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PERTURBATION ANALYSIS FOR
SOME LINEAR BOUNDARY
INTEGRAL OPERATORS

JOHANNES TAUSCH

ABSTRACT. In this paper we study the effect on a bound-
ary integral operator when the surface of integration is mod-
ified. It turns out that under certain regularity assumptions
the perturbed and the original operators converge to each
other when the corresponding surfaces converge. The esti-
mates are derived in the uniform operator norm. The proofs
apply to the single and the double layer operator from po-
tential theory and are extended to some more general linear
operators. Our results are important for the error analysis
of discretization schemes for integral equations using approx-
imate surfaces like the panel method. Moreover, we demon-
strate how these results can be applied for solving integral
equations on domains with almost symmetries.

1. Motivation. Consider the integral equation
(1) Ap+Kp=f

with a scalar A and the linear integral operator
) ()@) = [ Kew) o) dBw).  weB

defined on a compact surface B C R?. Here we assume that the kernel
is of either one of the following types:

_glz=9l)
(3) k(x,y) = Sr— f <2

or
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= ony r—y° for <1,
y

with a sufficiently smooth function g and n, denoting the outer normal
of the surface at the point y. The choices of the parameter o ensure
that the above kernels are weakly singular, i.e., there exists a uniform
bound C such that

(5) /B Ik, w)|dB(y) < C;

see, e.g., [7, Lemmas 8.1.5 and 8.2.4].

Important special cases of the operator (2) are the single and the
double layer operators defined by

(6) (So)(w) = [ o) dBw). =B
and
M @)= [ G, a<B,

respectively. Integral equations of the type (1) with K =Dor K =S
arise from Laplace’s problem on a domain with boundary B. Operators
with the more general kernels (3) or (4) come from other boundary value
problems. For instance, for the Helmholtz equation Au + x%u = 0 we
have g(r) = exp (ikr) and o = 1.

Popular methods to solve (1) for A # 0 numerically are the Galerkin
and collocation methods. Both methods are defined by projectors
P, that map the underlying function space into a finite dimensional
subspace. We assume that the P, are uniformly bounded and converge
pointwise to the identity as h — 0. The approximate solution py is
sought in the subspace so that pp solves the projected equation

(8) Apn + PoKpn = Ppf.
Subtracting equations (1) and (8) yields an expression for the error

€h = P — Pn: L
en = A ()\I+ Ph’C)_ (I — Ph)p.



PERTURBATION ANALYSIS 353

If the operator K is compact and ) is not an eigenvalue of /C then the
operators (A + P,K)~! are uniformly bounded. This implies that the
order of the error ||ey|| is at least equal to the order of ||(I — Py)p|| as
h — 0. For more details on projection methods we refer to [8].

In a practical realization of the projection method integrals over the
surface B have to be calculated to obtain a matrix of the linear system
(8). This is a nontrivial task as an explicit parameterization of B is
usually unknown.

A common approach in the engineering literature to avoid this diffi-
culty is to replace the surface by triangles (panel method [7]) or by a
piecewise polynomial interpolation of higher order. Thus the problem
is solved on an approximate surface By and B, — Bash — 0ina
sense that will be specified later. To analyze the error introduced by
this procedure we denote by K, the integral operator on B,. Then the
approximate solution p, solves the linear system:

(9) Mon + PuKnpn = Prf.

Subtracting equations (1) and (9) yields the following expression for
the error

en = (M + PoKp) YN = Py)p + Po(K — Ki)pl.

To control the error of the panel method we need the uniform con-
vergence of Ky to K. In this case the operators (M + Phieh)’l are
uniformly bounded as h — 0. Then the order of the method depends
on the projection error ||(I — Pp)pl|| as well as the rate of the conver-
gence of the integral operators.

In the following we will derive some estimates for || — K| which
will depend on the difference of the respective surface parameteriza-
tions. The results are in terms of the uniform supremum norm, i.e.,
K|l := sup{||Lfll:llfllo = 1}. We do not refer to a particular
approximation scheme of the surface. The general set-up will enable
us to apply the estimates in some other context which will be pointed
out in Section 6.

2. Preliminaries. We are especially interested in a piecewise
smooth surface B, in which case a parameterization consists of a
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collection of several smooth maps. To reflect this structure it is
convenient to use a PL-manifold for the domain of a parameterization.
Here we recall the definition found in Georg [6]: A PL-manifold is
a finite collection Spy, of closed triangles in R3, each having affinely
independent vertices. In addition, we require

1. The intersection of two triangles in Spy, is either empty or a vertex
or an edge.

2. Each edge is common to exactly two triangles.

Such a manifold can be obtained in a natural way by triangulating B.
For methods to obtain triangulations we refer to Chapter 15 of [2] and
the literature cited there.

We assume that the surface B can be parameterized by a continuous
isomorphism m : Spr, — B. Moreover, m must be piecewise smooth,
i.e., the restriction to a triangle in Spy is two times continuously
differentiable and parameterizes a smooth component of B.

A refinement of the parameter space Spy is obtained by uni-
formly subdividing each triangle into smaller congruent triangles T; =
[vg,vi,v4],i=1,...,J. The number

h = —
max | max |q — p|

is called the mesh size of the triangulation. Note that the total number
of (small) triangles is given by J = O(1/h?). If the PL-manifold is
path connected, then there are essentially two ways to define a metric
on Spy: Obviously, one could simply choose the Euclidean distance
|p — ¢|. An alternative is to take the distance dist (p, ¢) of the shortest
path in Spr. For points p and ¢ in the same triangle both metrics yield
the same values, otherwise we have

(10) dist (p,q) = min {[p —ki| +[ky — ko[ +-- + [k —ql},
1y Rp

where k; and k;;1 lie on the edges of the same triangle, k; is in the
same triangle as p and k. is in the same triangle as q. We assume that
these two metrics are equivalent in Spy,, i.e., there is a number M > 1,
such that for all p,q € Spr,

(11) Ip — q| < dist (p,q) < M|p —q.
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The affine map A° from the standard simplex o = {(s,t) |0 < s,t, s+t <
1} defined by

Al = vl + s(vi — vh) +t(vh —vi) for w=(s,t) €T

parameterizes the triangle 7; in the refinement of Spy. Since all
triangles have affinely independent vertices there exists a constant
> 0 independent of h, such that

(12) |A'w— A'W'| > phlw —w'| forall w,w €o0,i=1,...,J

Note that h in the above formula is a scaling factor.

Throughout this article we assume that there is a number K > 0 such
that

(13) im(p) —m(q)| > K dist(p,q) forall p,qe Spr.

The latter condition implies that the angle between two adjacent
smooth components of the surface is not too sharp.

To calculate integrals on B it is convenient to introduce the parame-
terizations m' : ¢ — B; by:

m'(w) = m(A'w) weao,i=1,...,J.

Then the surface integral over a function f on B is given by:

J
/deB:izzl/af(mi(s,t))mixmﬂdsdt.

For the numerical integration of such an integral one usually replaces
the maps m’ by “simple” fupctions m;;, e.g., polynomial interpolations
of m’. The collection of m;, defines a map my on Spr which in turn
parameterizes an approximate surface B;,. For our purposes we need
that the restriction of M, on a triangle T; in the refinement of Spy, is
a C%-map. To simplify the notation we will drop the subscript h when
the dependence of the mesh size is clear from the context.

A function ¢ € L£>°[B] can be lifted via gom to an L function on Spr,
which defines a one-to-one correspondence between functions on B and
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on Spr,. In this sense the boundary integral operator X can be regarded
as an operator acting on £>[Spr]. Now consider the approximate
surface B which is parameterized by the same PL-manifold. Again, a
function defined on B lifts to a function on Spy, and this gives rise to
the boundary integral operator K: Lo [SpL] = L>®[SpL]-

Finally, we specify how the surface and its approximation approach
each other: The functions 6 : Spr, — R? and 6° : ¢ — R3 defined by

d=m-—m

St=ml—mt fori=1,...,J,

can be used to measure the distance between the two surfaces. We say
that B and B are close to each other when there is a (small) number
€ > 0 so that the derivative of § satisfies the following inequality:

(14) |Dd||, == ,max max HD(Si(w)H2 <e.

where ||.||, denotes the usual matrix 2-norm.

For the double layer operator it turns out that the condition above
is not sufficient. To prove the following theorems for this case it is
necessary that the Hessians of the parameterizations are near to each
other as well, i.e.,

(15) [1H6l <&

where we have set § = (01,2, d3)7 and

3

2 T 2
1H6||5 = ir:nlz.a.)_(‘]k_l max ‘151'{3 |v" Hép,(w) v|”.

Surprisingly, a condition on the function ¢ itself is not needed. This is
due to the fact that the integral operators with kernels of type (3) and
(4) are translation invariant, i.e., if 7 = m + a for a constant a € R3,
then K = K.

3. Main results. Now we are in a position to state the main results
of this article. For the single layer operator we have the following
theorem.
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Theorem 3.1. If the parameterizations m and m satisfy the nearness
condition (14), then the following estimate holds for the associated
single layer operators in the uniform operator norm:

fo-3], -o(5)

The analogous statement for the double layer operator requires a
stronger assumption on how the parameterizations approach to each
other.

Theorem 3.2. If the parameterizations m and m satisfy the nearness
conditions (14) and (15), then the following estimate holds for the
associated double layer operators in the uniform operator norm:

o] - o(2").

Our analysis applies to two different kinds of surface approximations.
First, the above results can be used for approximations that are accom-
plished without refining the mesh (e.g., by polynomials of increasing
degree). Then the mesh size is constant and we immediately obtain
the asymptotic estimate O(g) in Theorems 3.1 and 3.2. Second, the
approximation can be achieved by letting the mesh size h go to zero,
in which case the parameter ¢ is a function of h, i.e., e = €(h). As an
illustration consider approximating the surface by piecewise quadratic
interpolation. This has been done by Atkinson [3] in the context of
collocation for second kind integral equations. There the parameteri-
zations m? are replaced by their quadratic interpolates with node points
at the vertices and the centers of the edges of the standard simplex.
Since this is a method of third order, the resulting interpolation errors
are, using the previous notation

IDd|l,, = O(h®) and |H{|, = O(h?).
Theorems 3.1 and 3.2 imply for the corresponding operators:

|s-3|_=ow

HD - 75”00 = O(h?logh).
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Note that these estimates are for the supremum norm on the surface.
Atkinson and Chien [4] were able to prove even cubic convergence for
the single layer and quadratic convergence for the double layer operator
at the node points of interpolation. More estimates in this line for
smooth kernel functions can be found in [5].

4. Proof of the theorems. The following two intermediate results
are useful for the proof of the above theorems:

Lemma 4.1. For m and m as defined above
o Im(q)—m(p)|:1+o<§>
(p.a)ESPL xSpr |M(q) — m(p)| h
holds.

Proof. We have

(a) —mp)l _ | Imle) — mp)| — [mla) — m(p)]
Im(q) — m(p)| im(q) —m(p)|
and therefore we need to estimate
[7iv(q) — m(p)| ~ Im(q) —m(p)| _ 16(a) —6(p)
Im(q) —m(p)| = |m(q) — m(p)|
If the points p and ¢ lie in different triangles, then we rewrite the
numerator of the right hand side in (16):

16(q) = 6(p)| = |6(q) — (k1) + - -- + 6(k;) — 6(p)|
< 6(g) = 6(k1)| + -+ -+ [6(kr) — 6(p)l;
where the k; are on the shortest path from ¢ to p as in the definition of
dist(p, ¢). A pair k;, k;+1 lies in one triangle T; where the function § is
smooth. Hence it is possible to represent the difference 6(k;) — §(ki+1)
as a line integral in o. Setting ¢ = ko,p = ky41 and w; = (A7) 1(k;)
we obtain for i = 0,...,7:

)

(16)

1
8005) — 8] = | [ D8 wisa o+ rws — wis) dr (ws -~ wisa)
0

< || Dé| o Twi — wi1]

1
< [|1Dd]| EV% = kiy1].
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The last step follows from the fact that the vertices of the triangle T;
are affinely independent, c.f. inequality (12). Adding all pieces of the
path from p to ¢ together yields the following upper bound:

(17) 15(q) — 8(p)| < D3] . % dist(p, 9)

When p and q are in the same triangle, then (17) follows similarly. The
denominator in the right hand side of (16) can be bounded below using
the inequality (13), then the assertion follows from assumption (14):

5@) — 0)| _ 1D, distla.p) . <
mlg) —m(p)] = =oG) o

huK dist(g,p)

Lemma 4.2. For m and m defined as above
|7l x i
max max ————
i=1...J w€a |mzS X mi‘

(w)=1+0()
holds.

Proof. It is obvious that

S0y i R i i
|l x mi| s i x mi| — |mi x m|

i i i i ’
|mi x mi| |mi, x mi|

therefore it remains to show that the fraction on the right hand side

is O(e/h). Expanding M = m + § we obtain by the inverse triangle
inequality

|Thixm,’;|f‘mi><mﬂ < ‘mixﬂ-}-éixmi—}-éixéﬂ

‘mgxmﬂ - |m§><m§|
It is easy to see that assumption (13) implies that |m§| > Khy,
‘mé‘ > Khp and ||Dmi||2 > Khpu. Therefore the angle 6 between
mt and m! is bounded below by a positive angle 6. Thus we continue
estimating:

|mi x 0 + 05 x mi + 67 x 67| _ |mi|[0F] + |mi |05] + |65 |6

\mi||m§|\sin9\

FRR;
i, x mi|

< € 2 n €
= |sinéy| \ Khp  (Khp)? )"
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The last term is O(e/h) which establishes the lemma. O

Now we are able to prove Theorem 3.1, the statement for the single
layer operator.

Proof of Theorem 3.1. First, we estimate the following difference,
setting z = m(q) and & = m(q)

! i x |

AS — o ~S — t

4€Spr |x—m| |x—m\
< mgxm§||af—m| ax [m}, x m]
imi x mi| & — | aesrn i o Jw—m]

From the previous lemmas it follows that the factor in front of the
summation is O(e/h). The second term is uniformly bounded because
the single layer operator is weakly singular (5). For an arbitrary
function ¢ € L>[SpL] we estimate

(18) |s6-Ss|_ < asigll. =0C) I8l

o8l ~o(z) s

The proof for the double layer operator is more elaborate:

and hence

Proof. Similar to the previous proof, we will show that

(x —m)Tmixmi (z—m

|a:—m\ |Z — 7

Once equation (19) has been established, the rest of the proof follows
immediately from the same argument as we used in inequality (18). We
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break the difference AD into two parts AD < Ay + As, where

J - - - - . .

AL = max Z/ (@ —m)" (g x my)  (z —m)T(mf x m)
9€8rL = /o |z —m|® |z — m|®

Ay = max Z/ (x —m)"(my xmy)  (z—m)"(m x my)
9€SrL = J, |z —m|® |z —m|?

Estimating A, is straightforward:

o — m/*

A,

N

1

|7 —m[*

From Lemma 4.1, the term in front of the integral is O(e/h); further-
more the integral is weakly singular by (5) and therefore independent
of ¢ and h. This shows that Ay = O(e/h) uniformly in ¢ € Spr.

The difficult part of this proof is to establish an upper bound for A;.
First we define

J .. P i i
(20) A1 = max Z/ |(w_m)T(ms X mt) _ (»’U—m)T(ms X mt)|

qESPL “
1

3
-1 |I - m|

Applying Lemma 4.2 we estimate A; by
A; = max
= Z/,, i —m|®

A; < <1+0<%>>A1;

thus it suffices to derive an asymptotic bound for A;.

(& — )" (1 x i) — (x —m)T (my x m)

IA

T—m

Similar to a discussion in [4], we will group the indices 7 in the sum of
(20) into three classes according to the distance of the parameter point
q from the triangle T; (recall that we have set x = m(q)).

1. Triangles containing q.

2. Triangles whose distances to ¢ are smaller than the mesh size h,
but do not contain q.



362 J. TAUSCH

3. Triangles with jh < dist(gq,T;) < (j+ 1)h for j =1,2,...,0(1/h)
The cardinality of the first and the second group is independent of the

mesh size h. In the third group the number of triangles grows linearly
with j.

Case 1. q € T;. This is the case when the integrand becomes singular.
To simplify the notation we set m = m(A*(w)) and ¢ = A*(w’). Since
all points belong to the same triangle, the numerator of A,

s1:= (& —m)T ml xmi — (x —m)" mxmi

= (8(q) = 8(p))" g x 1y + (& — m)" (Mg x i —m{ x m)

in (20) is a smooth function of w’. The constant and the linear term
of the Taylor expansion of s; about w are zero, because of the almost
orthogonality of z—m and m! xm}. Hence we are left with the quadratic
terms:

1 . .
5] < 5 1HB| o |w —w' || x 1t
1 . ) ) )
g lw —w! [ Hml [ x v — m x mi.
From Lemma 4.2 it follows that |m% x mi| = (1 + O(g/h))|mf x m|
and also that |} x mi —m! xm{| = O(e/h)|m} x mi|. Further-
more, applying the chain rule it is easy to see that ||[Dm||, = O(h),
|Hm||, = O(h?) and |mi x mi| = O(h?). Using the assumption
about the second derivative of § in (15) we continue the estimate:

|s1] < |w — w'|> O(h3e).

Thus, with this result and inequality (13) we obtain for an integral in
the sum of A containing the point ¢

/W—WU%XW%@—MW%XMM
. @ —mf’

9 1 €
f“w>ﬂﬁia$:3ﬂ:0%>

This shows that triangles in the first group contribute O(e/h) to A;.
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Case 2. Adjacent triangles. This group contains all triangles T; (not
containing the point ¢) whose distances to ¢ are smaller than the mesh
size h. In this case the denominator of (20) can become arbitrarily large
and the numerator cannot be Taylor expanded as in the previous case,
because the parameter points p = A*w and q lie in different triangles.
Let k = A% be a point on the boundary of the triangle 7; which will
be specified later. We rewrite the numerator in (20)

T T

(Z —m) x1mi — (z —m)T méxmé

= (8(a) — 8(0) +8(k) — ()T (il x W) (w)
o+ (m(q) = m(k) +m(k) = m(p)) (7, x i = x m) (w).

sz 1= (8(k) = d(p))" Ml x1mg + (m

=
|
4
=
s
3
X
HSN
|
s
X
3

and the rest
s3:= (8(q) — 6(K))" (ml x mg)(w)

+ (m(g) —m(k))" (1R x 17y —mi x my)(w).

The expression s, can be treated as s; in the previous case. This yields,
together with inequality (12):

|sa] < h2|lw — @]*0(e) < |p — k|*O(e).

The terms that do not belong to the triangle 7; are estimated using
inequality (17) and Lemma 4.2.

S3| S 7“’7‘ mg my

||Dm||oo(|7;hi % mz‘
,U,h s t

- |m} x mi|)>dist (k,q)
= dist (q, k) O(eh).

From this discussion it is clear that there is a v > 0 such that

|(&—m)T mi xmi—(z—m)" mixm}| < O(e) (|p—k|2+'yh dist(q,k)) :
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Hence, the contribution of one integral in this group to A; is bounded
above by

lp — k|” + vk dist(q, k)
- dist(q, p)?

(21) O(e)

Now consider the orthogonal projection ¢’ of g into the plane spanned
by T;. The Euclidean distance of ¢ from this plane is denoted by
d> and the Euclidean distance of ¢’ from the point k by d;. From
inequality (11) we obtain the estimates:

(22) dist (p,q) > [p —q| = (Ip — ¢|* + d3)1/?
(23) lp-kl=pp-d+d -kl <|p-d|+|d —kl=Ip—d|+d

(24) dist (g, k) < Mg — k| = M(d} + d3)"/*

Next, we will distinguish between the cases whether the projection ¢’
lies in the triangle T; or not.

First, let us assume that ¢’ ¢ T;. In this case we determine k to
be the nearest point in 97} to ¢'. After a change to polar coordinates
r = |p — ¢'| the integral in (21) can be bounded by:

htdy 2 2 12\1/2
7ol £ 7r/ (r+dy)*+ hyM(di + d3) v dr
)" ), 2+ B

1

The last integral can be calculated by elementary means, expanding
the result with respect to d; and ds yields:

€ d2 — d?
I= (’)<ﬁ> <W —2mdy In (dy + (df + d3)"/?) + (’)(h)) :

Since we consider only adjacent triangles we have (d? +d2)'/? < h and
consequently the above expression reduces to

log h
7= .
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It remains to verify the above estimate when ¢’ € T;. In this case set
the point k& € 0T on the shortest path in Spr, from ¢ to ¢’. Thus we
have,

dy+ (d}+d3) 2 =g — k| + |k — q| < ¢’ — k| +dist(k, q)
=dist(q,q') < M|q—¢'| = Md,.

This implies that

1
di < m(M2 — 1) da.

Using this result together with estimates (22)—(24) and changing to
polar coordinates r = |p — ¢'| the integral in (21) can be bounded by:

ol £ /h (T+Bd2)2+'_yhd2rdr
n2) )y 2+ d3)se ’

where we have set § = (1/(2M))(M? — 1)/? and 5 = v(M? + 1)/2. A
similar discussion as in the previous case shows that the above integral
is in fact O(clogh/h)

This asserts that the contribution of all triangles in the second group
to A; is O(elog h/h) since its number is finite and independent of h.

Case 3. jh < dist(¢,7;) < (j + 1)h. This group contains triangles
that are far from the point g. We rewrite the numerator of (20) like we
did in Case 2.

ml xmi — (z —m)T mixmé

m(q) — m(p))T (g x 1y —mi x my)(w),

with p = A‘w. Estimating this expression in a similar manner as for
|s3| yields
|s4| = O(eh) dist(p, q) = j O(eh?)

For the denominator of (20) we have:

Im(q) —m(p)| > Kdist(q,p) > jKh.
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Thus, the contribution of these triangles to A; amounts to the following
expression; note that, because of the uniform subdivision of Spy,, there
are O(j) triangles with distance jh:

o(1/h) o\ Cu/m) logh
2 = — —_ =
O(ch?) E: O(j 3h3_49<h> > - o<5 . >

j=1

Adding up the contribution of all three cases yields the estimate
Ay = O(elogh/h). This completes the proof. o

5. Extension for more general kernels. The previous discussion
was motivated by the integral reformulation of Laplace’s equation. In
this section the previous results are generalized for the more complex
kernels of type (3) and (4). For this kind of kernel functions we were
able to prove the analogues of Theorems 3.1 and 3.2:

Corollary 5.1. Suppose the parameterizations m and m satisfy the
nearness condition (14) and, moreover, g € C*(0,00) N C°[0,00) and
a < 2 in the definition of the kernel (3). Then the following estimate
holds for the associated integral operators K1 and Ki:

=Rl =0

Corollary 5.2. Suppose the parameterizations m and m satisfy the
nearness conditions (14) and (15) and, moreover, g € C?(0,00) N
C°[0,00) and o < 1 in the definition of the kernel (4). Then the
following estimate holds for the associated integral operators Ko and

Ko
)

We begin with the proof of Corollary 5.1:

Proof. We have to show that AKC; defined by

AK; := max Z/

qESPL

mi x m
Iw—mw t| Mh—mD|
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is O(e/h), then the assertion again follows from the arguments em-
ployed in equation (18). We estimate AK; by setting AK; < Aj+ Ay,
where

=i i
A; = max Z/\g |z —ml|)]| [ th| X i

qESPL

my X m
8 = maxZ/\g ) gl — ]

q€ES

An upper bound for A; can be obtained in a similar manner to the
proof of Theorem 3.1.

|m xmt‘ |ﬁzi X
&1 < ol T
|m X my| |z — m|* J |mi x mi|
< gl [ - mexmelle Zmlf - g f D xmi
oo s X 1| |2 — ™ || aeSer = Jo |z —m|

The last inequality demonstrates that Ay = O(e/h); this follows
directly from Lemmas 4.1 and 4.2. For Ay we estimate:

8 < lg(z = ml) = g((3 — ), max Y [T

The integral is weakly singular by (5), while the term in front of
the integral can be bounded using the Mean Value Theorem and
inequality (17)

lg(lz = m[) = g(1& — M) < llg'll 16(g) = 6(p)| = 0(%) :

This shows that Ay and AK; are O(g/h) and the proof is complete.
o

Corollary 5.2 is a generalization of Theorem 3.2; this is why the
stronger convergence of the surfaces (15) is needed:
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Proof. First, we rewrite the kernel in a more convenient form

() = - e

oy, \ |z —y|” |z —

The righthand side consists of the kernel in the double layer operator
multiplied with the function g;(r) := (ag(r) — rg’(r))r'=“. Note that
g1 € C*(0,00) N CY[0,0) under the assumptions we have made. The
rest of the proof follows the pattern of the previous argument: We show
that

J o NT i i
AKs := max Z gl(\ac—m|)(ﬂlc m) mgxmt
9€SpL = /o |z — m)|
= T i i
— g1(J — ) E )T
|z — m|

is O(elog h/h) by decomposing AKs = Ay + Ag with
J

A1 = max 3 [ aa(la = m)

€S
qcoprL i1

(x —m)T' mi xmi 3 (@ —m)T mixmi
E

lz —m |7 — m)?

|(w—m)Tmi><mi|

J
As = max Z/Ugluxmngl(ﬁmn

qESpL ‘x — m|3

We use the result of Theorem 5.2 to estimate Aq:

J
A < IIglllmqrgggLZ/
i=1v9

log h
~ 1]l AP = 051,

The second difference As can be treated with the mean value theorem
as in the earlier proof. This yields As = O(e/h) and therefore
AKy = O(elogh/h).

(x —m)Tmixmi (%-
|z

3
— m)| |Z —m

6. Application for integral equations on almost symmetric
domains. In this section we describe another possible application of
the results in this paper.
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Recently, symmetry exploiting methods have become available for
boundary element methods; see, e.g., [1]. These methods efficiently
block diagonalize the matrix that comes from discretizing an integral
equation on a domain with geometrical symmetries. This results in a
significant savings in the overall computation.

In many applications domains arise that are only nearly symmetric
and it is desirable to take advantage of this geometry. From our
previous results it is clear that the integral operator I on the symmetric
domain is close to the operator K on the perturbed domain. We propose
to use the operator K to construct a preconditioner for the equation
involving the operator K.

The discretization scheme can be described as follows:

1. Find a symmetry respecting PL-manifold Sp;, and parameteri-
zations m : Spr, — B and m : Sp;, — B of the symmetric and the
perturbed surface respectively.

2. Define a set of basis functions {%1,...,%,} on Spr. Lifting them
to the surfaces B and B via 1; = ¢; om and 1; = ¢; o produces basis

functions {¢1,..., ¢, } and {¢1,..., P, }.

3. Define collocation points {qi,...,¢,} on Spr, and map them on
the two surfaces: p; = m(g;) and p; = m(g;).

Applying the collocation method, we obtain the two nonsingular ma-
trices L and A arising from the symmetric and the un-symmetric prob-
lem, respectively. Now consider solving the linear system Az = b with
an iterative scheme, like GMRES of Saad and Schultz [9]. Each step
involves—among other operations—the multiplication of a vector with
the matrix A. Instead of dealing with this system directly, the equiv-
alent preconditioned system LAz = L~!b is solved. Thus each step
of the iteration requires the solution of a linear system with the matrix
L. Because of its special structure, this can be done very efficiently.

The convergence of the preconditioned iteration depends on the
condition number of the product L='A. Since the matrices A and L
are discretizations of nearby operators, the quantity ||A — L|| is small.
This in turn implies that the spectrum of the product L 'A clusters
around unity yielding a reduced condition number.

More details and some numerical results will be contained in an
upcoming paper [10].
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