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NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
OF BARBASHIN TYPE: TOPOLOGICAL AND
MONOTONICITY METHODS

CHEN CHUR-JEN

ABSTRACT. The purpose of this paper is to illustrate
the applicability of topological and monotonicity methods
to the solution of nonlinear integro-differential equations of
Barbashin type. Such equations arise in the mathematical
modelling of various transport phenomena. We show first
how to solve initial value problems for nonlinear Barbashin
equations by means of a classical fixed point theorem due to
M.A. Krasnosel’skij. Afterwards, we apply a nonclassical fixed
point principle for nonlinear operators in so-called K-normed
spaces to a certain boundary value problem for Barbashin
equations. The main step consists here in transforming the
boundary value problem into an equivalent operator equation
involving Uryson-type integral operators. Finally, we show
how to use Minty’s monotonicity principle to prove (unique)
solvability of a Barbashin equation containing Hammerstein-
type integral operators.

1. A fixed point theorem by Krasnosel’skij. In 1955,
M.A. Krasnosel’skij proved the following fixed point principle:

Theorem 1 [9]. Let E be a Banach space, Gy : E — E a contraction,
and Go : E — FE a continuous compact operator. Suppose that
there exists a monempty convex closed bounded set M C E such that
G1(M)+ G2 (M) C M. Then the operator G1 + G2 has a fized point in
M.

Obviously, Theorem 1 bridges the “gap” between the classical fixed
point principles of Banach-Caccioppoli and Schauder. Theorem 1 is
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nowadays considered as a simple example of the Darbo-Sadovskij fixed
point principle [7, 15] for condensing operators.

A classical application of Theorem 1 is concerned with initial value
problems in Banach spaces. We give a sample result on the local
solvability of such an initial value problem:

Proposition 1. Let X be a Banach space, ty € R, zyp € X and
Q ={(t,z) e RxX : |t—ty < a,||z—zo]] < b}. Suppose that
g1 : Q — X is continuous and also Lipschitz-continuous with respect to
the second variable, i.e.,

(1) 192(t,2) — 01 (¢, )l < L(B)llx -y,

and g3 : Q@ — X 1is compact and continuous. Choose ¢ € (0,a] such
that both

(S~

to+c
[ rma<t swloto) +su o) <
t

o—¢C

Then the initial value problem

(2) 7' (t) = g1(t,z(t)) + ga2(t, z(t)), z(ty) = xo

has a continuously differentiable solution x on the compact interval
[to — ¢, to + c] with values in X.

Proof. The proof simply consists in verifying the hypotheses of
Theorem 1 for E = C([tg — ¢,to+¢], X)), M ={z € E : ||z — x0|| < b}
and G;z(t) = ftz gi(r,z(r))dr,i=1,2. O

2. Barbashin equations with Uryson integral operators.
Consider the nonlinear integro-differential equation of Barbashin type

(3) (%gz; ? = c(t, s)x(t, s) +/ k(t,s,0,z(t,0))do + f(t,s)

-1

with initial condition

(4) 2(0,5) = @o(s),
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where 2o : [-1,1] = R, c: [-1,1] x [-1,1] = R, k: [-1,1] x [-1,1] X
[-1,1] x R — R and f : [-1,1] x [-1,1] = R are given measurable
functions. Equations of this type occur in the mathematical modelling
of certain transport phenomena (see, e.g., [6, 10, 16, 17]). Given
an ideal space [18] of measurable functions over [—1, 1], under natural
conditions one may write equation (3) as differential equation

(5) Ccll—f =C(t)z+ K@)z + f(t)
in X, where

(6) C(t)a(s) = c(t, s)z(s)

is the multiplication operator generated by the function c,

(7) K(t)a(s) = 1 k(t,5,0,2(c)) do

is the Uryson integral operator generated by the kernel k and f(¢)(s) =
f(t,s). By means of Proposition 1, we then get a local existence result
for the problem (3)/(4) in a suitable function space. To this end, let us
denote by C} = C}(X) the set of all functions z : [-1,1] x [-1,1] - R
such that the map ¢ — (¢, -) is continuously differentiable from [—1, 1]
into X, equipped with the natural norm

® felley = [l + | ate )|

A standard choice is X = L, for 1 < p < oo; in this case we write C’tlp
instead of C}(L,).

Proposition 2. Suppose that the map t — C(t) is strongly contin-
uous in L(X) and the map (t,x) — K(t)x is continuous and compact.
Then the initial value problem (3)/(4) has, for each f € C([-1,1], X),
a local solution = € C}(X).

Proof. Let ¢g1(t,z) = C(t)z + f(t) and go2(t,z) = K(t)z, and
let @ be as in Proposition 1 with t¢ = 0. By assumption, g; :
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@ — X is continuous and satisfies a Lipschitz condition (1) with
L(t) = |C(t)|lz(x), and g2 : @ — X is continuous and compact.
By Proposition 1, the initial value problem (2) has a continuously
differentiable solution = on [—c,c] which is a C}-solution of (3)/(4).
O

Since the operator family ¢ — C(t) is supposed to be strongly
continuous in Proposition 2, the smallness condition [ _[|C(7)|/dr <1
may always be achieved for sufficiently small ¢ > 0. The crucial
hypothesis is therefore the compactness of the map of two variables
(t,z) — K(t)x. The following lemma reduces the problem of verifying
the compactness of this map to that of verifying the compactness of
each operator K (t) (¢ fixed), as well as the equicontinuity of the family
of functions ¢t — K (t)x (z fixed):

Lemma 1. Let B C X be bounded, and suppose that the following
conditions are satisfied:

1. Each operator K(t) : B — X is compact and continuous.
2. The function set {K(-)xz : & € B} is equicontinuous.

Then the map g defined by g(t,z) = K(t)z is continuous and compact
from [-1,1] x B into X.

Proof. Continuity follows by the inequality
lg(t, ) — g(to, zo)l| < [ K (t)z — K(to)z|| + [| K (to)z — K (to)zol|

from the hypotheses. For compactness, it suffices to prove that
9([-1,1] x B) has a finite e-net for any € > 0. By the second hypothe-
sis, there exists a §(g) > 0 such that || K (¢)x — K (t')z| < ¢/2 whenever
|t —t'| < §(¢) and z € B. Choose some n € N with n=! < §(¢), and
consider a partition {t; : t; = i/n,i = 0,£1,£2,...,+n} of [-1,1].
Since K (t;)B is precompact, it contains a finite £/2-net ;. We claim
that N_, U---UN_1 UNgUN U --UN,, is an e-net for g([—1, 1] x B).
In fact, let (¢,z) € [-1,1] x B be arbitrary. Then i/n <t < (i+1)/n
for some i. Choose y € N; such that ||g(i/n,z)—y|| < £/2. This implies

lg(t,2) = yll < llg(t,2) — g(i/n, )l + llg(i/n,z) —y|| <e
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as claimed. O

As a typical application of Lemma 1, let us consider the case
k(t,s,o,u) = ko(t, s,0)h(o,u), i.e., the special family of Hammerstein
integral operators

1

(9) K(t)z(s) = / ko(t, 5, 0)h(o, (o)) do.

-1

The operator (9) may be written as a composition of the nonlinear
Nemytskij operator

(10) Hzx(s) = h(s,z(s))

and the family of linear integral operators

(11) Ko(t)y(s) = /_ ot )y(o)do

Proposition 3. Suppose that the map t — C(t) is strongly con-
tinuous in L(X), there exists some normed linear space Y such that
H: X =Y is bounded and continuous, and each operator Ko(t) : Y —
X is compact. Assume that the map t — Ko(t) is continuous in the
operator norm. Then the initial value problem (3)/(4) has, for each
f €C([-1,1],X), a local solution z € C}(X).

Proof. Tt suffices to prove that g : Q — X is compact and continuous.
Just use Lemma 1. O

3. Fixed point theorems in K-normed spaces. In the preceding
section we have seen that, under some natural hypotheses, the initial
value problem for the integro-differential equation (3) always has a local
solution; this is completely analogous to ordinary differential equations.
As usual, the existence of solutions of boundary value problems for (3)
is more difficult to prove (and, as a matter of fact, is not always true).
This will be illustrated in the following section. Our main tool is a
nonclassical fixed point principle which we shall recall now.
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A K-normed space is a Banach space E equipped with a functional
(“K-norm”) ]| - |[ : E — K which has the usual properties of a norm,
but takes its values in the positive cone K of some ordered Banach
space Z. Usual norms are, of course, obtained by the trivial choice
Z = R and K = R ; the simplest nontrivial example is Z = R? and
K =R2.

Theorem 2 [19-21]. Let E be a Banach space with a K-norm
N'[:E—KCZand F: E — E a bounded continuous operator
which satisfies a condition

(12) |Fz — Fy[[ < G(lz —yl), wyekE,

where G : K — K is some positive linear operator in Z. Assume that
G has spectral radius < 1. Then the operator F' has a unique fized point
n E.

Of course, the choice Z = R and K = R, leads to Gz = ¢z with
q < 1 which is the standard contraction condition in the Banach-
Caccioppoli fixed point principle. In the following section we shall
show how to obtain existence results for boundary value problems for
integro-differential equations by a sophisticated “infinite-dimensional”
choice of Z and K.

4. Generalized Barbashin equations with Uryson integral
operators. In this section we replace equation (3) by the more general
integro-differential equation

Ox(t,1,s)

57 =c(t, T, 8)x(t,1,5)

1
+ / l(t,1,s,0,2(t,1,0))do

-1

(13) —l—/ m(t,T,s,r,z(r,7,8))dr

/ / (t,7,8,0,1,2(r,7,0)) dodr

+ft7—a )a (tT,)EQ,
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subject to the boundary condition

14 I(t,a, 5) = Sa(ta 5) if (ta S) €Q+,

(14) {w(t, b,s) =(t,s) if (¢, 8) € Q—;
here we have put @ = [—1,1] x [a,b] x [-1,1], Q4+ = (0,1] x [-1,1] and
Q- =[-1,0) x [-1,1]. Equations like (13) occur as Fourier transforms
of a certain type of Schrédinger equation. As above, ¢ : @ — R,
v:Qr >R, Y :Q- - Rand f: Q@ — R are given measurable
functions, and I : Q@ x [-1,1]] x R—>R, m:Q x [-1,1] x R = R and
n:Qx[—-1,1]x[-1,1] xR — R are supposed to satisfy a Carathéodory
condition.

We are going to study the boundary value problem (13)/(14) in
the space WTlp = WTlp(Q), 1 < p < o0, of all measurable functions
z : @ — R for which the norm

P 1/p
_— ]ds dt dT}

1) ez, = { [ [ [ [leeropms |22

1 < p < oo is finite; this norm was introduced in [12] in a different
context. Consider the kernel function of four variables

(16) e(t7 TyT0s S) = exp /T C(t, Ea S) dé.

To

0xz(t, T, s)
T

which generates a partial integral operator (see [8, 13])

/T e(ta T, 07 S)f(ta 07 5) do if (t7 5) € QJra
(17) Pf(t,r,s) =< "¢

/ e(t,7,0,) f(t,0,5)d0 if (t,5) € Q .
b
To begin with, we show how to solve the boundary value problem

(13)/(14) explicitly in case [ = m = n = 0. The proof of the following
lemma consists in a straightforward calculation:

Lemma 2. For ¢ € Lo(Q), f € Ly(Q), ¢ € L,(Q4+) and
Y € L,(Q-), the problem

w =c(t,7,8)z(t, 7, 8)
(18) +f(tv7—v s) if (t, T, 3) €qQ,
z(t,a,s) = ¢(t,s) if (t,8) € Qy,

z(t,b,8) = Y(t, ) if (t,8) € Q-
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has a unique solution z € WTlp. This solution is given by

_[Pf+¢ ae on(0,1] X [a,b] x [-1,1],
19 == {Pf+z/7 ae. on[~1,0) x [a,b] x [~1,1],

where
o(t,7,8) = o(t, s)e(t, 1, a,s), (t,s) € Q+

and

Y(t,T,8) = (¢, s)e(t, 7,b,s), (t,s) eQ-_.

Lemma 2 allows us to transform the boundary value problem (13)/(14)
into an operator equation which may be treated by the fixed point prin-
ciple in K-normed spaces given above. To this end, we introduce the
operators

Cm(t7 T’ s) = c(t7 T7 S)m(t7 T’ s)’

1
Lm(t,r,s):/ I(t,7,s,0,2(t,1,0))do,
-1

1

M.T(t,T, 8) - / m(taTv 8,7",1'(7", T, 8))dr7

-1

and

1 1
Nz(t,T,s) = / / n(t,,s,0,r,2(r,7,8)) dodr.
—1J-1
The equation (13) may then be written more concisely in the form

)
(20) 8—f:[C+L+M+N]x+f.

Proposition 4. Let the conditions of Lemma 2 be satisfied. Suppose
that the nonlinear operator L+M+ N be continuous and bounded in L,,.
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Then every solution x € W}, of the boundary value problem (13)/(14)
solves the nonlinear operator equation
(21)
P(Lz+ Mz + Nz + f)+ ¢ a.e. on (0,1] x [a,b] x [-1,1],
xTr = ~
P(Lz+ Mx+ Nx+ f)+v¢ a.e. on[-1,0) X [a,b] x [-1,1].

Conversely, every solution © € L, of (21) belongs to WTlp and solves
the boundary value problem (13)/(14).

Proof. The proof follows immediately from Lemma 2 with f replaced
by Lz + Mz + Nz + f. O

We begin now to study the operator equation (21) from the viewpoint
of fixed point theorems in K-normed spaces. For a < 7 < b, 0 <
t <1land -1 < s <1, we put z(t,7,8) = u(t,7,s), z(—t,7,5) =
v(t, 7, 8), z(t,7,8) = g(t,7,8), z2(—t,7,8) = h(t,7,s) (z from Lemma 2),
e(t, T, 710,8) = i(t, 7, 70,8) and e(—t, T, 70,5) = j(t,70,8). Moreover, we
define four operators A, B,C and D by

T 1
Au(t,r,s):/ [/ i(t,T,0,s)l(t,0,s,0,u(t,8,0))do
a —1
1
+/ i(t,7,0,s)m(t,0,s,r,u(r,6,s))dr
0
1,1
—l—// i(t,T,Q,s)n(t,@,s,a,r,u(r,@,o))dUdT] do,
0o J-1
T 1
Bu(t, T, s) :/ [/ i(t,7,0,s)m(t,0,s, —r,v(r,0,s))dr
a 0
1,1
+// i(t,r,ﬁ,s)n(t,0,s,a,r,v(r,ﬂ,o))dadr] dé,
0o J-1
1

Cultyrs) = [ [ [ 3t 0, ym(,0,5,r,utr,6,5)) dr
b

0
1,1
+//j(t,7',6’,s)n(t,G,S,U,r,u(r,G,U))dadr] do,
0o J-1

and

T 1
Du(t,,s) :/ [/ (67,0, 8)l(—t,0, 5,0, v(t, 0, 0)) do
b

-1
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1
+/ j(t,1,0,s)ym(—t,0,s,—r,v(r,0,s))dr
// (t,7,0,s)n(-t,0,s,0,—r,v(r,0,0))dodr| df.

The operator equation (21) may then be written as a system

o ()= 5)0)()

Suppose now that the kernel functions I,m and n satisfy Lipschitz
conditions

[1(t, 7, s,0,u) —U(t,T,s,0,v)] <ai(t,T,s,0)|u—v,
|m(t, 7, s,7u) —m(t,7,s,70) <az(t,T,s,7)|u—1v,
In(t,,s,0,r,u) —n(t,,s,0,r,0)| <as(t,Ts0,7r)|u—1,
|m(t, 7, s, —r,u) — m(t, 7, s,—r,0)| < by (t,7,8,7)|u—2v,
|n(t,T,s,0,—r,u)—n(t,T,s,0, —r,v)| < ba(t,T,8,0,7)|u—v|,
|m(—t,7,s,7,u) — m(—t,7,s,70) <eci(t,,8,7)|u—1v,
|n(—t,T,s,0,r,u) —n(—t,1,s,0,r,0)| <cat,T,8,0,r)|u—2|,
ll(—t,7,s,0,u) — l(—t,T,8,0,v)| <di(t,7,8,0)|u— vl
|m(—t, 7, s, —r,u) —m(—=t,1,s,—7,v)| < da(t, T, s,7)|u—1
In(—t,7,s,0,—1r,u) — n(—t,7,s,0,—r,v)| <ds(t,7,s,0,7)|u—"1v

Moreover, assume that

/i(-,T,H,-)al(-,e,-,a)u(-,a)da

-1

1
+/ i(, 7,0, )az(-, 0, r)u(r,") dr
0

1 1
+/ / i(',T,o,')0,3(',0,',0’,7‘)?1(7", U) dodr
0 -1

< allul,

H /01 i(5, 7,0, )b (5 0, m)u(r, ) dr

1,1
+/ / i(,7,0,)b2(+,0,-,0,7)v(r,0) dodr
o J-1

< Bllvll;
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H /o1 (7, 0,)en(, 0, r)u(r, ) dr

1 1
+/ / (70, Yes( 0, - 0, )ulr, o) dor dr
0 —1

<,

and
1
H/ j(',T,a,')dl(',e,',U)U(',U) do
—1

1
+/ j(',T,g,')dg(',e,',T)U(T‘,') dr
0

11
"‘/ / Jj(,7,0,)ds(-,0,-,0,7)v(r,o) dodr
0 Jo1

< ||

We define a linear operator G by

(23)  Gz(r)=G <U(T)> / ) + Bu(8)] do

/b 0) + 6v(9)] do

Now we get the result:

Proposition 5. Let the assumptions of Proposition 4 be satisfied.
Assume, moreover, that the numbers a, 3,y and & can be defined as
above and satisfy one of the following four conditions:

1. A= (a+6)2-48y > 0and VA < log(a+5+VA)/(a+6—VA),
2. (a+8)2=4py < 4;

3. A<0,a+d+#0, and vV—A < 2arctan/—A/(a + 6);

4. A<0,a+6=0, and V-A < 7.

Then the operator equation (21), and hence also the boundary value

problem (13)/(14), has a unique solution x € W} ; this solution may

be obtained by the usual method of successive approzimations.
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Proof. We have to construct a suitable K-normed space E such that
the operator

o r()=(e 0) () (2)

satisfies the contraction condition (12). We take X = Lp(Q4) X
L,(Q+ ), equipped with the norm ||(u,v)||x = ||u||z,+[|v||z,. Moreover,
let E = Ly([a,b],X) be the Bochner-Lebesgue space of all X-valued
functions 7 — z(-,7,) = (u(-,7,+),v(-, 7, ")), equipped with the norm

1/p

b
ez = { [ atm )l + ot dr}
and the K-norm

|l = (a7 s 1ol ) lp)-

Thus, the K-norm takes its values in the natural cone of the Banach
space Z = L,([a,b],R?). Our assumptions ensure that the estimate
(12) is true for the operators (23) and (24). As in Lemma 3 of [1] we
see that the spectral radius of G is less than 1. Consequently, Theorem 2
applies. ]

5. Surjectivity results for monotone operators. In the
preceding sections we have proved existence and uniqueness theorems
for various types of integro-differential equations of Barbashin type in
Lebesgue spaces by means of topological methods. Since most Lebesgue
spaces are reflexive, and many nonlinearities arising in applications are
monotonically increasing or decreasing, it is a useful device to apply
also monotonicity methods, rather than topological methods. This will
be illustrated in this and the following section by means of the equation

y(t, s) = /_1l(t,s,a)f(t,o,y(t,a))dcf

(25) +/_1m(t,s,r)f(7,5,y(77 s))dr

+/11 /lln(t’s’ﬂo)f(ﬂa,y(f, o)) dodr
)

+g(t,s
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which is similar to that considered in the previous section. Here
I:[-,1] x [-1,1]] x [-1,1] = R, m: [-1,1] x [-1,1] x [-1,1] = R,
n:[-1,1]x[-1,1]x[-1,1]x[-1,1] =2 R,and g : [-1,1] x[-1,1]] = R
are given measurable functions, while f: [-1,1] x [-1,1] x R - R is
supposed to satisfy a Carathéodory condition.

The existence results given below essentially build on Browder’s
generalization [4] of Minty’s celebrated monotonicity principle [11].
Recall that a subset S of the product space X x X™* is said to be
monotone if

(26) (y1 —y2, 21 —22) >0 (z,55) €5, i=1,2.

The monotone set S is mazimal monotone if it is not properly contained
in any other monotone set. A (multivalued) mapping A : D(A) C
X — 2% is called monotone (mazimal monontone) if its graph
G(A) ={(z,y) €e X xX*: 2 € D(A),y € Az} is a monotone (maximal
monotone) set and weakly coercive if either D(A) is bounded or D(A)
is unbounded and

(27) ienj lyl| — 00 as ||z|]| — oo, z € D(A).
y x

Here (-,-) denotes the natural pairing between X* and X. Browder’s
monotonicity principle may be stated as follows:

Theorem 3 [4]. Let X be a reflexive Banach space, and let A :
D(A) € X — 2% be mazimal monotone and weakly coercive. Then
R(A) = X*.

Another tool which will be useful in the sequel is that of spaces of
mixed norm. If U and V are two ideal spaces of measurable functions
over [—1, 1], the space with mized norm [U — V] consists, by definition,
of all measurable functions « : [—1,1] x [-1, 1] — R for which the norm

[zllv—vy = It — llz(t, ) lullv
is finite [8]; similarly, the space [U + V] is defined by the norm

ellw vy = lls — [lz( s)llv v
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For example, in case U = L, and V = Ly, 1 < p, ¢ < oo, we have

1 1 q/p 1/q
lzlliz,—z, = {/ {/ |z(t, s)|P ds} dt} ,

N

1 1 r/aq 1/p
lzlliz, L, = {/ {/ m(t,s)|th] ds} .

-1 LJ-1

A detailed discussion of Lebesgue spaces with mixed norm may be
found in [3].

6. Barbashin equations with Hammerstein integral opera-
tors. We define operators L, M and N by

1
(28) Lx(t,s):/ l(t,s,o)x(t, o) do,

-1

(29) Ma:(t,s):/ m(t, s, 7)x(t, s) dr,

-1

1,1

(30) Nx(t,s) :/ / n(t,s,7,0)z(r,0) dodr.
-1/

Moreover, we denote by

(31) Fy(t,s) = f(ts,y(t,5))

the Nemytskij operator generated by the function f. We may then
rewrite equation (25) as an operator equation

(32) y=(L+M+N)Fy+g.

Since all operators occurring here act on functions of two variables, it is
reasonable to study equation (32) in spaces with mixed norm. To this
end, we first reduce the operators (28) and (29) to families of operators
acting on functions of one variable by putting

(33) L(t)u(s) = / s oyulo)ds,  —1<t<1

-1
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and

34) M(s)u(t) = / m(t,s,Tyo(r)dr,  —1<s<1.

-1

Lemma 3. Let2<p,qg<oo, 1/p+1/p' =1, and 1/g+1/q¢ = 1.
Suppose that the following three conditions are satisfied:

1. The linear integral operators (33) are bounded from Ly, into L;, for
each t € [-1,1] and the map t — [|L(t)||z(z,,L,) belongs to Lyg /(g—q')-

2. The linear integral operators (34) are bounded from L, into Ly
for each s € [-1,1], and the map s — [ M(s)|c(L,L,) belongs to
Loy 1(o-p")-

3. The linear integral operator (30) is bounded from [L, — L] into
[Lyy — Ly/] if p > q, or from [L, < Lg| into [Ly < Ly] ifp <gq.

Then the operator K = L + M + N is bounded from [L, — L] into
[Lpy = Lg'] if p > q, or from [Ly, < Lg| into [Ly < Lg'] if p <gq.

Proof. By Theorem 9 of [8], the operator L is bounded from
[L, — Lg4] into [L,, — Ly] and the operator M is bounded from
[L, < L4] into [L, < Ly]. Moreover, by the Minkowski inequality,
we have the continuous embeddings

[Lp — Lg] C [Ly «— Lg] ifp > g,
[L, — Lg| D [L, +— Lg] ifp<gq.

Thus, we get the conclusion. ]

With p, ¢,p’ and ¢’ as above, let us put for brevity X = [L, — L] if
p>qand X = [L, + Ly if p < q. Since [L, — L,4]* = [Lyy = Ly and
[L, < Ly|* = [Ly < Ly], Lemma 3 gives a set of sufficient conditions
under which the operator K = L + M + N maps X into its dual X*.
Observe, moreover, that the space X is reflexive, by our choice of p and
q.

In order to apply Theorem 3, we make the following further assump-
tions:
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Assumptions. (Al) There exists ¢ > 0 such that (—Kz,z) >
c|Kz|? forallz € X.

(A2) There exist a function a € X and b > 0 such that
(35) 1f(t,s,w)| < alt, s) + blw|[" @D,

where r(p,q) =p'/p if p > q and r(p,q) =q'/q if p < q.

(A3) The function f(t,s,-) is monotonically increasing for almost all
t,s € [-1,1].

(A4) There exist a function h € Ly and d > 0 such that

(36) It s, w)w > d|w|s(p’q) + h(t, s),
where s(p,q) = q' if p > q and s(p,q) =p" if p < q.

Proposition 6. Suppose that the hypotheses of Lemma 3 as well as
the assumptions (A1)—(A3) are satisfied. Then the operator equation
(32) has, for each g € X*, a unique solution y € X*.

Proof. We first show the existence of a solution. The operator
equation (32), i.e., y = KFy + g, is equivalent to the relation

(37) 0e(-K) "(y—g)+Fy

(cf. [5]). Let z =y — g, and let F;; be defined by Fyz = F(z2+g). Then
equation (37) holds if and only if

(38) 0€[(—K) '+ F,=

Under the assumptions (A2) and (A3), it is easy to show that the
Nemytskij operator Fy acts from X* into X and is monotone. By
Theorem 2.6 of [2], F, is also continuous. Since (—K)~! and F, are
both maximal monotone, by a result of Rockafellar [14], the mapping
(—K)~! + F, is also maximal monotone. Moreover, the estimate

F
f e+ Fpell > g ETem2)
ze(—K) 1z ze(—K) 1z ||Z||

> cf|z]| = || F50]l
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shows that (—K) !+ F} is weakly coercive. The solvability of equation
(38) thus follows from Theorem 3.

For the proof of uniqueness, let y1,y2 € X* such that y; = KFy; +g,
ya = KFys + ¢g. Then

(y1 —y2, Fy1 — Fy2) + (= K)Fy1 — (=K)Fy2, Fy1 — Fyz) =0,
and, by the monotonicity of F' and the assumption (A1),
0> ((—K)Fy, — (=K)Fys, Fy1 — Fya) > c||K(Fy, — Fy,)|.

This implies that K F'y; = K Fy, and, hence, y; = ys. u]

In fact, under the assumptions (A2) and (A3), we only need that
(—K) is monotone, i.e., (—Kz,z) > 0 for all z € X, such that
(—K)~! + F, is maximal monotone. Furthermore, if the assumption
(A4) is satisfied, by the Holder inequality we have

(Fy,y) > d'||y|*®? +e

for some d’ > 0 and e € R. Now, let g = 0; since

F
inf |z + Fy|| > inf _<m+ .01
ze(—K) 1y ze(—K)~ly ||yH
2yl + e

?

[yl

(—=K)~! + F is weakly coercive. Therefore, we have:

Proposition 7. Suppose that the hypotheses of Lemma 3 as well
as the assumptions (A2)—(A4) are satisfied. If (—K) is monotone and
g = 0, then the operator equation (32) has a solution y € X*.
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