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A “NATURAL” STATE-SPACE FOR
AN AEROELASTIC CONTROL SYSTEM

TERRY L. HERDMAN AND JANOS TURI

ABSTRACT. In [16] a set of sufficient conditions was for-
mulated to guarantee the “proper” invertibility of a finite
Hilbert transform appearing in the derivation of a dynamic
model for an aeroelastic system. Here we outline how these
conditions, with some modification, can be used to construct
a “natural” (i.e., motivated by the model derivation) state-
space, appropriate for control design purposes. In the process
we also provide a detailed discussion on a somewhat “contro-
versial” statement in [16].

1. Introduction. Well posed state-space formulations for control
systems governed by singular integro-differential equations have been
studied in a sequence of papers, [6, 15, 7, 13, 8, 14|, hoping to
achieve the following objectives: (i) find an (infinite dimensional)
state-space such that the control problem for the singular integro-
differential equation can be equivalently formulated as the abstract
Cauchy problem

(1.1) At) = Az(t) + Bu(t),  2(0) = 2,

where the linear operator A is the infinitesimal generator of a Cpy-
semigroup on the selected state-space; (ii) make the selection in (i)
in such a way that A in (1.1) satisfies a dissipative estimate on the
selected space.

To summarize the findings of the papers listed above, we note that
for a large class of singular integro-differential equations of neutral type
the well-posedness (i.e., (i)) has been established on state-spaces of
the type R™ X L, 4, where g(-) denotes a weight function. To achieve
objective (ii) one has to find the appropriate weight function which is
not straightforward in the sense that there is no systematic procedure
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using the properties of the underlying equation for its construction. We
believe that the results in [16] give some insights in this direction (see
discussion below). In the remaining part of this section, we explain
the interest in singular integro-differential equations of neutral-type in
relation to the approximate solutions of certain control problems arising
in aeroelasticity.

In [4] a complete dynamical model in terms of a set of singular
integro-differential equations of neutral type was derived to study the
elastic motions of a three degree-of-freedom structure (an airfoil with
trailing edge flap) placed into two-dimensional unsteady flow. The
main motivation there (i.e., in [4]) was to establish a theoretical and
computational framework, more suitable than the original coupled
ODE-PDE initial-boundary value problem, for the determination of
a control law (using the flap as an active control surface) for the
stabilization of the structure (flutter suppression) when subjected to
arbitrary disturbances. In view of our beginning remarks, objectives
(i) and (ii) have to be satisfied by the abstract equation (1.1) associated
with the neutral equation describing the model. In addition, conditions
required on initial data (i.e., state-space) need to be compatible with
those which justify the validity of the model derivation. Concerning
the latter, the key step is to establish the applicability of S6hngen’s
inversion formula [18] for finite Hilbert transforms [12] for all initial
data in the state-space where (i) and (ii) hold.

We note that this point in [16] is completely overlooked and therefore
the otherwise interesting results in [16] on the solutions of the airfoil
equation (or on a correctly posed formulation for inverting the finite
Hilbert transform) have no correspondence, along the lines of the study
in [5], to aeroelastic control applications. On the positive side, in the
next section we discuss how the observation in [16] can lead to the
construction of a weighted L,, space as a potential state-space candidate
for the modeling singular neutral equation.

2. The evolution equation for I. We begin by recalling (see, e.g.,
[4]) that the derivation of the dynamic model for the fluid-structure
interaction problem leads to the equation

(2.1) /1 Mdoz:27rwa(t,av)—|—/00Mda

PTa—x o 1l—xz+Uoc
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where w, is the downwash function (describing the motions of the
airfoil), (-, -) is the circulation per unit distance (angular velocity of
the fluid) on the airfoil, and I is the derivative of the extended total
airfoil circulation function

It = {f_oo U(s)ds t<0,

(2.2) t 1
n+ [,(0/9s) [~ v(s,a)dads t>0,

with initial data (n,%¢(-)) € R x L g(—00,0) (g(-) is a weight function).

Note that (2.2) indicates a relationship between I' and ~ and con-
sequently both sides of (2.1) have I dependence. Note also that we
are not interested in finding «y, rather we are interested in obtaining an
evolution equation for I.

Remark 2.1. In [16], for fixed t = to, essentially the equation

(2.3) /_11 0(2) 40y = 2mwa,0 () + /Ooo _Gol=9) 4,

a—T l1—-z+Uo

is investigated, where (o) = (o, ), wao(x) = wy(to,x) and
Go(-) = Ty, ice., Go(—0) = T'(tp — 0), o € (0,00). There are several
problems with equation (2.3) if one wants to claim that it has use in
aeroelastic applications, as found in [1, 3], for example,

(i) Both sides of (2.3) contain unknown quantities, i.e., yo(-) and
Go(—o) for 0 < o < to.

(ii) Any assumptions imposed on Go(—0c) = I'(tg—0) for 0 < o < tg
will have implications on (o) via the defining equation (2.2).

In sum, equation (2.3) alone has nothing to do with aeroelastic
models, and consequently the results of the papers [16] and [5] are
not comparable.

Assume for the moment that (2.1) can be inverted using S6hngen’s
formula (see, e.g., [18, 12] to give

e 2t =2y [ S
271'/ Mx y 1 21((27 “}
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Now integrating both sides of equation (2.4) with respect to z over
(—1,1), we obtain

/_lly(t,x) di — 2/_11 \/gwa(t,y) dy
+/Ooo <1—\/1+%>I“(t—o)do.

Considering the term [ I'(t — o) do, on the righthand side of (2.5) we
can write that

/Ooof(t—a)da—/o f(t—i—s)ds—/t () du

/ (u) du + T() — T(0+)

(2.5)

:/_w¢(u)du+n+/_117(t,w)dm
_/1 (0", ) dz — n,

-1
where we have used the defining equation (2.2). Substituting (2.6) into
(2.5), we obtain

1 1
/ oty z) de = 2 / LY oty y) dy

After obvious manipulations, and taking n=J_ 11 (0", z) dz, we obtain

the following evolution equation for F

/ 1/1——Ft+s ds-2/ \/li—jwaty
+{/_mw(u)du—n}.

(2.7)
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Note that the righthand side of (2.7) is normally a smooth function
of t (see, e.g., [4, 5]) and thus we can differentiate the basic circulation
equation (2.7) to get the evolution equation of neutral type

(2.8)
% . \/1_%f(t‘*‘s)ds22/_11/11_—3%(wa(t,y))dy, t>0,
I'(s) =4(s), s € (—00,0).

Now we can attempt to justify the inversion formula we used to obtain
(2.4) from (2.1) as follows:

(i) Conducting a study similar to the ones undertaken in [16, 12],
“desired’ properties of I'(t — o) can be deducted from equation (2.1) to
validate the applicability of S6hngen’s inversion formula.

(ii) “Desired” properties of I'(t — 0), t > 0, o € (0,0), appearing
on the righthand side of (2.1) can possibly be guaranteed by selecting
an appropriate state-space X, ¥(-) € X, and showing well-posedness
of the neutral-equation (2.8) on that state-space.

The difficult part of the process is the selection of the appropriate
state-space X in (ii) (which is sort of an inverse problem) and clearly
any information obtained in (i) in this direction is highly beneficial.

Remark 2.2. If, modifying a condition in [16, Proposition 1], we
require I';(+) to satisfy

(2.9) / o P|I0(t —o)||Pdo <o0; B>0; 1<p<oo,t>0,
0

then applicability of the inversion formula is guaranteed as long as
we can find X, such that for any ¢ € X we have I € X and for
any function ¢ € X condition (2.9) is satisfied. Of course, a natural
candidate for X is X = L, x(—00,0) with k(o) = 0%, 0 > 0, i.e., X
is a weighted L,-space with weight-function %k(-). Note that although
condition (2.9) looks very reasonable it has not been used before to
generate state-space candidates for the neutral equation (2.8).

Remark 2.3. Concerning the well-posedness of the neutral-equation
(2.8), a variety of studies were carried out (see, e.g., [6, 15, 7]), mostly
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on the finite delay version of (2.8), and well-posedness results were pro-
duced on product spaces of the type Rx Ly, but no dissipative estimates
were established on the operator A appearing in the associated abstract
equation (1.1). Finally, the search for dissipative estimates led to the
consideration of weighted Lo-spaces [14, 8], i.e., conditions similar to
condition (2.9) were introduced to provide dissipativeness (needed for
approximation) for operator A in (1.1). The results for neutral equa-
tions with finite-delay were extended in [13] (and later in [9]) for a
class of infinite delay neutral equations including (2.8). In particular,
Theorem 2.1 in [9] can be used to show well-posedness of (2.8) on the

state-space Lo j(—00,0) with k(o) = €“7/1+2/(Uo), o € (0,0).

In [4, 5], the evolution equation (2.8) describing the flow is coupled to
the rigid-body dynamics of the airfoil in order to obtain a complete set
of functional differential equations that describes the composite system.
(The coupling is represented by the “downwash” function, w,, in (2.8)
and the presence of I'; in the expressions for the aerodynamic loads in
the rigid body equations (see [5, 4] for details).) The resulting model
for the aeroelastic system has the form

mm%@w#lmwﬂm}

0
= Bz(t) + / B(s)z(t + s) ds + Gu(t)

— 00

for t > 0, where z(t) = col (k(t),0(t), B(t), h(t),0(t), B(t),T(t),T¢) =
col (z1(t), [z2]t). The functions h, 8, denote the plunge, pitch angle
and flap angle, respectively. The 8 x 8 matrix A is singular (each entry
of the last row is zero) while the Agg(-) component of the 8 x 8 matrix
function A(s) is weakly singular (Agg(s) = ((Us — 2)/Us)*/?). The
control u(+) in (2.10) is a torque applied at the flap-hinge line.

3. A singular neutral system. In this section we study the neutral
equation (2.10) in the context of functional analytic semi-group theory.
In particular, we formulate an equivalent abstract evolution equation
of the form

4(t) = Az(t) + F (1)

and show that linear operator A4 is the infinitesimal generator of a
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Co-semigroup on the weighted product space Z = R" x L3 1, where
k(s) =e *5,/1—-2/Us, s € (—0,0).

Consider the neutral system

(3.1) { (d/dt) Dy (1), [2]:) = La(z1(2), [w2]e) + £(£), ¢ =0,
' (d/dt) D2 ([x2]:) = La(21(2)), t>0,

with initial conditions
(3-2) »’El(o) =1 [-’32]0 = <P()

The linear operators D1, D2, L and Lo appearing in (3.1) are assumed
to have the following representations for (n,¢) € R” x C([~00,0]; R)

0

(33)  Di(ng)=In+ / Ava(5)p(s) ds,
0
(3.4) Ly(n,¢) = B1in + B12p(0) + / Bia(s)p(s) ds,
0 — 00
(3.5) Da(p) = / 9(5)p(s) ds,
(3.6) Ly(n) = Bo1n,

where I, By1, Biz2, Bai, A12(+), g(-) and Bia(-) denote nonzero blocks
in the system matrices A, B, A(-) and B(-), i.e.,

I 7 0 077 A12(3) :|
3.7 A= A(s) = ,
(8.7) [ 0 01><1:| ’ (s) [ 0 g(s)ix
B B O7x7 312(5)]
. B = ™7 B(s) = .
(38) [ Bo 01><1:| ’ (s) [ 0 O1x1

A12(+) and Bja(:) are smooth functions and

(3.9) g(s) =4/1— —.

Define the linear operator A by

(3.10) A(D1(n,9),¢) = (L1(n, ¢), ¢)
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on domain

(3.11) D(A) = {(n,¢) € R" X Loy | ¢ € Loy, Dap = Lon}.

Remark 3.1. Introducing the function z(t) = (Dy(z1(¢), [z2]:), it can
be shown that the neutral system (3.1)—(3.2) with conditions (3.3)—(3.9)
is equivalent to the abstract Cauchy-problem

(3.12) () = Az(t) + F(t)

with initial data

(3.13) 2(0) = (D1(n, ), #),
where (1, ) € Z, A is defined by (3.10)—(3.11) and
(3.14) F(t) = (£(2),9),

where 6 denotes the zero function in Lo k.

Next we show the well-posedness of (3.12)—(3.13), i.e., that A gener-
ates a Cy-semigroup on R7 x Ly .

Theorem 3.2. Let g : (—o0,0] — R™ be given by (3.9) and for
(n,9) € Z = R" X Ly, define || - ||z by

0 1/2
(3.15) ||(77,s0)|z=<77|2+ / |sa(s>|2k(s)ds) .

— 00

Then the linear operator A defined by (3.10)—(3.11) is the infinitesimal
generator of a Co-semigroup {S(t)}i>0 on Z.

Proof. The claim of the theorem follows (see [17]) by showing that
D(A) is a dense subspace of Z, and for sufficiently large v > 0, the
operator A — « is dissipative and its range is the whole space Z.

We note first that density of D(A) in Z is an easy consequence of the
density of the subspace {¢ € Loy : f_ooo g(s)¢(s)ds = 0} in Loy (see
[9, Lemma 2.3]).
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Next we show that for large enough v > 0 we have

((L1(n, ), ¢) —v(D1(n, ¢), #), (D1(n, ), )z <0,
(Dl(nv ()0)7()0) € D(A)a

to guarantee dissipativeness of A — . In particular, we have

(3.17)  (A(D1(n,9), ) = v(D1(n,¢), ), (D1(n,9),¢)) z
= [Li(n, ¢) — ¥D1(n, )" D1(n, »)

+/_ (9(s) = vp(s))p(s)e™*g(s) ds
=I1+1I

(3.16)

Expression (3.4) and obvious manipulations yield the estimate

I= <B11D1 (7], QD) — B11 [ AQ(S)QD(S) ds + B12g0(0)

0 T
(3.18) +/ 312(5)¢(5)ds> Di(n,¢) — 7D1(n, 9)I?

— 00
< (e = MIDi(n, ) * + ealllli + esle(0) 1%,
where cq, co and c3 are appropriate constants.

Straightforward calculations, the domain condition (3.11), an inte-
gration by parts, and the positivity of g(-) yield for the second term
(IT) in (3.17) the following:

(3.19)
Hz/“(ﬂ@fwwﬁW@wwwst

— 00

0
=/ B(5)((s) — € (p(0))e“*g(s) ds

— 00

+00) [ 46)as)ds =l

— 00

= ¢(0)Lan + / (6(s) —we*p(0))(p(s) — e°p(0))e™*gs ds

— 00

+ we(0) / ((s) = e*p(0))g(s) ds — yllelli

— 00
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= ¢(0)Lan
0
3] ) O i) we gs)) ds

— 00

0
+wp(0) / (p(s) — e*0(0))g(s) ds — v[lellz

— 00

w
< ca?0) + cslDan o) + (co+ 5 ) ol

0
¢ / 22(0)e*g(s) ds.

— 00

Combining (3.18) and (3.19), we have

(3.20)  (A(D1(n,9),¢) —v(D1(n,¢), ), (D1(n,9),¢)) z
< (e1+ s —7)[Di(n, 9)?

w 2
+leteats - Il l%

t(eare-2) [ Lo

— 00

Note that since wf_ooo e“*g(s)ds — 00, as w — 00, it is possible to
select w > 0 such that the righthand side of (3.20) is nonpositive and
that guarantees the dissipativeness of A4 — ~.

Finally, the range condition is established by noting the nonsingular-
ity of the matrix

~I — Byp v fi)oo Aqa(s)e?’®ds — Bia — f_ooo Bia(s)e¥ ds

—Bo; 'yfi)oo g(s)e’® ds
for sufficiently large values of +. o
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