is a repellor of all positive
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and measurable functions. Nevertheless, we are going to show in this
paper that this statement is false; that is, there exist functions, different
from the solution, that are attracted by it.

As far as we have seen in the literature [5 10, 12], solutions for
nonlinear homogeneous Volterra integral equations, either attract all
measurable and positive functions (in case they are attractors), or are
the only element in its attraction basin. Therefore, the results we
present in this work form an example of an integral equation with a
solution not satisfying this rule.

2. Functions non u-separable. Throughout this paper u will
denote the unbounded solution of (2), given in (3). As was indicated in
the introduction, from Lemma 1.1 it is clear that functions attracted
by u are not u-separable. Let us consider the family of functions

V =
{

v : lim
x→0+

v(x)
u(x)

= 1
}

.

Functions from V are not u-separable. However, note that V is not
the total set of non u-separable functions. Indeed, function v(x) =
u(x)(sin(1/x) + 1)/2 is not u-separable and does not belong to V .

It is not difficult to show that T (V) ⊂ V . Now, we are going to study
the iterations by T of the set

W = {v : v(x) = u(x) + cxp; c ∈ R, p ∈ (γ, +∞)}.

Note that W ⊂ V . Our aim in this section is to prove that some
functions of W are in fact attracted by u. To do so, for any v ∈ W ,
we need to find a suitable expression of Tv that allows us to compare
it with v.

First, in order to simplify the notation, we shall introduce the
following function

F (α, γ, p) :=
(

1 − α + 1
γ

)
B(α + 1, p− α)
B(α + 1, γ − α)

,

with (α, γ, p) ∈ (−1, 0)× (α, 0) × (γ, +∞).
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Proposition 2.1. For every c ∈ R and (α, γ, p) ∈ (−1, 0)× (α, 0)×
(γ, +∞), we have

Tv(x) = u(x) + F (α, γ, p)cxp +
+∞∑
m=2

km1x
m(p−γ)+γ ,

near zero, since v(x) = u(x) + cxp and km1 are real constants.

Proof. Taking into account the definition of v, we have

Tv(x) =
∫ x

0

(x − s)α(u(s) + csp)β ds.

Since limx→0+(cxp/u(x)) = 0, there exists a neighborhood (0, δ) such
that |cxp/u(x)| < 1, and therefore the series

1 +
+∞∑
m=1

1
m!

[
m−1∏
i=0

(β − i)

](
cxp

u(x)

)m

converges uniformly to (1 + (cxp/u(x)))β on (0, δ), see [11, Theorem
7.46]. Thus, on (0, δ), it is verified that

Tv(x) =
∫ x

0

(x − s)α(u(s) + csp)β ds

=
∫ x

0

(x − s)αu(s)β ds(4)

+ cβ

∫ x

0

(x − s)αu(s)β−1sp ds(5)

+
+∞∑
m=2

cm 1
m!

[ m−1∏
i=0

(β − i)
]∫ x

0

(x − s)αu(s)β−mspm ds.(6)

The term (4) is u(x), because u is a solution of (1).
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Moreover, taking into account that u(x) = B(α + 1, γ −α)1/(1−β)xγ ,
(5) can be written as

cβ

∫ x

0

(x − s)αu(s)β−1sp ds =
cβ

B(α + 1, γ − α)

∫ x

0

(x − s)αsp−α−1 ds

= cβ
B(α + 1, p − α)
B(α + 1, γ − α)

xp

=
(

1 − α + 1
γ

)
B(α + 1, p − α)
B(α + 1, γ − α)

cxp

= F (α, γ, p) cxp.

To complete the proof it suffices to show that, near zero, (6) can be
written as

∑+∞
m=2 km1x

m(p−γ)+γ , for some constants km1.

We have

+∞∑
m=2

cm

m!

[
m−1∏
i=0

(β − i)

]∫ x

0

(x − s)αu(s)β−mspm ds

=
+∞∑
m=2

cm

m!B(α + 1, γ − α)β−m/β−1

[
m−1∏
i=0

(β − i)

]

×
∫ x

0

(x − s)αsγ(β−m)+pm ds

=
+∞∑
m=2

cm

m!

[
m−1∏
i=0

(β − i)

]
B(α + 1, m(p− γ) + γ − α)
B(α + 1, γ − α)(β−m/β−1)

xm(p−γ)+γ

=
+∞∑
m=2

km1x
m(p−γ)+γ .

Lemma 2. Under the hypotheses and notation of the last proposition,
expression

∑+∞
m=2 km1x

m(p−γ)+γ verifies that:

(a) it is of order xp+(1/2)(p−γ),

(b) it is positive,

near zero.
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Proof. (a) Considering the convergence orders, we can find a constant
M > 1 such that, for every m ∈ N,

|km1| =
∣∣∣∣cm

m!

[ m−1∏
i=0

(β − i)
]
B(α + 1, m(p − γ) + γ − α)
B(α + 1, γ − α)(β−m/β−1)

∣∣∣∣ < Mm.

Thus, for every x ∈ (0, (2M)−4/(p−γ)), we obtain

+∞∑
m=2

|km1|xm(p−γ)+γ <
+∞∑
m=2

Mmxm(p−γ)+γ

=
+∞∑
m=2

Mmx(1/4)m(p−γ)x(3/4)m(p−γ)+γ(7)

<
+∞∑
m=2

2−mx
3
4m(p−γ)+γ < xp+(1/2)(p−γ)

+∞∑
m=2

2−m

= O(xp+ 1
2 (p−γ)).

(b) In a similar way it can be proved that

+∞∑
m=3

|km1x
m(p−γ)+γ | = O(xp+(3/2)(p−γ)),

and hence the sign of
∑+∞

m=2 km1x
m(p−γ)+γ equals the sign of its first

term near zero, which is always positive.

From Lemma 2.1,
∑+∞

m=2 km1x
m(p−γ)+γ is positive and negligible in

comparison with u(x) + F (α, γ, p)cxp. Hence, taking into account
Proposition 2.1, the following properties hold near zero:

• If F (α, γ, p) > 1 then, if c > 0, Tv > v > u, while if c < 0, then
Tv < v < u.

• If F (α, γ, p) = 1 and c > 0 then u < v < Tv.

• If F (α, γ, p) = 1 and c < 0 then v < Tv < u.

• If F (α, γ, p) < 1 then, if c > 0, u < Tv < v, while if c < 0, then
v < Tv < u.
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So, taking into account the monotony of T , in the first two cases,
the sequence (|T nv(x) − u(x)|)n∈N is increasing and therefore v is
not attracted by u near zero; while in the last two cases, (|T nv(x) −
u(x)|)n∈N is decreasing and hence v is “getting closer” to u near zero.

Now the importance of the function F in the study of the attracting
behavior of u becomes clear.

Let us see some properties of F . Note that for any fixed (α0, γ0) ∈
(−1, 0) × (α0, 0), the map p �→ F (α0, γ0, p) is strictly decreasing on
(γ0, +∞). Moreover,

• limp→γ+
0

F (α0, γ0, p) = 1 − (α0 + 1)/γ0 > 1, and

• limp→+∞ F (α0, γ0, p) = 0.

Hence, the existence of a unique p̃ ∈ (γ0, +∞) such that F (α0, γ0, p̃) =
1 follows from the continuity of F on (−1, 0)× (α, 0)× (γ, +∞). There-
fore, on a small neighborhood of zero, we have:

• If γ0 < p < p̃, then F (α0, γ0, p) > 1, and so v is not attracted by u.

• If p = p̃, then, for c > 0, v is not attracted by u; and for c < 0, Tv
is getting closer to u.

• If p > p̃, then Tv is getting closer to u.

Consequently, functions different from u can always be found, whose
iterants are getting closer to u. In the next section it will be shown
that some of these functions are actually attracted by u.

On the other hand, given any fixed (α0, p0) ∈ (−1, 0) × (α0, +∞),
the map γ �→ F (α0, γ, p0) is strictly increasing on (α0, min(0, p0)).
Moreover,

• limγ→α+
0

F (α0, γ, p0) = 0 and

• limγ→min(0,p0)− F (α0, γ, p0) = +∞.

Hence, it follows that a unique γ̃ ∈ (α0, min(0, p0)) exists such that
F (α0, γ̃, p0) = 1. Then, equation F (α, γ, p) = 1 with −1 < α < 0,
α < p and α < γ < min(0, p), represents a uniparametric family of
curves (with parameter p), in R2, see Figure 1.

Given α, β (and therefore γ), and considering p > γ, we shall see
in the next section that if the point (α, γ) lies below the level curve
F (·, ·, p) = 1, the solution u attracts all functions u(x) + cxp. On the



ATTRACTION PROPERTIES OF UNBOUNDED SOLUTIONS 447

�

��� ����

��

����

��	����


��	�����

��	��

��	��

��	����

FIGURE 1. Level curves F (α, γ, p) = 1 with p = −0.8,−0.5, 0, 2, 100, defined on
the region (α, γ) ∈ (−1, 0) × (α, 0).

other hand, if (α, γ) lies above of the such level curve, it will be shown
that functions u(x)+ cxp are not attracted by u. Finally, if (α, γ) is on
the level curve, it can be only assured that u(x)+ cxp will get closer to
u if c < 0, or will not be attracted by u if c > 0.

3. Attraction. We have already seen that there exist functions
getting closer to the solution u. In this section, we are going to see
that some of these functions are actually attracted by u.

First we will need the following lemma, which generalizes Proposi-
tion 2.1 in the case F (α, γ, p) < 1.
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Lemma 3.1. Given c ∈ R, and (α, γ, p) ∈ (−1, 0)× (α, 0)× (γ, +∞)
such that F (α, γ, p) < 1, we have

T nv(x) = u(x) + F (α, γ, p)ncxp +
+∞∑
m=2

kmnxm(p−γ)+γ ,

since v(x) = u(x) + cxp and kmn are real constants for every natural
n, m.

Proof. Let us assume that c > 0 (the case c < 0 is analogous). We
have

T 2v(x) = T (Tv(x)) =
∫ x

0

(x − s)α(Tv(s))β ds(8)

=
∫ x

0

(x − s)αu(s)β

(
1 +

Tv(s) − u(s)
u(s)

)β

ds.

From the definition of v, we can assure that (v(x) − u(x))/u(x) < 1.
Since F (α, γ, p) < 1, then (Tv(x) − u(x))/u(x) < (v(x) − u(x))/u(x) <
1, and hence the series

1 +
+∞∑
m=1

1
m!

[ m−1∏
i=0

(β − i)
](

Tv(x) − u(x)
u(x)

)m

converges uniformly to (1+(Tv(x) − u(x)/u(x)))β . Then (8) takes the
following form

T 2v(x) =
∫ x

0

(x − s)αu(s)β ds(9)

+
∫ x

0

(x − s)u(s)ββ
Tv(s) − u(s)

u(s)
ds(10)

+
∫ x

0

(x − s)αu(s)β

+∞∑
m=2

1
m!

[ m−1∏
i=0

(β − i)
](

Tv(s) − u(s)
u(s)

)m

ds(11)

Since u is a solution of (1), (9) is u(x).
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Taking into account the expression (3) and Proposition 2.1, it can be
shown that (10) can be written as F (α, γ, p)2cxp +

∑+∞
j=2 k̂j2x

j(p−γ)+γ ,
for some constants k̂j2.

Now, from (3) and Proposition 2.1, and since the convolution of xα

and xγ−α−1+m(p−γ) is a power of exponent m(p − γ) + γ, it can be
shown that the term (11) can be written as

∑+∞
m=2 k̃m2x

m(p−γ)+γ , for
some constants k̃m2.

Therefore,

T 2v(x) = u(x) + F (α, γ, p)2cxp +
+∞∑
m=2

km2x
m(p−γ)+γ ,

for some constants km2.

Repeating the above reasoning we can assure that, for every natural
n, the statement of the lemma holds.

Theorem 3.1. Given c ∈ R, and (α, γ, p) ∈ (−1, 0)×(α, 0)×(γ, +∞)
such that F (α, γ, p) < 1, the function v(x) = u(x) + cxp is attracted by
the solution u.

Proof. Let us assume that c > 0 (the case c < 0 is analogous). Then,
(T nv)n∈N is a strictly decreasing sequence, bounded from below by u.
Hence it converges pointwisely to a function ω that, by means of the
Monotone Convergence theorem, is a fixed point of the operator T . We
will see next that ω = u.

From Lemma 3.1 we have

T nv(x) = u(x) + F (α, γ, p)ncxp +
+∞∑
m=2

kmnxm(p−γ)+γ ,

being kmn some constants for every natural n, m. Thus,

ω(x) = lim
n→+∞T nv(x)

= u(x) + lim
n→+∞(F (α, γ, p)ncxp +

+∞∑
m=2

kmnxm(p−γ)+γ)
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= u(x) + lim
n→+∞

+∞∑
m=2

kmnxm(p−γ)+γ .

Since the convergence of the last series is uniform, defining k′
m :=

limn→∞ kmn, it follows that

ω(x) = u(x) +
+∞∑
m=2

k′
mxm(p−γ)+γ(12)

= u(x) + k′
2x

2(p−γ)+γ +
+∞∑
m=3

k′
mxm(p−γ)+γ .

Since 2(p − γ) + γ > p, from the strictly decreasing character of
the map p �→ F (α, γ, p), we can infer that 0 < F (α, γ, 2(p − γ) +
γ) < F (α, γ, p) < 1; therefore, using similar arguments as those of
Lemma 2.1, it can be shown that

Tω(x) = u(x) + F (α, γ, 2(p − γ) + γ)k′
2x

2(p−γ)+γ(13)

+
+∞∑
m=3

k′′
mxm(p−γ)+γ ;

where k′′
m are some constants. Comparing (12) and (13) term by term,

we can infer that k′
m = 0 for every natural m ≥ 2, so ω = u.

4. Final remarks. It has been proved that solution u, given by
(3), attracts a family of positive and measurable functions on the form
v(x) = u(x) + cxp, for certain c and p.

When u is the unique nontrivial solution of equation (1), the following
statements are held near zero:

(i) limn→∞ T nv = u if

• F (α, γ, p) < 1, or

• F (α, γ, p) = 1 and c < 0.

(ii) limn→∞ T nv = +∞ if F (α, γ, p) ≥ 1 and c > 0.

(iii) limn→∞ T nv = 0 if F (α, γ, p) > 1 and c < 0.

This problem can be regarded under the scope of discrete dynamical
systems theory. Indeed, for any ε > 0, we have a nonlinear monotone
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operator T : L1
+(0, ε) �→ L1

+(0, ε), where L1
+(0, ε) denotes the space

of positive functions of L1(0, ε). Such an operator defines the infinite-
dimensional discrete dynamical system

{
u0 ∈ L1

+(0, ε)
un = T nu0 n ∈ N.

This system has a fixed point u, which is unstable; that is, for every
ball, centered on u, B(u) (with the L1

+(0, ε) topology), we can find
functions u0 ∈ B(u), such that (T nu0)n∈N converges to u, converges to
the trivial solution, or diverges to +∞.
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