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EIGENVALUES OF A FREDHOLM INTEGRAL
OPERATOR AND APPLICATIONS TO PROBLEMS
OF STATISTICAL INFERENCE

V.K. JANDHYALA AND P.L. JIANG

ABSTRACT. We determine the eigenvalues of a Fredholm
integral operator of the second kind. The solution of the
eigenvalue problem has applications to finding the distribution
function of a stochastic integral. The stochastic integral itself
represents the asymptotic form of a statistical test. Also
discussed are related results for inference and applications.

1. Introduction. Applications of Fredholm integral operators
in the areas of physical sciences and engineering are well known.
Their applications to problems of statistical inference are probably
less known among researchers in mathematics and other disciplines.
The dynamic instability inherent in physical processes can often be
statistically modelled by the change-point method. The change-point
problem primarily consists of testing for a model with no change in
the model parameters against a model where parameter changes occur
after a certain unknown point of time. The problem has received wide
attention among researchers in statistical inference. Test statistics
for the problem have been derived and their distribution theory has
been discussed in the literature; see Jandhyala and MacNeill [2, 3, 4],
MacNeill [6] and Nabeya and Tanaka [7] and the references therein.
Asymptotic distributions of these change-detection test statistics have
been shown to involve a variety of Fredholm integral operators. In
this article, we consider the problem of solving for the eigenvalues of
a specific Fredholm integral operator. The solution has applications to
the asymptotic distribution of a change-detection statistic derived in
the literature; see Jandhyala and MacNeill [3].

The eigenvalue problem of interest is

(1) Mpp(t) = / K, (5, )y (5) ds
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where the kernel K (s,t) is given by

(2) Kp(s,t) = min(s,t) — P0(2m + 1)gm (t) gm(s)
and "
v 2m
(3)  gm(t) = [Wfl = <m’v’v’m - 2U> /Ot (x - %)m_zv do.

= odv m—1/2
v

This problem has been formulated by MacNeill [6] while finding the
characteristic function of the stochastic integral given by

1
(4) / B2(t) dt.
0
The process {B,(t),t € [0,1]} is a continuous functional defined on the
standard Brownian motion {B(t),t € [0,1]} and is given by
By(t) = hp(B(1))

= B(t) - i(zmﬂ){{g](—l)“ (m v 3%—21;)

m=0 v=0

2 (o —0) 1y
(el

— (m— ) /01 (x - %)m_%_lB(s) ds} }

MacNeill [6] states that the sequence of eigenvalues {A, ,}22, of (1)
are

2
zp—l,n
(6) '
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where 2, , is the nth positive zero of the pth order spherical Bessel
function of the first kind. While MacNeill [6] established the validity
of the above solution for p = 1, the proof for a general p was not given.
The main objective of this paper is to provide a complete proof of (6)
for any general p. Once the eigenvalues {), ,,}22, are identified, the
characteristic function of the stochastic integral in (4) may then be
obtained as

(7) H 1— 2iud, )~ Y2

The distribution function of the stochastic integral fo Bg t) dt may be
obtained by inverting the characteristic function ®,(u) applying Lévy’s
inversion formula. This function has direct applications to the change-

point problem in statistical inference.

We first give the proof of (6) in Section 2. The specific applications
of this solution and solutions of other related integral equations for
problems of statistical inference are discussed in Section 3.

2. Determination of the eigenvalues. We shall now give the
proof of (6). The proof requires several theorems and they are stated
and proved in the following. A major difficulty in constructing a proof
arises due to the fact that the function g, (t) as given by (3) has a
complicated structure. We, however, take advantage of the following
theorem due to Jandhyala and Minogue [5]. The theorem provides an
alternative exact expression for g,,(t). Needless to say, this expression
is simpler in form and proves to be the basis of our proof.

Theorem 1. Fort € [0,1], we have

(8) gm(t)Zi(1)"‘*’“<m:k2£f>tk+l, m=0,1,2,....

Differentiating the integral equation (1) twice with respect to t, one
obtains

9 Ao@ () + ~ 3 e+ 1)g@) / G (5) By (5) ds
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The boundary conditions are

(10) ¢p(0) = ép(1) = 0.
We shall rewrite the equation (9) as
P
(11) MpdD (1) + dp(t) = D Tn(t)em
m=1
where

en=—m 1) (") 2 [ aniersas

Tm(t)=g£3>(t)/(m2“>2, m=12...,p.

Since T, (t) is a polynomial function of degree m — 1, the general
solution of (11) may be written as

t t
¢p(t) = acos —= + bsin ——
' VA VAp

(12) p P
+ Z T (t)em + Z T (t)em

where
5 [(m—1)/2]
Tn(t)= > (=\)'TE().
=1

We first note some properties of T,,,(t) and g,,(t) in the following
lemma. These properties will be used often later in the proof. The
proof of the lemma is for the most part algebraic and is omitted.

Lemma 2. The functions gm(t) and T,,(t) given above satisfy the
following.

(i) Fort € [0,1] and m > 1,

_ 1 @
gm(t) = <m T 1> 2t(1 t)gm (t)
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Furthermore, gm(t) = —t(1 — t)Tin(t) and gm(0) = g (1) = 0.
(ii) For m > 1, T, (0) = (—=1)™*! and T, (1) = 1.
(iii) Fort €[0,1] and m > 2,

gD (t) = 2(2m — 1)gm—1(t) + 9+ 5 (2).

The boundary conditions ¢,(0) = ¢,(1) = 0 together with Lemma 2
(ii) imply that

(13) a+c —cy+ i{(fl)m+1 + T (0)}em =0

m=3

and

1 1 « .
(14) acos—+bsin—+c1+02+Z(l—i—Tm(l))cm:O.

v/ Ap vV Ap —
The conditions on ¢,,, m = 1,2,...,p are

c /1

- - = [ gm(s)op(s)ds
(2m +1) (m;’1> 2 70

! s

=a | gm(s)cos ds
Jy omtorees
1
(15) + b/ gm(8) sin °_ds
0 vV >\p

P 1
—1—210”/0 gm(8)Tn(s) ds

—i-zacn/o gm(s)fn(s)ds.

In the following, we deal with the respective coefficients of a,b and
¢n,n=1,2,...,p in the right hand side of (15).
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Let

1
S

Ay = gm (8) cos ds

[ omereos

1
s
bm /gm(s)sin—ds, m=1,...,p.
0 VAp

Theorem 3. The following recurrence relations hold.

(i) For m > 1,

Ay, = —2(2m — 1)\/ )\pbm,1 + am_2o
b = 2(2m — 1)\/ )\pam,1 + b2

where a_1 = Ap(cos(1//Ay) + 1), ag = Ap(cos(1//A) — 1) and
b_1 = bo = )\p sm(l/\/x)

(ii) For m > —1,

am< _ sin ﬁ) 4 bm<cos \/%) — (=1)"bn,
1 1

(16)

(i) For m > 1,

(—1)™ —cos(1//Ap)

(17)  am = —2(2m —1)/A, (1) /)

Am—1 + Am—2

and

(1™t~ cos(1/y/%y),
~sin(1/y/3)

m—1 1 bm—2-

Proof. (i) For m > 3,

1
A, + 1by, = / gm(s)ei(s/\/rp) ds.

0
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Integration by parts together with application of Lemma 2 (iii)

implies

\/Tp{2(2m —1) /01 Gm_1(8)e V) gs

Gm + lbm i
(3
1 .
+ [ ooV ash
0

Further integration gives

U + b, = {—2(2m — 1)/ Apbm—1 + a2}
+ z{2(2m — 1)\/ )\pam,1 + bmfg}.

The result follows by letting m > 1 with ag, a_1, by, b_1 as defined in

the theorem.
The relationships in (ii) follow easily from (i), and (iii) itself follows

from (i) and (ii). u]

Theorem 4. Let

1
Cm,n = / gm(s)Tn(s) ds, m,n=12,...,p.
0

Then,
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Proof. Lemma 2 (i) implies, for n # m,

1 1
o = / 02)()gn(s) ds

2

_ 1
o=t / oD (5)g D (s) ds
0

Thus, it follows that for n # m, ¢y, = 0. For the case n = m, note
that

1
/gm(s)skds:o for k <m—2.
0

Through repeated integration by parts and application of Lemma 2
(iii), we can show

(m —1)Im!

/0 gm(8)s™ 1ds = T emEl

We then have
/Olym(S)Tm(S) ds = /01 gm(s)ﬁ <2nT> <z> .

and the result follows. |

Theorem 5. Let
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Then

~ o 0, n<m-+42
o {(4(2m+3)/(m+3)(m+2))Ap, n=m+2 "

Proof. Both parts follow easily from the above integral and the details
are omitted. O

Applying Theorems 3, 4 and 5 into (15), we obtain

4(2 -
aam+bbm+cm+2 (m+3) ))\p+ Z CnEm,nzoa

(m+3)(m+2 s

m=1,2,...,p.

These p equations together with (13) and (14) form a system of
(p + 2) linear homogeneous equations in (p 4 2) variables, a, b, and ¢;,,
m =1,2,...,p. For ¢,(t) to be a nontrivial solution of the Fredholm
equation (1), we must set the determinant of the coefficient matrix of
the system of equations to zero. Thus,

1 0 11 —1 14T3(0) —1+4T4(0) -+ (—=1)P+Tp—1(0) (—1)PH*+T;,(0)
Cosm smm : 1 1 14T5(1) 14T4(1) 14+Tp-1(1) 1+T5(1)
ai b1 10 0 %/\p C1,4 C1,p—1 C1,p
as b 10 0 0 Dy E2,p-1 Cap
1
1 .
. :
1 .
1 . .
I :
1 . .
1 —
ap-2  bp—z 10 0 0 0 0 Lels,
______________ bl TR
ap—1 bp—1 |0 0 0 0 0 0
ap by 10 0 0 0 0 0

When p is equal to 0 or 1, the solution in (6) can easily be verified.
For p > 2, the partitioning as above implies

ap—1 bp, 1
ap by

=0.
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It follows from Theorem 3 (ii) that
(18) bp—1b, =0

and also that

(19) sin(1//Ap) # 0.

Theorem 6. Let (1/2\/\,) = z. Then, for m > —1,

b — { (—1)"(cos 2/22) jm(2), m = 2n
"L (=D (sin2/22)jm (2), m=2n+1

where jm(z) is the mth order spherical Bessel function of the first kind.

Proof. First note that Theorem 3 (iii) implies

2m — .
m is even

1
B (cosz/sin )by 1 + b2,

b =
dsize?™=L(—sin z/cos 2)by 1 + b2, m is odd

z

with .
sinz cosz
b_1=0by = -
2z z

We shall prove the theorem based on induction. Note easily that
the theorem is true for m = —1,0. Now, assume that it is true for

m < 2n — 1. Then, for m = 2n, we have

2m —1 (cosz sin z
b = 1) —gm_
z <sinz>{( ) 22 7 1(2)}

{0 i)

=) - el
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Similarly, for m = 2n + 1, we obtain

n+1sinz .

b = (~1)" 2 ().

This completes the proof of the theorem. O

Applying Theorem 6 into (18) and noting (19), one obtains
(20) Jp-1(2)dp(2) = 0.

Hence, the sequence of eigenvalues are obtained as solutions of either
Jp—1(2) = 0 or jp(z) = 0 where A, = 1/(42?).

This completes the proof of solution in (6).

3. Applications. Let {¢;}]_; be a sequence of unobservable
independent random variables defined on the same probability space
each with mean 0 and variance o2. Let {Yn;,i=1,...,n,n > 1} be
a triangular array of observable random variables satisfying the linear
regression model

(21) Yoj = Bifi(i/n)+ej,  i=1,...,m,

=0

where fy, ... , B, are regression parameters and f;(-) are regressor func-
tions defined on [0, 1]. In the above model, the regression parameters
Bo, - -, Bp remain unchanged for all the observations Y,1,... ,Yn,. In
the change-point set-up, the model (21) is called a ‘no-change’ model.
In a change-point model, the first m observations Y1, - , Y, con-
sist of regression parameters Jy, ..., [, while the parameters change
to Yo, --. ,7p for the last n — m observations Y,;;41,.-., Ynn. Thus, a
change-point model may be formulated as

V. — {Zf_oﬁifi(j/n)‘f'ifj, j=1,...,m
nj —

(22) : :
P ovifi(i/n) +ej, j=m+1,...,n

In the above m is called the change-point and is usually assumed un-
known. The problem of testing for the no change model (21) against the
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change-point model (22) is called the ‘change-point problem’ in statis-
tical literature. The problem has many applications including in areas
such as quality control, environmental monitoring and econometrics. A
special case of the general change-point problem considered frequently
in the literature consists of testing for change in a single parameter, say,
Bist = 0,...,p occurring at the unknown point m,m =1,... ,n — 1.
Jandhyala and MacNeill [3] derived a Bayes-type statistic for this prob-
lem. Their test statistic is

@) Q=3 p{ e 3 A o)}
m=1 k=m+1

where {Y,, — ank}zzl are the least squares residuals and p,,,m =
1,...,n — 1 denotes a prior probability function for the unknown
change-point m. When the prior on the change-point is discrete
uniform, Jandhyala and MacNeill [2] have shown that

1
i d . .
(24) QL) —>/ {BY)()}?dt, i=0,...,p
0

where —%+ denotes convergence in distribution and {BI()f i)(t),ts[O, 1]}
is a Gaussian process defined by

(25) BYI(t) = /0 ' (@)dB(z) - /0 t f,-(ac){ /0 t gp(x,y)dB(y)}dac

and gp(z,y) = £'(s)F~f(t) with £'(t) = (fo(t),...,fp(t)) and F =
((Jo Jif5(0)dt), 0,5 =01, p.

Thus, from (24) we note that the asymptotic distribution function of
Q;Efg is equivalent to the distribution function of the stochastic integral
JBY ()2, i =0,1,... ,p.

For the case p = 0 in the model (21), Anderson and Darling [1]
have shown that the characteristic function of the stochastic integral

fol {B{*) ()}2 dt may be obtained as

®o(u) = [ [{1 - 2iuron} /2
n=1
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where {)g,} are the eigenvalues satisfying the Fredholm integral equa-
tion

1
/ K (5,8)g0(s) ds = Aogo(?).
0

The kernel Kéf 0)(5, t) is the covariance kernel of the Gaussian process
{B(()fo)(t),t € [0,1]} and is given by

Kéf(’)(s,t) = min(s, t) — st.

More generally, Jandhyala and MacNeill [2] have derived the covariance
kernel K;,()f")(s,t) for the process {B,(,fi)(t),t € [0,1]} to be:

min(s,t) s pt
(26) KU(s,1) = / £2(2)de - / / £:(@) (@) gp () da dy.

One may apply the method of Anderson and Darling [1] to find the
characteristic function for the stochastic integral fol{B,(,f J(t)}2dt and

hence for the asymptotic form of the change detection statistic Q;EQ.
We shall now discuss some special cases.

One obtains a pth order polynomial regression model by letting
fi(t) =t t€0,1],i=0,1,...,p in the model given by (21). For this
case, the statistic that tests for change in the intercept parameter [y is
Q'Y and this statistic is asymptotically equivalent to fol (B ()}2 dt.

For the case of polynomial regression, {B,(,fo)(t), t € [0,1]} is precisely
the process given by B,(t) in expression (5) and its covariance kernel
KZ(,fO)(s,t) is the kernel K,(s,t) given in (2). Thus, the eigenvalues
in (6) obtained as solutions of (1) enable one to find the characteristic
function of the statistic that tests for change in the intercept parameter
Bo of a general polynomial regression model.

Alternatively, through a random walk formulation, Nabeya and
Tanaka [7] have found the explicit forms for the Fredholm determi-
nants and hence for the characteristic functions associated with the
following statistics.

(i) The model is: Y,; = B;(j/n)" + ¢;, i > —1/2. The statistic of
interest tests for change in the parameter ;.
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(ii) The model is Yy,; = Bo + Bi(j/n)’ +¢j, i = 1,2,3,4. For each i,
i =1,2,3,4, the statistic of interest tests for change in the parameter
Bo-

The relationship between the random walk formulation and the
change-point formulation has been recently discussed by Jandhyala and

MacNeill [4].

Finally, a pth order harmonic regression model is stated by

p
on YT Bo+ Y _{Bicos2mi(j/n) + Byyi2mi(j/n)} + &5,
=0
j=1...,n.

For this case Q;EBL) tests for change in the parameter 3y and its asymp-
totic equivalence is given by fol{B,(,fO)(t)}2 dt.

The covariance kernel associated with the process {B,(,f o) (t),t €[0,1]}

is given by:
P

KI()fO)(s,t) = min(s,t) — st — Z(2W2j2)71
(28) i=1
x {(1 — cos2mjt)(1 — cos 2mjs) + sin 2mjt - sin 275 s}.
For this case, the eigenvalues satisfying the associated Fredholm inte-
gral equation have been derived by Jandhyala and MacNeill [2]. The
eigenvalues {)\, , }52; are:

(29) A = 1/(47°n?), n=p+1,p+2,...
and those satisfying the equation
(30)
1 1 & 1 !
tan( ): {( 7> } n=1l2,....
2/ 44/ ; 1—4n2j52),

There are several other cases in this area for which the associated eigen-
values are unknown. For both polynomial and harmonic regressions,
the eigenvalues of

1
/ K (s, 0)p(s) ds = Xpo(t),  i=12,....p
0

where K,(,f i)(s,t) is given by (26) are unknown. These are interesting
open problems.
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