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ON WAVE EQUATIONS WITH
BOUNDARY DISSIPATION OF MEMORY TYPE

GEORG PROPST AND JAN PRUSS

ABSTRACT. The undamped wave equation on an open
domain of arbitrary dimension and boundary of class C? is
considered. On parts of the boundary the normal derivative of
the solution equals the convolution of its time derivative with
a measure of positive type. This setting subsumes standard
dissipative boundary conditions as well as the interaction with
viscoelastic boundary materials. Applying methods for evolu-
tionary integral equations to a variational formulation of the
problem, existence, uniqueness and regularity of the solution
to the wave equation is proven under minimal regularity as-
sumptions on the initial conditions and forcing functions. To
evaluate the versatility of a parametrized model, least-squares
fits to physical data are presented.

1. Introduction. A basic linear model for the evolution of sound
in a compressible fluid is the system of partial differential equations

(L.1) pue(t, z) + grad p(t,z) = 0,

' kpe(t, z) + divo(t,z) =0, t>0, zeR"

where p denotes acoustic pressure and v the velocity field; cf., e.g., Leis
[6]. In the sequel the equilibrium density p and the compressibility
k will be assumed to be constant and then w.o.l.g. to be equal to 1.
Eliminating v from this system one obtains a wave equation for the
pressure p.

(1.2) pee(t, ) = Ap(t, x), t>0, zeR"
When the fluid is enclosed in a region 2 C R™, (1.2) has to be sup-

plemented by conditions at 02, the boundary of 2. The energy con-
serving Dirichlet, Neumann and Robin conditions aside, the following
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three dissipative boundary conditions are discussed in the mathemati-
cal literature on time domain models for acoustics.

Firstly, equating the acoustic impedance {(z) € C of the boundary
surface at x with the ratio between the fluid’s pressure and its velocity
normal to the surface, [11, p. 261], results in

(1.3) S—Z(t,x) + ¢()pe(t, ) = 0, t>0, xze€dnN.

0/0n denotes the derivative in the direction of the outer normal of
0f). This condition has the unique property that a plane surface
with impedance ( reflects every normally incident wave with reflection
coefficient (1 —¢)/(1 + ¢), no matter what the shape of the wave. The
reflection is dissipative, if and only if Re{ > 0. The well-posedness of
the wave equation with boundary conditions (1.3) and the asymptotic
behavior of its solutions has been investigated in [10, 15, 4, 8] and,
more recently, in [16].

Secondly, adding a friction term B(z)p:(t,z), 8 > 0, to the elastic
Robin condition, yields

(1.4) %(t, z) + B(x)pe(t, z) + a(z)p(t,z) = 0, t>0, ze€dfN.

This condition has been studied, e.g., in [9, 7].

Thirdly, modelling the boundary surface as independent oscillators,
[11, p. 263], and equating the velocity d; of the impenetrable surface
with the normal velocity of the fluid at boundary points, leads to

m(z)du(t, 2) + d(x)d:(t, ) + K(2)d(t, z) = —p(t, x),
0
(1.5) 8—p(t,x) +ou(t,z) =0, t>0, zed
n
In [3], where this boundary model is formulated for the velocity poten-
tial, spectral properties of the generator of the solution semigroup are
given.

How well do these boundary conditions model the reflection of sound
at surfaces of materials that are of interest in engineering practice?
One approach to this question was taken in [2]: A fit to measurements
of reflection coefficients for plane simple-harmonic waves of the form
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(=) € R, by least-squares optimal choice of the parameters

¢ € C, respectively a, € R, respectively m,d, K € R. The results
in [2] indicate that none of the above conditions can cover a variety of
different physical configurations.

Looking for more general models, we find in [11], equation (6.3.11),
that the pressure of the combination of a wave F(T;), T; = t—(x1 sin§—
x2 cos ), that is incident at angle 6 onto the surface zo = 0, with the
reflected wave in direction T;. —t = — (1 sin 6 + x2 cos 6), is of the form

(1.6) p(t,x) = F(T;) + F(T,) + /jo F(r)W (T, — 7)dr.

Here W represents the modification of the reflected wave that is caused
by the motion of the surface.

This means that a general linear reflection process is to be modelled
by convolution of the acoustic wave with a function that characterizes
the boundary material. In order to cast (1.3), (1.4), (1.5) into a
common form, we write

(1.7) t,x) + dk xpi(t,x) = 0, t>0, xe€df,

p
on (
where dkxp;(t,z) = fot dk(T, z)p(t—7, z). We need kernels that include
the Dirac measure §y to evaluate p; at the instant ¢, and integrals to
express §(t,x) in terms of (Op/On)(t,x). For the Laplace transforms
dk(\, z) = J5° e *dk(t, z) of the kernels dk that render (1.7) into (1.3),
(1.4), (1.5) respectively, we have

C('/Ll)7
dk(\, @) = { B(x) + o)/, z € 09.
(m(z)A +d(z) + K(z)/2) 7,

In [11], the argumentation for surfaces of local reaction is built up out of
the reflection of simple-harmonic waves from a surface with frequency
dependent impedance, via the treatment of a pulse-wave by Fourier
transformation, which, by superposition, leads to formula (1.6).

Another approach that also leads to convolution boundary conditions
of the form (1.7), is the modelling of the boundary as the surface of a
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viscoelastic material. Assuming that the viscoelastic boundary material
has a much higher density than the acoustic liquid under consideration,
that the acoustic waves do not penetrate the boundary material deeply
and only normally to the surface, the following model for the velocity
w(t,y) of the boundary material on the normal ray y > 0 emanating
from x € 02 can be employed.

t
wi(t,y) = / wyy(t — 7 y)da(r), iy >0,
0

(1.8) —/0 w,(t - 7,0)da(r) = p(t, 2),

w(t,0) = v(t,z) - n(x), t>0
’U.)(O,y) =0, w(ta OO) =0, y >0,
at some fixed point x € 9. The kernel da reflects the properties of

the viscoelastic boundary material; see e.g., [14, Section 5]. Taking the
Laplace transform of this problem yields the boundary value problem

A

————w(\,y) = 2w\, y), > 0,
o) (A y) = 0,w(\,y) y
@(A\0) =5\, z) n(x), B\ o00) =0,

— da(\)d,B(\, 0) = p(A, ).

(1.9)

Solving for w leads to
W\, y) =e ¥/ VEO‘)G()\,m) -n(x), y>0, ze€dQ,

hence by the boundary condition at y = 0

_da(\) - —————5(\2) - n(z) = WA @) - n(@) = BN, @),

a(X)
But this implies via (1.1)
D 1
OB\ ) — AP\, z) =0, x e
on Av/a(A)

Defining the kernel k(t) by means of

1
Mah)’

dk(\) =
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we arrive at a boundary condition of the memory type (1.7). In passing,
we note that the measure dk exists and is of positive type if, e.g., the
function a(t) is a Bernstein function which is an assumption used quite
frequently in viscoelasticity. For more details we refer to [14] and the
references given there.

It is the purpose of this paper to study the wave equation (1.2)
with dissipative boundary conditions of memory type (1.7) for general
domains, both theoretically and in practice. The kernels dk are only
restricted by the physically reasonable assumption that they should
be of positive type, which relates to the energy inequality studied in
Section 3. Section 2 is devoted to the variational formulation of the
problem and the derivation of the variation of parameters formula
associated with the problem. In Section 4 we prove the basic well-
posedness results which by means of an analysis of one-dimensional
problems are shown to be optimal.

To examine whether wave equations with boundary conditions of
memory type (1.7) are suitable models in real life, in Section 6 we
reconsider the experimental data of [2] for the reflection coefficients of
four different boundary configurations. We choose the parameterization

(1.10) dk(t) = Kodo(t) + ke ' cos(yt + vo)dt

for three reasons: i) five real parameters should give enough flexibility
to cover a variety of configurations, ii) the corresponding reflection
coefficients are obtained easily and iii) a nonlinear inequality constraint
on the parameters is available that is necessary and sufficient for dk to
be of positive type. It turns out that three of the configurations can
satisfyingly be modelled by (1.10), but the data for a nonflat porous
boundary cannot be covered by a one-dimensional model with dk in
(1.10) of positive type.

2. Variational formulation of the problem. Let Q C R" be
an open domain with boundary of class C!, and I'; disjoint measurable
subsets of the boundary 92 of Q such that I'oUT',, UT'y = 0f). Suppose
that the function k(t,z) belongs to BV (R4; L (Ty)), i.e., k(t, z) is
of bounded variation on each compact interval [0, a], uniformly with
respect to & € T4, left-continuous in ¢, and normalized by k(0,z) = 0.
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Consider the following initial boundary value problem.

u(t, ) = Au(t, z) + g(¢, z), t>0, z€Q
¢
g—u(t,x) +/ dk(r, 2)u(t—7,z) = h(t, z), t>0, ze€ly
n 0
Ou
on
(0, ) = up(x), u (0, 2) = uy(x), z e

u(t,z) =0, x €Ty, (t,z) =0, zel,, t>0,

with given functions ug,u1,g,h. Here n(z) denotes the outer normal
of Q at z € 01.

To obtain a reformulation of (2.1) of variational type, let H = L?(f2),
V = H%O(Q) = {u € HYQ) : ulp, = 0} with norms |- |, || - ||
and inner products (-,-), ((-,-)), respectively. Then V' & H,ie., V
is continuously and densely embedded into H, hence identifying the

antidual H* of H with H, we also have H ‘i> V*, where the duality
(+,-) between V* and V, and the inner product in H are related by
(h,v) = (h,v) for all h € H, v € V. Taking the inner product of (2.1)
with v € V in H and integrating by parts, (2.1) leads to the problem

(ii(t), v) + / 4B(t — 7, (), v) + au(t), v) = (F(£),0),
u(0) = uy, w(0) =u;, forallveV,

(2.2)

where the dots indicate differentiation with respect to time ¢. The
sesquilinear forms a and 3 are defined by

a(u,v) = /QVU(:E) - Vo(z)dz, u,v € HE (),

and

B(t,u,v) = /1“ k(t, z)u(z)v(z)do(x), t>0, wu,v€H}(Q),

and 3(0,u,v) = 0. Here do(x) means the surface measure of 9. The
function f(t) is given by

(£(t),v) = (9(t), v) +/ h(t,z)v(z)do(x), v € Hy, (),

Ta
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i.e., f has values in V*, in general. Recall that H*(Q) — H/?(99).
Representing the forms a and B by operators A and B via the Riesz
representation theorem, i.e.,

a(u,v) = (Au,v), u,v €V,

and
B(t,u,v) = (B(t)u,v), t>0, u,vevV,

(2.2) can be written as

u(t) +/0 dB(T)a(t — 1) + Au(t) = f(2), t>0,
u(0) = uy, 4(0) = uy,

(2.3)

in X = V*, where B € BV,.(R4; B(Y, X)), with Y = V. Integrating
(2.3) twice we obtain the following evolutionary integral equation.

(2.4) u(t) —i—/o Ao(T)u(t — 7)dr = fo(t), t>0,

where

Aot) = B(t) + 14, >0,
and
fo(t) = wo + (/0 B(s)ds>u0 + tuy
[ ez

Thus Ag(t) represents the form (¢, u,v) on V defined by

ap(t,u,v) = /1“ k(t, z)u(z)v(x) do(z) +t/QVu(x) - Vo(z)de.

This way we have reformulated problem (2.1) as an evolutionary inte-
gral equation of variational type, and have access now to the results
and methods developed in Section 6 of the second author’s monograph
[14].

Given fo € C(R4; X), a function u € C(R,;Y) satisfying (2.4) for
every t € Ry is called a strong solution. A function u € C(R4; X)
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is termed mild solution of (2.4) if there are f, € C(R4;X), strong
solutions u, € C(Ry;Y) of (2.4) with fy replaced by f,, such that
fn — fo and u, — u, uniformly on compact subintervals of R .

Since Ag € BVioc(R4;B(Y, X)), it is obvious that a strong solution
of (2.4) with fo € C*(R4; X) is differentiable in X and

(2.5) au(t) +/0 dAo(T)u(t — 1) = fo(t), t>0, u(0) = fo(0).

Taking the special form of Ay(t) and fy(¢) into account, we may write
(2.5) as

a(t) +/0 dB(7)[u(t — ) — ug] +/0 Au(s)ds = uy +/0 F(s)ds,
u(0) = fo(0) =uo,  t2>0.

For f € C(R4;X) we see from this equation that @ + dB * [u — o] is
continuously differentiable in X, and

%[u(t) + / dB(r)(u(t — 7) —uo)] +Ault) = f(8),  t>0,

0
u(0) = uy, 4(0) = uy.
In this sense equations (2.4) and (2.3) are equivalent.

The following derivation is presently formal; it is presented here for
motivating the operator families introduced below. Taking tlle\ Laplace
transform of (2.3), and assuming that the operators A\? + AdB()) + A
are invertible for all A > 0, we obtain

A(\) = AN +AdBA) +A) L (ug+ur A+ BN ug+F(N)/A),  A>0.

Define operator families S(t), C(t), R(t) by means of

(2.6) S(A) =AM +XBA) + A, A>0,
(2.7) R(\) = (A2 +XB\N)+A4)7Y,  A>0,
and

(2.8) C(\) = (A2 + MB(\) + A)~'(A+dB()), A>0.
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Then the solution of (2.3) is represented by the following variation of
parameters formula.

(2.9) () = C(tuo + R(t)us + / "Rit—s)f(s)ds,  t>0.

Therefore the solvability properties of (2.3) are reflected in the proper-
ties of the operator families C(¢t), S(t), and R(t). Observe the relations

R(t) = t S(r)dr
(2.10) /0

C(t) = S(t) + / 'S(t—r)B(rdr, >0,

For convenience we introduce two more operator families, C,(t) and
T(t), by means of

(2.11)  C.(A) = (A+dB\)A2+AdBA) +4)L,  A>0,

and
N N t
(2.12) TA) =R(\)/N, or T(t)= / R(s)ds.
0
These families will also turn out to be useful.

3. The energy inequality. Suppose that the sesquilinear form «
on V is bounded and coercive in the sense that, with some v > 0,

(3.1) Rea(u,u) > v||ul|?>, foralluc V.

Then the form Re a(u,v) induces an equivalent norm on V. We may
then use this form as an inner product for V, i.e.,

((u,v)) = Rea(u,v) and |u||* = Rea(u,u), u,v e V.

For the symmetric form « defined in Section 2 coerciveness means that
'y has nonempty interior in 92. However, factoring the constants, i.e.,
the kernel of A, it is possible to circumvent this assumption, at least in
case (2 is bounded.



108 G. PROPST AND J. PRUSS

Assume further that the form [ is of positive type in the sense that

T t
Re/ [/ d-B(r,u(t — 1), u(t)| dt > 0,
(3.1) |, EBmult =) u®)
forallu e C(R4;V), T > 0.

For the form (3 defined in Section 2 this is implied if the scalar kernel
dk is of positive type, which is equivalent to

Re EE()\, z) >0, forallReA>0, z€Ty

by the theorem of Nohel and Shea [13].
Then the form g defined in Section 2 is coercive in the sense that

2

7

(33)  2Re /0 ' { /0 t dTozg(T,u(t—T),u(t))} it > H /0 "ty di

for all v € C(R4+;V) and for all T > 0. This is the main property
which allows for energy inequalities.

Then, if u is a strong solution of (2.4), multiplying (2.5) with u(t)
and integrating over ¢ we obtain

/Otu(T) dr

2

u(®) + \ < 1A

(3.4) .

+2Re/ (olr)u(r)) dr, ¢ 0.
0

This is the basic energy inequality for (2.4). It turns out that it holds

also for mild solutions, provided uy € V and w; € H. More precisely,
we have the following result which is implied by Proposition 6.8 of [14].

Proposition 3.1. Suppose the form oag(t,u,v) is coercive in the
sense of (3.3), and let u € C(Ry; V") be a mild solution of (2.4). Then

(i) fo € W' (Ry; H) implies

loc
t
/ u(r) dr
0

< 1fo(0)[2 + 2Re / (o(r)u(r)ydr,  t>0.

(3.5)  |u(®)]® + ‘
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(ii) fo(0) € H and fo € Wi (Ry; V*) imply with v(t) = f(f u(T) dr

[u(®)” + [[o(8) 1 < [£o(0)]* + 2Re (fo(t), v(t))

3.6 t
(3.6) — 2Re / (fo(r),v(7)) dr, t>0.
0

u(t) is continuous in H, and v(t) = ft

o u(T)dT is continuous in V.

To see the implications of Proposition 3.1 for the operator families
S(t), R(t), T(t), and C(t), assume that they exist. Then setting
fo(t) = z € H we have u(t) = S(t)z and f; u(t)dr = R(t)z. Hence
(3.5) implies
(37) S € BH),  1SOlsun < L
and

(38) R(t) € B(H, V), |R(t)‘B(H,V) S ]., for all ¢ Z 0.

Setting fo(t) = tx € V* we obtain u(t) = R(t)z and fot u(r)dr =T(t)z,
hence (3.6) yields

(3.9)
R(t) € B(V",H),  |R(t)|pwv-m) <1,

and
T(t) € B(V*,V), |T(t)|gv=,v) <2, forallt>0.

Next, the relations C(t) = T(t)A and C(t) = —R(t)A and
fo(t) = —tAz yield u(t) = C

I —
C(t)x, f(f u(7)dr = C(t)z — x; hence (3.6)
implies

(3.10) C@)eB(V), [CH)Isw) <1,

and

C(t) € B(V,H), C()|pv,my <1, forallt>0.
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4. Well-posedness results. Suppose that assumptions (3.1) and
(3.2) are satisfied. If the form B is absolutely continuous in ¢ on
each bounded interval, 8(0+,u,v) = 8(0,u,v) = 0, and 3 is locally
of bounded variation, we may apply Theorem 6.5 of [14] directly to
obtain well-posedness of (2.3). In particular, the resolvent S(t) exists
and is strongly continuous in B(H), but also in B(V) and in B(V*),
its integral R(t) is strongly continuous in B(H,V) and in B(V*, H),
and T'(t) has this property in B(V*,V). The derivative S(t) of S(t)
is strongly continuous in B(H,V*) and in B(V, H), and S(t) is so in
B(V,V*). By means of the relations

Ot)=1-TH)A,  Cy(t)=I—AT(t), t>0,

corresponding properties for C(t), Ci(t) and for their derivatives follow
from the properties of S(t), R(t), and T'(t).

However, we do not want to make additional regularity assumptions
on the form (3, besides that 3 is locally of bounded variation. Then,
as the example in one space dimension treated in Section 5 shows, one
cannot expect that the resolvent S(t) is leaving invariant the spaces V'
and V*, but it will turn out that C(t) is strongly continuous in V" and
C,(t) has this property in V*. The precise statement is as follows.

Theorem 4.1. Suppose (3.1) and (3.2) are satisfied. Then there
are unique operator families S(t), R(t), T(¢t), C(t), and C.(t) with the
following properties.

1. §: Ry — B(H) is strongly continuous, satisfies |S(t)|s(m)
and

IN

L,
S(A) =AA2+AdB(\)+A)",  Rel>0;

2. C: Ry — B(V) is strongly continuous, satisfies |C(t)|gvy < 1,
and

C(\) = A2+ XdB(\) + A) Y(A+dB(\),  Re) > 0;
3. C: Ry — B(V,H) is strongly continuously differentiable and
satisfies |C'(t)|pv,m) < 1

4. Cy: Ry — B(V*) is strongly continuous, satisfies |Cy(t)|p(v+) <
1, and

Co(A) = (A+dBN)(A2+AdB(A\) + A)~Y,  ReA > 0;
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5. C.: Ry — B(H, V™) is strongly continuously differentiable and
satisfies |Cy(t)|p(m,v=) < 1;

6. R: Ry — B(H,V)NB(V* H) is strongly continuous, satisfies
|R(O)|s(v=,m) < L, |R(t)|sm,v) <1, and

R(\) = (A2 4+ XdB(A)+ A, ReA>0;

7. T:Ry — B(V*,V) is strongly continuous, satisfies |T(t)|p(v+,v) <
2, and

T(A\) = ~(A\2+AdB(A\)+4)"!,  ReA>0.

>| =

Proof. Proceeding as in the proof of Theorem 6.5 in [14], the
assumptions of Theorem 4.1 imply that A\* + AdB(A) + A is boundedly
invertible from V* to V, for each Re A > 0. Therefore

H(\) = AA2+AdB(\) + A)"',  ReA>0,

is well-defined and holomorphic in B(V*,V) for Re A > 0. Moreover,
the energy inequalities imply with L} = [(—=1)"/n!](d/d\)"

ILRHW sy < A7, [LRHN) Nlsny) < A0,
ILRHN) /Nl my <A™ L) /A |sv-,vy < 247 0FY,

for all A > 0 and n € Ng.

Due to missing regularity of B(t), the remaining arguments of the
proof of Theorem 6.5 in [14] must be carried out differently. By the
vector-valued version of Widder’s inversion theorem for the Laplace
transform (cf., Arendt [1]; see [14, Theorem 0.2]), there are functions
R:R, - BH),T:R; - B(V*,HHNB(H,V), and U : Ry —
B(V*, V), Lipschitz-continuous on R, with initial values 0, such that

R(\) = HO)/A,
(4.1) T(\) = HQ)/N,
U\) =H\)/X,  Rel>0.
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Since H is dense in V* and V is dense in H, uniqueness of the Laplace
transform then implies

¢
T(t)x = / R(s)z ds, x € H,
0
t
Ut)e = / T(s)z ds, zeV*, t>0.
0

Therefore, U(-)z is of class C' in V for each x € H, which by
Lipschitz-continuity of U(t) in B(V*,V) implies that the operator
family T'(t) = U(t) is strongly continuous in B(V*,V). Similarly one
obtains strong continuity of the family R(t) in B(V*, H).

By the definitions of H()), R(t) and T'(t) and by uniqueness of the
Laplace transform we obtain the relation

(4.2) R(t)z +/t R(t—s)B(s)x ds+U(t)Azx = tx, zeV, t>0.

Since V* is reflexive, V* has the Radon-Nikodym property, see, e.g.,
Diestel and Uhl [5], and by Lemma 4.2 below we may write

/Ot R(t—s)B(s)zds = /Ot T(t—s)dB(s)z, xeV, t>0,

and the righthand side of the latter is continuous in V. Therefore,
(4.2) yields continuity of R(-)x in V for each z € V; hence Lipschitz
continuity of T'(t) in B(H,V) implies strong continuity of the family
R(t) in B(H,V).

Differentiating (4.2) yields
t
S(H)z +/ R(t—s)dB(s)z+ T()Az =z, zcV, t>0;
0

hence by a similar argument we obtain existence and strong continuity
of the family S(¢) in B(H).

By the definitions of T'(t), C(t), and C\(t), and by uniqueness of the
vector-valued Laplace transform we have the identities
Ct)x =a —T(t)Az, z eV,
C.(t)e =2 — AT (t)z, zeV*, t>0,
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from which existence and strong continuity of the families C(t) € B(V)
and C.(t) € B(V*) can be deduced. Differentiating these relations
yields finally

C(t)z = —R(t)Az, x €V,
C.(t)x = —AR(t)z, xeV*, t>0,
which imply that C(t) is strongly continuously differentiable in B(V, H)

and that C,(¢) is so in B(H, V*). This completes the proof of Theorem
4.1. o

Lemma 4.2. Let X, Y be Banach spaces, V : Ry — B(X,Y)
strongly continuous with V(0) = 0, and let f € BVioc(Ry; X). Assume
that X has the Radon-Nikodym property.

Then the convolution integral

y(t) = / Vit s)df(s), 20,

exists in the Lebesgue-Stieltjes sense

y(t) = /0 V(t — s)h(s)da(s), t>0,

where a(t) = Var f|§ denotes the total variation of f, and h(t) =
df /da(t) means the Radon-Nikodym derivative of f with respect to da.
The function y(t) is continuous in Y.

Proof. For the Radon-Nikodym property the reader is referred to
Diestel and Uhl [5]. Since by assumption the space X enjoys this
property, the function f(¢) admits a Radon-Nikodym derivative with
respect to its total variation a(t) = Var f|§, say h(t). The X-valued
function h(t) is da-measurable and bounded by 1. Approximate h
uniformly on a fixed interval J = [0,7] by simple functions h,(t) =
Z:’;"l Zn,iXn,i(t), with coefficients z,, ; € X and characteristic functions
Xn,; of disjoint da-measurable sets Bn,,-, i=1,...,m,. Then by strong
continuity of V(t) and by V(0) =
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is well-defined on J and continuous, and with M; = sup,¢ ; |V (s)|5(x,v)
we have the estimate

lun(t)ly < My igl’;ﬂhn(sﬂx}a(ma

for each ¢t € J, since the sets B, ; are disjoint. Moreover, passing to
common refinements, we also obtain

[ur(t) = w(@)ly < Mysup{|he(s) = huls)lx}a(T),  te€T;

hence uy(t) — wu(t) uniformly on J as k — oo. As a result u(¢) is
continuous on J, and

t

u(t) = lim wu,(t) = lim V(t — s)hn(s) da(s), ted

n—o0 n—0o0 0

Therefore,

u(t) = /0 V(t — s)h(s)da(s) = /0 V(t—s)df(s), ted,

is well-defined as a Lebesgue-Stieltjes integral on each finite interval
J =10,T], hence also on R . O

Observe that in time domain the operator families of Theorem 4.1
satisfy e.g. the following equations, by uniqueness of the Laplace
transform.

t
R(t)x +/ Ao(T)R(t—T7)z dT = tz, t>0, ze€dH,;
0
¢
R(t)x +/ R(t—7)Ao(T)z dr = tz, t>0, zeV;
0
t
T(t)e + / Ao(F)T(t—r)zdr = 22/2, >0, zcV*
0

¢
T(t)x +/ T(t—71)Ao(T)z dr = t?z/2, t>0, zeV;
0
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t
Clt) +/ Ao(F)C(t—T)zdr = 3+ Bt)z, >0, z€V;
0

t
Ci(t)z +/ C.(t—7)Ao(T)zdr = = + B(t)z, t>0, zeV;
0

t

R(t)z = / S(redr, t>0, weH;
0
t

T(t)z = / R(r)zdr, t>0, zeV"
0

Other relations can be obtained by differentiation of these equations.

Let us next consider the solvability behavior of (2.3).

Corollary 4.3. Suppose assumptions (3.2) and (3.3) are satisfied.
Letug € V,u; € V*, and f € L (R4;V*). Then

loc

1. Ifue C(R4; V™) is a mild solution of (2.3), then
¢
(4.3) u(t) = C(t)up + R(t)us +/ R(t—7)f(r)dr, t>0;
0

in particular, mild solutions are unique.

2. The function u(t) defined by (4.3) belongs to C(R4; H) and is a

mild solution of (2.3).
3. If, in addition, uy € H, and f = f1 + fo where fi € L{, (Ry; H)
and fo € WEH(Ry;V*), then u € C(Ry; V) NCY(Ry; H) is a strong

loc

solution of (2.3), and &+ dB *u € CY(R4; V™).

The proof of Corollary 4.3 follows by means of standard arguments;
cf. [14].

Let us finally return to the wave equation with boundary dissipation
(2.1). Translating Corollary 4.3 and using elliptic regularity results we
obtain the following result on well-posedness of (2.1).

Theorem 4.4. Suppose ug € Hy, (), up € L*(Q), g € L}, (Ry;
L2(2)), and let h € Wil (Ry; L2(Ty)).

Then (2.1) admits a unique solution u € C(Ry; Hp, () in the weak
sense, and u € C*(Ry; L*(Q)).
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Suppose, in addition, that I'g, I'y,, Ty are closed in 09, let ug €
H*(Q) N HE, (), w € HE(Q), g € Wi (Ry; LA(Q)), b € Wi (Rys
NC(Ry; HY?(Ty)), k € BViee(Ry;CY(Ty)) and either u; = 0 on
Ly or k is locally absolutely continuous in t, uniformly with respect
to x € Ty, k € BVige(Ry;L®(Lyg)), then u € C(Ry;H3()), u €
C'(Ry; HE (), u € C*(Ry; L*(Q)), and u(t, x) satisfy (2.1) for all
t > 0 and almost all x.

Proof. The first statement follows directly from the last part of
Corollary 4.3. For the second assertion apply Corollary 4.3 to 4, and
observe S(t)u; = C(t)uy in case u; = 0 on I'y. This gives the asserted
regularity of % and . Finally apply elliptic regularity results for each
fixed t > 0 to obtain u(t) € H?(Q). O

5. A one-dimensional example. In this section we want to discuss
the one-dimensional case 2 = R, the simplest nontrivial case. Thus
we consider the problem

Ohu(t,x) = Oult,z) + g(t,x),  to >0,
t
(5.1) — Oyu(t,0) +/ Opu(t—s,0)dk(s) = h(t), t >0,
0
u(0,z) = up(z), Ou(0, ) = uy (), z >0,

where g(t, z), h(t), uo(z), ui(z) are given functions. In this situation
the solution can be computed explicitly. In fact, taking Laplace
transforms with respect to the time variable we obtain the following
boundary value problem

N\, z) = 02U(\, z) + (A, ), Az >0,
—8,1(),0) + AdE(N)@(A,0) = ¢()), A>0
where
P\ z) =g\ z) + ur(x) + Aug(z), Az >0,
and R .
d(A) = h(N) + dk(N)up(0), A>0.

This boundary value problem is easily solved to the result

A\ z) = / TGz y) B0 y) dy + GO 7, 0)6(N),

A x>0,

(5.2)
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where

1 ~
G\ z,y) = ﬁ{e—Mz—yl +(1- 2d7’()\))e_)‘(z+y)},

Az,y >0,
and the kernel dr is given by
- k(A
Gy = Ny
1+ dk(X\)

Setting h = g = ug = 0, we obtain

(5.3)

)

Rur)(z) = / o u)dy, Moo,

(5.4)
B(Nuil(z) = / MGz, y)us(y)dy, Az >0,

and similarly we obtain
(5.5) [C(N)uol(z) = [S(N\)uo)(z) + G(A,z,0)dk(\)ug(0), A,z > 0.

Taking inverse Laplace transforms this leads to

[S(t)u1](z) = %[m(t + @) + ur (|t — )]
(5.6)

(t—=)+
7/ uy (t—s—x) dr(s), t,z >0,
0
and

[C(#)uol(z) = %[UO(t + ) +uo(ft — z|)]

(t—x)+
(5.7) —/0 (wo(t—s—2) — uo(0)) dr(s), £,z > 0.

Here we employed the notation (z) = max(z,0).
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These representation formulas for S(t) and C(¢) are easily interpreted.
The first term in (5.6) and (5.7) give the cosine family of (5.1) with
Neumann boundary conditions, while the second terms are the result
of the boundary dissipation due to the kernel dk. Observe that in
case dk # 0 the function C(t)up is continuous in z for continuous wy,
but for a continuous wuy, the function S(t)u; is continuous in z if and
only if the function uq(0)r(t — x)ho(t — ) is continuous, which means
either u1(0) = 0 or k(¢) continuous, in particular k(0+) = k(0) = 0.
Even more, if ug € H'(R,) then C(t)up € H'(R.); however, if
up € HY(Ry) with u1(0) # 0 then S(t)u; € H*(Ry) if and only if
k € H!_ (R;) and k(0+) = 0. Therefore the results of the previous
sections cannot be improved in general.

6. Experimental data. To test the validity of the boundary
conditions (1.7) as a model for the reflection of sound, we refer to
measurements of reflection coefficients for harmonic pressure waves
in air. These measurements are the result of experiments that were
conducted by R.J. Silox at the Acoustics Division of NASA’s Langley
Research Center. A description of the experiments and of the data
acquisition procedures is given in [2]. There are four sets of reflection
coefficients for four different boundary materials: an aluminum plate
representing a hard wall, free radiation from an open duct, a 2.3 cm
thick acoustic foam (backed by a hard surface), an egg crate shaped
porous material with wedges of 5.08 cm height (backed by 10.16 cm
of closed cell foam). For each material, the measurements R; € C,
j=1,...,m, are the ratios of the amplitudes of reflected and normally
incident plane harmonic waves of frequency w;/2m, as in

(6.1) p(t,z) = e™ilt=2) 4 R etwilt+e), z € (—00,0]
for the reflection at x = 0.

Insertion of a superposition of the form (6.1) into the boundary
condition (1.7) at the boundary z = 0 of Q = (—00,0) gives

< -1+ R(w)+ (1+ R(w)) /Ot dk(T)ei‘“T>ei“t =0, t € (0,00)

where R(w) stands for the reflection coefficient at frequency w/2m.
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Assuming R(w), %(w) # —1 and setting k(7) = 0 for 7 < 0 gives

Ty LmR@) o 1— dk(w)
F =Rk " T e

for the Fourier transform EIE(w) = [Z_ e T dk(r) of the kernel dk.

Looking for kernels that yield reflection coefficients similar to the
data, we use the parametrization (1.10) and search for parameters

Ko, K,€,7,7% € R that minimize the sum of squares F = E?:l ]-2,
where fj = Reeja fj-l—m = Imejaej = Rj - R(wja’iOa’iaEv’Ya'YO)v
j=1,...,m. To satisfy the well-posedness requirements of Section 4,

the minimization is restricted to parameters that generate kernels of
positive type.

Proposition 5.1. Suppose € > 0. dk in (1.10) is of positive type if
and only if 0 < G(ko, K, €,7,70) = ko + £9(g,7,70), where g is given by

k>0 k<0
b—c>0 0 h(0) if €2 — 42 >0
b+c=0 h(y? —€2) ife?2 —42 <0
b—c<0 h(0) ife2 —~2 >0 0
h(y% —€2) ife? —4%2 <0
v1 <0 0 h(0)
b+c>0|v2<0< v min(0, ~(0)) h(v1)
0 <wsg min(0, h(v2)) max(h(0), h(v1))
v <0 h(0) 0
b+c<0|v: <0< wy h(vz) max (0, h(0))
0< v min(h(0), h(v2)) max(0, h(v1))

with
(b+c)v+(b—c)a
= R
Av) (a—v)2+4e2v ’ Ve
_ —a(b—c)£d o 9
V1,2 = bre a=e +7%,

b = € cos vy, ¢ = ~ysin g, d = 2+/a(y?b? + £2¢?).
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FIGURE 1.

Proof. For € > 0, dk in (1.8) is of subexponential growth. According
to tfl:l{e theorem of Nohel and Shea, dk is of positive type, if and only if
Redk(w) > 0 for all w € R (or, equivalently, |R(w)| < 1 for all w € R).
The Fourier transform of the kernel is

Ek K eivo e~ 0 R
(w)_50+§<5—i(7—w)+6+z’(7+w)>’ we R

Taking the real part shows that dk is of positive type if and only if
ko + inf,>0 kh(v) > 0. A discussion of the sign and the roots vy, vy of
h'(v) yields the tabulated values of inf,>q h(v), sup,>q h(v). Note that
the sign of b + ¢ determines the ordering of vy, vg, so that the first two
columns of the table cover all possible cases of £ > 0, 7,79 € R. a

In order to determine local minima of F', we applied the NAG routine
E04UPF with the nonlinear constraint 0 < G(ko, k,£,7,70) and the
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bounds 0 < ¢,—m < 9 < w. EO4UPF is an implementation of
the sequential quadratic programming algorithm (see [12]). As the
reliability of the routine increases with the availability of the partial
derivatives of f; and G, we set 0G/0ko = 1 and 0G/0k = g(&,7,%0)-
The approximation of the derivatives of G with respect to €,v,7v9 by
finite differences was left to EO4UPF. The FORTRAN code for the
gradient of f;,j =1,...,2m was generated in MapleV (and checked by
the NAG routine).

To search for global minima of F', for each of the four sets of data the
algorithm was started with a systematic choice of the initial guesses
in the region —9.1 < k9 < 9,—-3000 < Kk < 3100, 1 < g,7 <
3750,—2.1 < 79 < 2. The optimal parameters that were found in
this way are given in Table 1 together with the corresponding values
of G and F/m (for Hard, Free and Wedge the number of data points
was m = 291,w;/2r = 20,22,...,600Hz, for Foam it was m = 23,
w; /27 = 20,40, 50, 80, 100, 150, . . ., 1000Hz). The reflection coefficients
that result from the parameters in Table 1 are seen in Figure 1. In these
plots the noisy curves are the measurements, the smooth ones are the
real and the imaginary part of R(w, ko, &, €, Y, Y0)-

TABLE 1.

Hard Free Foam | Wedge

Ko 0.0091 | 0.8284 | 0.1973 | 0.1158
K 60.165 | 2218539 | 698.05 | 2582.8

266.17 | 267.32 | 1554.9 | 1416.2
0 3704.8 | -0.4153 | 2427.5 | -3590.3
Yo -0.5167 | 1.5699 | 1.5071 | 1.0777

103 x G 3.5356 | 545.57 | 2.1628 0
103 x F/m | 1.6409 | 6.2228 | 1.5131 | 184.52

For Hard, Free and Foam, the tabulated parameters are in fact global
solutions to the minimization problem without constraint. However,
the reflection of sound at the Wedge Termination can not be modelled
by kernels of the form (1.10) that are of positive type. The difficulties
with the Wedge case persist when the frequency range is split: for
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20Hz < w;/2m < 250Hz the optimal fit again is bad with F//m =
48.10 x 1073 and G = 0; for 250Hz < w; /27 < 600Hz we again get a
flat Re R and the wrong monotonicity of Im R with F/m = 62.63x 1073
and G = 0. At least with the parametrization (1.10), a satisfying
fit to the Wedge data requires parameters that yield kernels that
are not of positive type, although |R;| < 0.7 for the measurements.
Possible causes for this failure may be: i) inappropriate qualitative
structure of (1.10), ii) one-dimensionality of (6.1) in contrast to a
nonflat configuration and iii) the porosity of the boundary material.
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