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A QUADRATURE METHOD FOR THE
HYPERSINGULAR INTEGRAL EQUATION
ON AN INTERVAL

KATHRIN BUHRING

ABSTRACT. This paper is concerned with a quadrature
method for the approximate solution of the hypersingular
integral equation

1
p.f. / w4 ), 0<t<1.
0

|7 —¢]|?

Stability and error estimates are proved. Numerical experi-
ments are presented which confirm the theoretical estimates.

1. Introduction. In this paper we consider the hypersingular
integral equation on the interval

1)  (Du)(t) == pd. /0 | u(r)

TthT:f(t)’ 0<t<1,
where f is a given function and u is to be found. The integral in (1) is
to be interpreted as a Hadamard finite part integral. For the definition
of such a finite part integral we refer, e.g., to [11, Section 3.2].

Notice that it is possible to consider the hypersingular integral equa-
tion of the form (1), disturbed by an integral operator with a smooth
kernel function or the hypersingular integral equation on a smooth open
curve by using the same methods as in the present paper.

The hypersingular integral equation (1) results from a certain bound-
ary integral method which has attracted the attention of several math-
ematicians in recent years. In particular, we mention the paper [3] of
Costabel and Stephan, where the Galerkin method for the hypersin-
gular integral equation on polygons is studied, and the article [2] of
Costabel, which gives a survey of several boundary integral operators
on Lipschitz domains and investigates the Galerkin method for these.
In the paper [19] of von Petersdorff and Stephan, a multigrid method
on graded meshes is considered for the hypersingular integral equation.
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264 K. BUHRING

In [1, Sections 1.6 and 5.1], a quadrature method for the hypersingu-
lar integral equation on an interval is derived and an error estimate is
proved. The first rigorous analysis of a fully discretized method for the
hypersingular integral equation has been given by Kieser, Kleemann
and Rathsfeld in [13]. There a very easy discretization scheme is used
to get a quadrature method for this equation on a smooth closed curve,
and stability and error estimates for this method are obtained.

Another approach is given by Golberg in [8] and [9], where the hyper-
singular integral equation on the interval is discussed with the help of
Chebyshev polynomials. The methods are based on expanding w into
a finite series of Chebyshev polynomials of the second kind and then
determining the unknown coefficients by either the Galerkin method
or collocation. A similar approach is given by Erwin and Stephan in
[7], where a collocation method using Chebyshev polynomials has been
considered for the hypersingular integral equation on the interval. In
[7], the operator D is considered as an operator acting between some
spaces of Sobolev type, which are defined by means of Chebyshev poly-
nomials.

In [16] a general formula for the solution to the hypersingular integral
equation on the interval without compact perturbation is given by
Martin. There the relation of this integral equation to a singular
equation with a known solution is used.

In the present paper, we shall propose a fully discretized quadrature
method for the hypersingular integral equation (1). Because the
solution of this equation has an end-point behavior like s'/2(1 — s)1/2
(see [7]), we carry out a refinement of the grid near the end points of the
interval. To this end, we perform a change of the variables 7 = y(o),
t = 7(s) in the integral (1), where 7 has an end-point behavior like s*.
Transformations of this type have already been used for some integral
equations, for example, in the case of the Cauchy singular integral
equation (see [18] and [20]), in the case of boundary integral equations
of the second kind for the harmonic Dirichlet problem in plane domains
with corners (cf. [14]) and for Mellin convolution equations arising
in crack problems (cf. [5]). In the present paper, the transformation
v :[0,1] — [0, 1] is chosen as in [14],
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1 1 3 1 1 3
(3) v(s)—(a 2>(1 2s) +a(2s 1)—1—2, a>g.
The function v has an end-point behavior like s* near 0 and like
1 — (1 — s)* near 1. Note that the cubic polynomial v is chosen such
that v(0) =0, v(1) = 1, and +/(1/2) = 2. The latter property ensures,
roughly speaking, that one half of the grid points is equally distributed
over the total interval, whereas the other half is accumulated towards
the two end points.

Multiplying Equation (1) by 7'(s), we obtain the transformed equa-
tion

1 /S /0,
@ et f %ww)da:g(s), 0<s<1,
with

w(s) = u(r(s),  g(s) = Fr(s) ()

Using the quadrature rule
> - 2 k
6) JEECLED SO ER

j=k-+1mod2

for n even and applying a kind of regularization to the finite part
integral (see the next section for more details), we get the quadrature
method

n—1

_ ' (85) ()
(6) g(tx) = ; \v(tj)——v(t:)P

j=k+lmod2

2
gj—"%gk, k=1,... ,n—1.

S

The term —(nn?/2)&; results from the aforementioned regularization.
A corresponding term occurs in the case of a closed curve (see [13]).

The paper is organized as follows. In Section 2 the quadrature
method (6) is derived. In Section 3, the mapping properties of the
approximate operators corresponding to (6) and the corresponding
discretized spaces are investigated. In Section 4, the stability of the
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method is proved. Let us denote the matrix of the linear system of
Equation (6) by A,. The main point of the proof is that there holds
the equivalence (—An&,&)1,(n) ~ (Bné, &)1,y for all finite sequences
&= {Ek}z;% uniformly with respect to n. We write a ~ b, if positive
constants C7, Co > 0 exist with Cia < b < Ca. Here B, is the
norm isomorphism of the regarded discrete spaces and (:,-);,(n) is the
scalar-product in lz(n) (cf. Section 2).

The error estimate is derived in Section 5. Let f be sufficiently
smooth. If u, = w, oy~ !, i.e., u, 0y = w,, where w, is a high order
interpolation of the approxunate values wy(t;) =&, =1,... ,n—1,
obtained by solving (6), then the Sobolev norm error |ju — un||1/2 can
be estimated by Cn~=%/2t1%¢ with ¢ arbitrarily small (cf. Theorem 5.1).

In Section 6, another transformation is used, namely, a cos-transfor-
mation like that used for the numerical solution of first-kind integral
equations with logarithmic kernel (cf. [22, Section 3.8]). The quadra-
ture method derived with the help of this transformation is shown to
be stable, too. Here the proof is reduced to the case of the unit circle.
The stability of this method is easier to prove than that of the method
with 7 defined by (2) and the order of convergence is arbitrarily high
for smooth f (cf. Section 6). However, the techniques used in Sections
2-5 seem to be more convenient for applications to the two-dimensional
case and to the case of more general integral equations on the inter-
val or on the polygon, provided that the asymptotic behavior of the
solution near to the end or corner points is known.

The numerical results are discussed in Section 7.

2. The discretization of the hypersingular integral equation.
Consider the hypersingular integral equation on the interval I = [0,1],

(Du)(t) == p.f. / t|2 —ft), tel
By [19, 2] and [3], the mapping
D : Hypp(I) — H y3(1)
is bijective and continuous. Here the space H, /2(I) is defined by

Hy5(I) :={ulr : u € Hyj3(R),ulr\; = 0}
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equipped with the norm of H;/5(R). By Hs(R) we denote the usual
Sobolev space, i.e., the completion of C§°(R) with respect to the norm

> Jul™ (@) —ul™) (y)]? v
|U||S=<Z/ u(J) |2dx—|—/ / oy |17 dz dy

where s = m + 6, m € N, 6 € [0,1), u¥) = (d/dz)iu and the second
term of the righthand side is omitted for § = 0. The space H_; /5(I)
is defined as the dual space of H; /2(I) with respect to the Lo-scalar
product (see [3]).

Remark 2.1. For u € Hy/3(R) with u|g\; = 0, there holds ||u||1/2 =
[ullZ, + lul?), with

1 1 2
Ju(z) —u(y) \ / |u(z)]

and ||ul|y/2 ~ ‘U|1/2-
The proof is well known and not hard.

Remark 2.2. Let f € C™ and u be the solution of Equation (1). Then
there holds u(t) = t'/2(1 — t)*/2§(t) with §(t) smooth.

We do not give the proof here. We only remark that it is a conse-
quence of the mapping properties of the hypersingular integral operator
in the case of the unit circle. The interval has to be transformed to the
unit circle as in Section 6. For the case f ¢ C°, a statement about
the asymptotics can be found in [7].

In order to get a refinement of the grid near the end points of the
interval I, we shall apply a transformation of coordinates. Consider
the transformation function v : I — I of R. Kress [14] given by (2) and
(3). The condition « > 4/3 is necessary to guarantee the monotonicity
of v. The stronger condition o > 3/2 will be needed in the proof of
stability.

By [12] it is possible to apply the usual rules of transformation for
the finite part integral in (1) if ¢ € (0,1). Thus (1) is equivalent to (4).
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Now we set

o —5[*v(s)7'(0)
y(o) = ~(s)]*

With this notation Equation (4) is equivalent to

h(s,o) =

1
(7) Aw(s) :=p.f. /0 w(o) h(s,o) do = g(s).

We shall derive a quadrature method for Equation (7). To this end, we
use the well-known quadrature rule (5). Obviously, there holds

pﬂAliﬂQ—MﬁﬂdU=p£A11M®

+/0 w(o) (h(s,o) — 1) do.

(8)

Now we continue the function w to a function on R by setting w(t) := 0
for all ¢ ¢ [0, 1]. Note that w remains to be continuous since u(s) has
the end-point asymptotics s'/2(1 — 5)'/2 and s is replaced by s = v(o)
with v(0) ~ 0%(1—0)®, a being sufficiently large. The first integral on
the righthand side of (8) is a finite part integral. At the point s = ¢,
1 <k <n—1 we can compute it by using the regularization

p.f. /1%da—p.f. /00 %da
_ /°° w(o) — w(ty) — W' (tg) (o — tk) o

oo o — i

+ w(ty) p.t. / #da

lo — tx|?
O'—tk

+U) tk pf/
e

Now it follows from the definition of the finite part integral, that

o0 1 o0 1
£ — —do=0 £ do = 0.
P [MW*MPJ P lwafm“
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Thus with §; = w(t;), j=1,...,n—1,and §; =0, j <0or j > n, we
obtain

1 n—1 2

w(o) 1 2 nmw
ST L NS R W
( ) p 0 |o_ o tk|2 “— |2‘:‘7 o tk|2 n£] £k§
j=k+1mod2

since short calculations show that

= —, _— =
P |t]‘ — tk|2 n 2 P |tj — tk|2 n
j=k+1mod2 j=k+1mod2

Now we consider the second part of the sum in (8). First define

h(s,o) —1

o — sl

(10) I(s,0) :=

The function I(tx, o) is continuous, because

14" (¢ 1 (¢ 2
lim I(tg,0) = it (k)—— 7" (t) , k=1,...,n—1.
0, 6 v(tr) 4

Thus

/01 9 (o ta) — 1) do

[l
s~
>
A
2
~
x
QU
q

Q
S
-
T
S+
-~

j=1
j=k¥1lmod2

R 2 A1 ,
= X n(v() NI |w—mw>@'

j=1
j=k+1mod2

Combining this with (9), we get the quadrature method (6) for the
approximate solution of (7).
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Now we define an approximate solution w,, for w by
n—1
d
(11) wn =Y &5 (s),
j=1

where ¢§-d) denotes the interpolation basis of piecewise polynomials of
degree d, i.e., qbg.d)(tk) = 0k, j, ¢§-d) is continuous and the restriction of

¢§-d) to the interval [dk/n,d(k + 1)/n] is a polynomial of degree d for
k'=0,...,% — 1. Here we choose n such that n/d € N. If d = 1, we

write ¢; instead of ¢§-1). There holds

n(s = (G =1)/n), sel(j—1)/nj/nl,
¢j(s) =y n((G—1D/n—s), selj/n(G+1)/n],

0, otherwise.

Remark 2.3. The linear spline functions are the simplest splines with
¢J S H1/2 and (]5] 0’7_1 € H1/2'

This result is an easy consequence of the definitions of ¢; , v and
HI/Z'

Let us denote the matrix of the linear system of equations (6) by A,
i.e.,
Ap = n(h(tr, tj)ar—j)p 2,
—m2/2, k=0,
(12) "
ar =4 2/|k|?, kis odd,
0 otherwise.

We shall interpret this matrix A, as an operator from the discrete
space of finite sequences equipped with the norm induced by ﬁl /2,0
(see Equation (13), below) into its dual space. The definition of these
discrete spaces is given in the next section.

3. The discrete spaces F, and F,,. Proving the stability for the
operator sequence {A,} means that we have to show the invertibility
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of the operators A, and the uniform boundedness of their inverses.
The operators A, have to be considered from the discrete space of
finite sequences equipped with the norm induced by H, /2, into its dual
space. It will be easier to prove the stability by using some equivalent
norms of these spaces. Before introducing these norms we mention
some properties of the transformation +.

Remark 3.1. The following results are readily shown and follow from
definitions.

L 5(0) = 0,7(1) = 1, 7(1/2) = 1/2, 4(s) = 1 — (1 — s), and v is
strictly monotonically increasing.

2. v'(s) ~s*"Lifs€10,1/2],7'(s) ~ (1 —s)* 1if s €[1/2,1] and

vy av'(s)v(s)* to(l—s)>!
I A T

3. (7(8)s(1 = 9))/(v(s)(1 — (1 — 8))) ~ 1. Therefore, if s €
[0,n/2], then (1/n)(y'(s/n)/v(s/n)) ~ 1/s and, if s € [n/2,n], then
(1/n)(v'(s/n))/(1 = ~(s/n)) ~ 1/(n —s).

4. If s € [0,0(a0)], then 4" > 0; if s € [1 — §(e), 1], then 4" < 0, with
ad(a) € (0,1/2]. If a < 86/30, then we can choose §(a) = 1/2.

5. If s € [§(o)/2,1 — 6(x)/2], then v/(s) ~ L.

6. h(s,0) < C and h(s,s) =1. If a« < 4.54, then h(s,o) < 1.

> 0, 0<s<1.

Concerning property 6, we make only a comment on the proof. In
the case when 7(s) = s%,

a2sa—10_a—1(s _ 0_)2

h =
(s,0) (52 o)z
Setting x = s/o, we get
~ a2$a—1(1 _ 37)2 ma—l
h(s,0) = h(z) := (1 )2 =

- (fol(x +h(1— x))afldh)z'

An easy calculation shows that

1 1
/ (z + h(1— l‘))a_l dh > 2/ pla=1/2 gp m(a—l)/2’
0 1/2
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and we arrive at h(s,0) = h(z) < 1 . For the transformation ~
introduced in (2) the proof seems to be more complicated. We have
pictured the function h(s, o) for several a with the help of Maple V.

Now we study the mapping properties of the operators and the spaces,
in which the operators are acting, more precisely. The operator D is
a bijective and continuous mapping between fIl/Q(I) and H_y/5(I)
which are dual spaces with respect to the Ls-scalar product. Then the
operator A transformed according to (7) is a bijective and continuous
mapping in the transformed spaces,

A: ﬁl/Z,a(I) — H—1/270‘(I)'

Here the spaces ﬁl/z’a(l) and H_; /5 o(I) are defined in a natural way
by

(13) Hyjza(I) = {9 :¢(t) = ¥(+(t)),% € Hj2(I)},
(14)  Hoippa(l):={: 6(t) = D(v(t)'(t), ¥ € H_1/2(1)}

and the norms are given by |8]1/2.0 == [¢1/2 and |8] 12,0 := 9] 1/2,
respectively.

Because

A¢@m@@=é¢mmmmmM@@=ﬂw@m@@

the spaces fIl/an(I) and H_;/5 o(I) are dual with respect to the Lo-

scalar product. The operator A : w — ¢ is mapping from Hl/z’a(l)
into the space dual with respect to the Ly-scalar product.

We shall consider the approximate operators A,, in discrete spaces,
using a notation which is similar to that in the theory of Vainikko [24].

Let us consider a sequence of Banach spaces F and F,. Let P =
(pn)nenN be a sequence of operators p,, : E' — E,, where p, is linear and
E' C E is a dense subset. By definition, a sequence {z,} with z,, € E,
is discretely P-convergent to € E, if and only if ||z, — pr2|| g, — 0.
This convergence is denoted by z, Lz A sequence {A;,}nen,
A, € L(E,,F,) is called discretely stable if there is a number ny
such that A;! € L(F,,E,) exists for all n > ngp and the inverses
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are uniformly bounded. Using ||4,,}|| < C, n > ny we get the following
discrete estimate:

|0 — prwl g, = HAgl(Anwn — Appnw)||E,
< CllgnAw — Anppwl|r,

if we E' = Hy3,NC(I)and Aw=g € F' =H_y/5,NC(I). This is
important in order to get a convergence result.

Here we set £ = ﬁl/za(]’) s F'=H_y/5 o(I) and define the system of
discrete spaces (Ey,)nen by E,, := {{¢; };’:—11} equipped with the norm

&Y= e, =

Z &;

Hiz,a()

Let P = (pn)nen be the sequence of operators

(15)  pu:E = HipolD)NOW) = By pal9) = {8(t;)}72)
For each fixed n there holds

%(gw)

1/2

'¢j

Ly

Thus we denote the finite ly-space by ls(n) := {{ﬁj}?;ll}, and equip it
with the norm

= 1/2
n—1 2
I = 7 (S 1)
i=
and the scalar product
<{fj {771 j= 1 Ma(n) = Zfﬂh

Now it makes sense to define the second system of discrete spaces
(Fn)nenN by Fp, :== {{5]}?;11 equipped with the norm, which is dual to



274 K. BUHRING

the norm of E,, with respect to the l3(n)-scalar product. Analogously,
we set Q = (¢n)nen With

(16) gn:F':=H 1/50(1)NCU) = Fuy  qu(d) := {(t;)}]=1-

The approximate operators A, are mappings in these dual discrete
spaces, A, : E, — F,.

Theorem 3.1. There holds

n/2— 1

&3}, ~ Z lep

= n/2

<17> CE (L) 1,|2<&_@>2

l,i=1
zzlmodz

= (Bu{& 1 & D m) = ||\/B_n{§j}||z22(n)

where By, is a positive self-adjoint matriz. Additionally,

& ltamy ~ IV Bad&i} I -

Proof. First we use the definitions of the norms in E, and H; /2,0
and the definition of the linear splines ¢; to evaluate ||{¢;}||&,. Then
we obtain

(18)

i+l pll g2 (g y @
2 lz y
i drd

n-1 l+11(§,(l+1—$)+§l+1(x_l))2 (%) da
+2§/1 n y(z/n)(l—(z/n)) <">d

with

sz, y) =& +1—z)+ &1 —1) —&E+ 1 —y) —&qpa(y — 1),
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We set

i+1 1+1 S 5 I y Ty
(19) / / ML A <n n)d dy.

Next we consider the second term of the sum (18). Because (7/(s)s(1—
8))/(v(s)(1—=~(s))) ~ 1 (cf. Proposition 3 of Remark 3.1) and 1—xz/n ~
lifz/n <1/2, z/n~1if x/n > 1/2, there holds

/’“ Y (@/n) (@l +1-2) + &l —1)*
l n v(@/n)(1 = y(z/n))
N /l“ @l +1—2) + &z —1)?
! n(z/n)(1 —z/n)
~ { (1/D(E + €20), l<n/2-1

dr

(1/(n = D)& + &)y 1>m/2.
We arrive at
(20) S /l+1 l (gl(l +1- l‘) + £l+1(m — l))2"y,(l‘/n) dr
on (@/n)(1—~y(z/n))

n/2—1

~Z§l

=0

= n/2

Now we investigate S;;. Without loss of generality let ¢ < [. First
we give a lemma. Its proof follows immediately from the definitions of
h and « and is left to the reader.

Lemma 3.1. If t,s€[0,1], 1 <i, I <n—2, |l —i| > 2, then

(21) h<£,i>~h<l+t,l+s>
n’'n n n

If 2,y € [1/n,(n—1)/n], |z —y| < 2/n, then h(z,y) ~ 1.

First let 1 < I, 4 < n—2, |l —i| > 2. Using Lemma 3.1 and the
definition of .S; ;, we see that

1 i 1 i+1 +1 )
Sld ~ h(g, E)m/ [ Sl’i(w,y) dl’dy,
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since 1/(z — y)? ~ 1/(l — 4)?. With the definition of s;; , we compute

i+l pltl
/ / 31272-(:6, y)dz dy
i !

= % (&8 + &y + & + €y + &b + &ilira)
- % (&& + &&iv1 + &1 + Eir16141) -

This is a quadratic form which is zero when & = £ = &1 = &;41 and
therefore equivalent to the following quadratic form which is zero when

& =& =&y = Gy
7+1 [+1
/ /l $2,(z, ) dedy ~ (& — ) + (G141 — &1)?
+ (& = &iv1)® + (G41 — &)
Thus we get for 1 <1, i <n—2, |l —i| >2

1

(22) Sl,i ~ h(%, E) ﬁ((ﬁl - gi)Q
+ (&1 — &)+ (& — &) + (Gg1 — Ei1)?).

Now we consider the second case 1 <i,! <n—2, |l —i| < 2. Using
the definition of S;; and Lemma 3.1, we obtain

(23) S~ (G —&41)?  1<i=I1<n-2,

141 Slz
Sii—1 ~ fl?dy
-1

=(& - fl(fl+1+§l 1))(3—41n2)
+ (& + &)1 —In2) + §-1641(1 — 21n2)

if2<l=1i+1<n—2. This is a quadratic form which is zero when
& = &41 = &1 and therefore equivalent to the following quadratic
form which is zero when & = &1 = §-1:

(24) Spic1~ (& —&-1)? + (& — &41)%

and



HYPERSINGULAR INTEGRAL EQUATION 277

Assume i = 0. For the present consideration let [ > 2. Then there
holds 1/(z — y)? < 4/I2 for all y € [0,1],z € [I,l + 1]. Using this
property and h(z,y) < C, we have

1 1
<< [ [ (@0-0 g an?dedy

C
Sp

(& + fl+1 + &7).

Now let i =0 and [ = 1. Using h(z,y) < C again, we get

2
0= 50< / / S +fi(§>2 D= 4w) 4, gy

<O +6).

Thus we arrive at

n—1 n—1
0<> Sio< C(Z %s?)

=1 =1
(25) n/2-1

(Z ~&

Analogously we show that
.- n—1 e ,
< ZSl,n—l < C'(lz n_l§l>
n/2-1
<e(% 1+ L nt)

From (18), (19), (20), (22), (23), (24), (25) and (26) it follows that

)

= n/2

(26)

= n/2

n/2— 1

n—1
&R, ~ Z £,+Z D DGR

= n/2 =1

+ Z ( > 1l|2(§z—€i)2,

l,i=1
Ji—t|>2
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because, for |l — i| > 2, there holds 1/l —i|*> ~ 1/|l —i — 1] ~
1/|l =i+ 1|* and h(l/n,i/n) ~ h((l + 1)/n,i/n) ~ h(l/n, (i + 1)/n).
Using h(l/n, (I +1)/n) ~ 1, we get

n/2— 1

&3} 1%, ~ Z Le

= n/2
n/2—-1
20 20\ q(&21, E2141, E2is E2i41)
h
+ “21 ( ) |2 — 21)?
i#l

with
(ot €141, &2y E2i1) = (€t — €20)° + (€t — &oi1)?
+ (€141 — E20)*+ (bo141 — E2i01)%

Obviously, q(&a1, 2141, €2, €2i+1) 1s a quadratic form which is zero when
€a1 = €41 = &2 = E2i41 and thus equivalent to the quadratic form

(Eo1—Eai1)? + (Exi1 — E20)? + (a1 — Ea11)% + (€2: — €2i11)2. Using this

equivalence, we see that
n/2— 1

&}, ~ Z le

1= n/2
1
+ Z < ) l|2 (‘El - 52)2
zzll:noldz
n—2 ,n—2 1 1 )
+> <Zh<ﬁ’ﬁ> W)(ﬁl —&41)”-
=1 i=1

Furthermore, there holds

and we arrive at (cf. Lemma 3.1)
n/2— 1

&%, ~ Z lep

= n/2

+ Z < )#”2(51—5@')2,

l,i=1
'LiélmodZ
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which completes the proof of the theorem, because the second assertion
follows immediately by duality. mi

4. The stability of the quadrature method. With the help of
Theorem 3.1 we are able to show that the sequence {A,,} is discretely
stable.

The mapping properties of /B, are a direct consequence of Theorem

3.1:
v/ By E, — l2(n), vV Byt la(n) — F,
are isomorphic mappings and their norms are independent of n.

Now the mapping A, : E, — F, is invertible if and only if
Al = —A, : E, — F, is invertible. Furthermore, B, is positive
and selfadjoint. Thus A} : E, — F, is invertible if and only if
VB, “1A! /B, ~! is invertible in l3(n). The last assertion is equiv-
alent to the relation

<\/Bn ALV B, 715,£>l2(n) ~ (€ 8)1a(n)
for all £ = {¢; 7;11 € l3(n) which is equivalent to

(A28, E)is(n) ~ (Bn&, E)iy(n)

Thus, existence and the uniform boundedness of the inverses of A,
(n > ng) follow directly from the subsequent theorem and Theorem
3.1.

Theorem 4.1. If 1.5 < a < 4.54, then there holds

n/2— 1

(AL, 8) ~ Z Le /
ln2

F S (LD, 1i|2<sl—fi>2.

l,i=1
'LiélmodZ

Remark 4.1. The restrlction a < 4.54 is not essential. It is only used
in the proof to get > -, Zilmodz@/(l —i)2)(1=h(l/n,i/n)) > 0, which
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is clear if h(s,0) < 1. However, numerical tests show that this sum
is positive for greater a, too (approximately up to a = 20). Because
numerical computations with greater  are not of practical interest, we
do not consider this case. We only remark that h(s,0) < 1 holds in a
neighborhood of the critical values, i.e., s = 0, s =0 or ¢ = 0. Thus,
it seems to be possible to show stability for greater « using a local
principle.

Proof of Theorem 4.1. Using h(z,y) = h(y,z) and a;_; = a;—;, we
obtain

n—1 .
<A;’L£7§>l2(n) = - Z h<£7 %)aliglgi

li=1
n—1 .
[ 1 1
= h( = = a—iz(& - &)?
lz_:l <n7n>al 2(51 &)
i
n—1 n—1 l i
- ag + h<_a_>al—i>‘£l2
il
n—1 l i 1 n—1
= h<—, —> ——(& - &)+ ) R
12:1 n’'n/) |l —i]? ; !
iZlmod?2

with

i#lmod2

It remains to show that R; ~ 1/I+1/(n—1). Because h < 1 for a < 4.54
(see Remark 3.1,6), we have

2 n—1 .
s I 1 1
R=—-2 hl—,— | —
T ; (n’n) [T —3|?
i£lmod2
0

2 > 2
- L Tt Lo

i=—o00 =

iZlmod2 iZlmod2
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n—1
+ 2
i=
iZlmod2

Thus, there holds

i=1
iZlmod2

What remains to be shown is the estimate

n—1

Z 2rlz<C +C

i=1
iZlmod?2

)

Using the definition of the function A and Taylor’s theorem, simple
technical considerations show that

l?

1 Tl
(27) T = i,

C (A (G /) dn)’

e ()
L Genlme
A () s
Lo
L Gom() e

Now we have to distinguish several cases. Choose a positive number
e<1/2.



282 K. BUHRING

First let [ < ne. There holds v/(z) ~ z* ! if z € [0,1/2).
Furthermore, for these [ and arbitrary i, we have

(28) /017’<%+h(i%l>)dh>c(l:l> 1.

Moreover there holds 7" (z) < Cz®~2, v""'(z) < Cz®~3, and hence
1 . 1 . a—2
oG ese [ Gor(5))
0 n n 0 n n

c <z + z> “—2‘
n
Analogously, there holds

/// ( +vuw<in;l>>dvuduwdw<0<lj;z> -

Using (27), (28) and the definitions of r,; and R;, we see that

c
Ene Ry =2 Z ri <C Z

'Liélmod2 1$lmod2

IN

<C’—.

T <

The second case [ > n(1 — ¢) can be reduced to the first case [ < ne
with the help of the relations

V() =1-y1-2), A(z)=7(1-x2),
Y'(z)=—"(1-2), +"(z)=+"(1-=2).

In the third case ne <1 < n(1—¢) it remains to show that R; < C/n,
because in this case | ~ n,n — [ ~ n. The assertion R; < C'/n is true if
the function

(@) @) A @ W) - 9
R =0 ) @) e - v)?

is integrable for fixed # = I/n. Now R;(y) can be transformed
analogously to r;; and we get

Ay Ri(y)
Rily) = (v (@ + h(y — z)) dh)2
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with
1
Ri(y) 3:/ v'(z + h(y — z)) dh
0
11
: /’y"(y—i—uv(w—y))dvudu
0o Jo
1 1 gl
""Y’(y)/ / / Y (z + vwow(y — x)) dvu duw dw
o Jo Jo
1 1
—/ / " (y + uv(z — y)) dvudu
0o Jo
11
/ / ¥z +uv(y — z)) dvu du.
0o Jo

This term R;(y) is integrable if the numerator R;(y) is integrable,
because of

/017’(x+h(y—x))dh >c, yeo1]

For y € Us(0), Us(z1) := {z : |z — z1] < 0, there holds 7" (y) ~
Y2 4" (y) ~ y*~3. We see that R,(y) is integrable if y>*~* is
integrable. Obviously, this is true if @ > 3/2. This completes the
proof of Theorem 4.1. u]

5. The convergence of the quadrature method. In this section
we shall derive error estimates. We suppose f € C' in order to get
the explicit asymptotic behavior of the solution (cf. Lemma 2.2). First
we remark that, due to the definition,

(29) [w = unll1/2 = [[w = wall1/2,a;

holds where w is the solution of (1), w = u o« is the solution of (7),
wy, is the approximate solution of (7) defined by (6) and (11), and
Up 0y = wy,. Furthermore, K¢ = Pdp, holds, where K? € L(ﬁIl/Za)
is the interpolation projector onto the piecewise polynomials of degree

d, pn : Hyj3 o — E, is the discretization operator defined by (15) and
P?.E, — Hl/z,a is the prolongation operator defined by Pg{fj ;’;11 =
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27711 quﬁ(d) So Equation (11) is equivalent to w, = P2, with
= {1} 1 defined by (6). Using the triangle inequality, we obtain

[ = |12 = |lw — Pinll1/2,a

(30) )
< lw = Kjwll1/2,0 + [|1P3(@n — paw)|l1/2,a-

First we estimate |[K%w — wl|1/2,. To this end, we use the following
lemma.

Lemma 5.1. For all w € Hl/g, lwlli/2,0 < Cllw|y holds.

Proof. 1f w € Hyja, w(y(t)) = w(t), then [|w|1/20 = |[ull1/> Thus,
we get

ull2, = // |$_ |2 |2dxdy+2lle—:?;dw

(@) 7 (@)e(l - z)
”/o 1—w> ()(1—7( )

<C</ / e |w— T e dy”/:%dx)

= Cllwlly/2,

with the properties 3 and 6 of Remark 3.1. Thus,

w120 = llulli/e < Cllwlli/2

and the lemma is proved. u]

Due to [22, Section 5.31],
(31) 1K 5w — wllyjz,0 < [KGw = wllije < Cnl/2=*||w]|y

holdsif we H* and 1 <s<d+1.

Now we consider the second term of the sum in (30).
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Lemma 5.2. There holds

|1PEll1/2,0 < Cliél 2,
for all € = {{;} € E,, with a constant C independent of n.

The proof runs analogously to the proof of the corresponding estimate
in Theorem 3.1.

Using this lemma, we get
(32) ||P’g(wn _pnw)Hl/Q,a < C”Ibn _pnw”En'

Theorems 3.1 and 4.1 yield the discrete stability of the sequence
{An}nenN, An € L(E,, F,,). Thus, we can estimate

@, — prwllE, = ‘|A;1(QnAw — Aupnw)|lF,

(33)
< C||Anprnw — grAw||p, -

The operators A and A,, can be represented in the form A = D + L
and A, = D,, + L,, with

Dp=n(ar—j); =1+  Ln=An—Dy=n(ak—j(h(te,t;)~1));5L;-

Obviously,
(34) [lgnAw—Apprwllr, < |lgnDw—Dupnw||r, +|lgnLw—Lypawl|r, -
Because we have to estimate the norm || - ||, , but no explicit formula

for that norm is available, we shall use the following lemma.

Lemma 5.3. Let M be an arbitrary, but fixed, real positive number,
and let o < M. Then there holds

[¥llE, < CllYll.
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for all = {4h;}1=1 € loo

Proof. Due to Sobolev’s embedding theorem, the mapping FE :
H,/5 — Ly is continuous. Thus by duality, the mapping F : L, —
H_, 5 is continuous for ¢ = M/(M —1). Let g € Lo, be an arbitrary
function. Using the definition of H_; /5 o, we get

lol-1720 = [ 522
gll-1/2,a = || -1
/ ,ylo,y 1 _1/2
-1
<ol 227
— f}/’o"y*l L,
1 1
<Cllgoy Lo o —
Yoy L,
From the properties of v we see that
1 q 1 1 q
H ! —1 :/ I(~—1 dt
Yoy i, Jo 17(yH®)
1 1 q
!
= 7'(t)dt < C,
/0 ' (¢)

since « < M and ¢ —1=1/(M —1). We arrive at
lgll-1/2.0 < Cllgoy .. = Cligllz..

By duality we get

(35) £y < Cllfll/2.a

for arbitrary f € H, /2,o- Using the norm equivalence of Theorem 3.1,
we find

<C

Ly

n—1
> &id; = CI{& Y=g,
j=1 1/2,a

< ClIVBr{&Y 2 o) -

n—1
> o,
j=1
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On the other hand,

n—1

D &id;
j=1
holds. Thus, we get
(36) €352 Iy < ClIV Bad&Y5 21 iy

Furthermore, we obtain

||1/}||Fn = || V Bn 71¢||lg(n) < sup <\/ B, 7111)5 77>l2(n)

1 n—1
~ =3Il = &Y -
j=1

Ly

17ty (n) <1
= sup <¢7 C>l2(n) < sup <'¢7 C>l2(n) < C”w”lwa
IVBnClliy(ny <1 ISy (ny<C
and the lemma is proved. a

Now choose a sufficiently large number M and assume o < M. We
can estimate

lgnLw— Lyppw||p, < CllgnLw—Lyprwl);i,

- C’H{ /Olw(a)l(a, b) do

9 n—1 n—1
S2Y wein)
Jj=1 k=111l

j=k¥1mod2

(37) <C  sup /Olw(a)l(a,tk)da

k=1,...,n—1

n—1

~20N ity )

j=1
j=k+1mod2

<Cn7®  sup (s te)wllwy

k=1,...,n—

<Cn=* sup U0, tywllwy
0<t<1

if 0 < s < a/2and w e W. Here W; denotes the Sobolev space
of power 1 and order s (cf. Triebel [23]). The last estimate is true,
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because w and its derivatives up to the order /2 are periodic, since
the following lemma holds (see [4, pp. 109-110]).

Lemma 5.4. Let s > 0. If f € W and f(0) = £ (1) for r < s,
then

1 n—1 .
‘/ Fyde =3 ft) | < Ol flhws, =2
j=0

The function I(t,0)w(o) and its derivatives up to the order s are
periodic functions of o if s < a/2, because (8/0c)*I(t,-) is bounded
for any fixed ¢t € (0,1), w(c) ~ 0*/? in a neighborhood of 0, w(c) ~
(1—0)*/? in a neighborhood of 1, and thus w(*)(0) = w(®) (1) if s < /2.
Consequently, we get Equation (37).

It remains to examine whether the norms ||(-,)w||w;: are uniformly
bounded.

Lemma 5.5. The mapping o — o**2(1 — 0)**2(8/00)*(o,t) is
uniformly bounded with respect to t for an arbitrary integer k > 0.

Proof. First let k = 0. Then we have

oy = @@ 1

(o) =@ o —t*

Using the Lagrange form of the remainder of the Taylor’s series, we

find " " 2
l(cr,if)—)l’y (U)—1<’y (U)> ift— o #0.
6'(0) 4\7(0)

Obviously, the function (1 — o)202l(0,t) is uniformly bounded with
respect to ¢t if ¢ € U:(0) UU(1) and if 0 € U(0), [t — o] > 6. If
o,t € U.(0), o/a > tort > ao, a > 1, then (1 — 0)?¢%l(0,t) < C
follows from Remark 3.1.6. Using the Lagrange form of the remainder
of the Taylor’s series and the relations 7/(0) ~ @1, v"(0) ~ @2,
Y"(e) ~ %72 in U.(0), we get (1 — 0)?0%l(0,t) < C in the case
o,t € U(0), o/a < t < ac. The number a > 1 have to be chosen in
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dependence of the constants in the mentioned equivalence relations. If
o € U.(1), then the uniform boundedness of (1 — o)252l(0,t) can be
derived analogously.

Now let £ = 1. Then

7(@) =7 OF ") —70F "o -

holds. Using the Lagrange form of the remainder of Taylor’s series
again, we find

L OB U Ca e { O T

0 1yW(@) 1 (7)Y

—I(o,t = - = if ¢ 0.

2707 5500 “a\ve) TTTO7
Combining this assertion with 7'(0) ~ 01, 7" (0) ~ 072, 4" (0) ~
o3 and YW (o) ~ 0® % for ¢ € U.(0), we obtain the uniform

boundedness of (1 —0)303(0/00)l(0o,t) analogously to the proof of the
uniform boundedness of (1 —o)%02I(c,t). By further differentiations of
the formula for I(c,t) we get the assertion of the lemma. O

On the other hand, the solution w(o) of Equation (7) has an end
point behavior like w(c) = 0®/2(1 — 0)*/2j(c) with smooth § since
the solution u(c) of Equation (1) can be written in the form u(o) =
o'/2(1 — 0)'/2G(0) (see Remark 2.2) and w(o) = u(y(c)). This fact,
together with Lemma 5.5, implies that

(38) sup [I(t, Jwllw; < oo
0<t<1

for any s satisfying 0 < s < a/2 —1. Indeed, consider, for example, the
function w(c) = ¢®/2, and suppose s is an integer. Then

(&)t -F(2) e
= <§Cjaj+2<%>jl(a, t))a“/232.

The last function is integrable if /2 — s — 2 > —1, i.e,, s < a/2 — 1.
If s > 0 is not an integer, then another straightforward argument
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including the special definition of the norm in W7} leads to the same
result. Together with the estimate (37), we arrive at

(39) llgnLw — Lyppwl|F, < Cn”%, 0<s<a/2-1

It remains to estimate ||g,Dw — D,p,w||F,. Using Sobolev’s embed-
ding theorem and Lemma 5.3, we get

|gnDw — Dpppw| F, < CllgnDw — Dypppwl|i,
< C||PognDw — PyDypppw|| L.,
=C||[K,Dw — P,D,p,w||L_,
< C\KXD"w — PEDEpiw|m, ...

(40)

with the following definitions. We set
Pa({&}5= Z & ti=d/m,

where 1; is the smoothest spline on R of order d with ;(k/n) = ; 1,
k € Z,i.e., 1 is (d—1)-times continuously differentiable and 1j| (s, ¢,.)
is a polynomial of degree d,

PR{&GY ) = D &G pRf=allf = {ft)}2 e

j=—o0
n:— npn— nQna Kfzqupg:Pqu?’
DEf(t) :=p.f. / |U t|2 DE .= n(ak—j)ij=—o0o = nC(a),
with
-7r2/2 k=0, '
ak =4 2/|k|?> kis odd, a(t) = a(e”) = —nls|; —m<s<m.
0 otherwise.

Here C(a) denotes the convolution matrix generated by the Fourier
coefficients of a. The spline order d is only of technical importance in
the proof. It has to be chosen large enough. Here the estimate (40) is
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true for arbitrary d. The operators K,, and K are the interpolation
projectors onto the space of smoothest splines of order d. Note that the
last estimate in (40) is true, because K,, Dw— P, D,p,w is a restriction
of KXDFw — PEDEply.

Lemma 5.6. If 3/2 < s < d+ 2, and if € is arbitrarily small, but
fized, then there is a constant C > 0 such that

IKEDRf — PEDEpR fllm, ... < C0247%|| £ m,

for any f € Hy(R).

Proof. It is well known that the vector (e %7)% __ —m < ¢ < m,
is an eigenvector of the convolution operator C(a) = (ak—;j)7%=— oo
corresponding to the eigenvalue a(e’®) = —n|¢|. Furthermore, for

g¢(t) := e ! we obtain
—itdiyoo i £
pRg® = {712 o,  Cla)pflg® = a(e™)prg*.
Obviously, we also have
PEnC(a)plig® = na(e™)PRplgt = na(e's) Kfigt.
Let F' denote the usual Fourier transform
Fn© == [ rwea
27 J o

Then
10 = —= [ _FEn©oe

holds, and therefore
PEC@p] = —— [ (EDOPECpls)de
n n \/ﬁ e n n

- \/%_w / T (F(Onale KRt de.
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On the other hand,
(D)) = = / — € sign (€)(F)(€)g5(t) de

(cf. [17, Section 1.6]), and thus

(KEDRf)(E) = <= / € sign (€)(F ) (€)(KLg®) (1) de.
Consequently, we get
PInC(a)pltf — KED"f(1) = <= / (FF)(©) (K g)0) de,
with 7, (£) = na(e®/™) 4+ 7|¢|. With the definition of a we see that
(41) ra(§) < Clel/m ™, 121,
Obviously,

(42) ||PinCla)pyf — KD f(1)]

|H1/2+5

< IS = 28 = [ r(@F N0 0) el .
(F1)(E) (1) de

)

o Lo

Hyjoqe

holds, where LE denotes the orthoprojection onto the spline space
lin {9;}72_ . Using (41), we get the following estimate for the second
term of the sum

(43) H%z_w | mewnes e .

< NEN©r©VI+E L,
<on Y (FRAOVITE L,

< Cn17l||f||Hz+1/2+s
< Cn*T 0| f | m,
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withl=s—1/2 —e¢.
From [22, Section 2], we see that, for 1/2+¢ < s, <d+1,

) |- oo [T n@En©sta

Hijaye

S Cn1/2+€7.91

= [ meEnes df'

< O S [(F L) (E)ra(€)VI+ €2 ||,
< onv/Es (PR OVITE L,

S Cn1/2+6—sl||f| Hoppr = Cn3/2+€—st|

Hs,

Hs»

holds for all s = s7 +1 with 3/2 < s < d+ 2. This completes the proof
of the lemma. a

Note that the estimate (40) is true for arbitrary d and using Lemma
5.6, we arrive at

(45) ||anw - ananFn < Cn3/2+gis“w|

Hs»

if 3/2 < s and w € H,. From the estimates (30), (31), (32), (33), (34),
(39) and (45) we obtain the following theorem.

Theorem 5.1. Let 0 < s < min{d,«/2 — 1}. If u is the solution of
Equation (1), w the solution of (7), w, the solution of the quadrature
equation (6) extended by (11) and u, := wy, oy~ !, then there holds

(46) lu = unllije = lw = wnllyjz,0 < Cn%,

if w € Hyy 324 for some positive €.

Remark 5.1. If f is sufficiently smooth, then there holds w €
Hy i 3/54c for s < a/2—1.

This is an easy consequence of the definition of w and Remark 2.2.

6. Another quadrature method for the hypersingular inte-
gral equation. In this section, we shall propose another quadrature
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method for the Equation (1), using a cos-transformation. We shall pro-
ceed as in Section 3.8 of [22], where the numerical solution of first-kind
integral equations with logarithmic kernel is treated.

Consider the hypersingular integral equation (1). Now we change the
variables by using another transformation function ;:

1 —cosws

y1(8) := 5 ; s €[0,1].

As in Section 2, we have that Equation (1) is equivalent to
(47) Aw(s) :=p.L
with

There holds

Y1(8)v1 (o) 72 sin o sin s
I71(0) =71 (s)[?
T

((cosms — coso)/2)?

4

2 1 1
4 <sin2 (s —0)/2 ~ sin? 7r(5+0)/2>'
Thus,
(48)

™

Aw(s) = p-£ /01 ZQ <sin2 ﬂ(s,l 7)/2  sin? 7r(51+ a)/2>“’(") do = g(s)-

Analogously to Section 2, we can derive the quadrature method for n
even

(49)

w- 3 e Y] e
TR = Lo on\si®nlty — t;)/2 sinialty +4,)/2) 2 °F

j=
j=k+1mod?2

3

withk=1,...,n— 1.

The kernel function (v1(s)71())/[71(e) = 71(s)|* of A is 2-periodic
and odd with respect to each variable over the interval [—1,1]. For
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real ¢, let H? denote the Sobolev space of 2-periodic functions (distri-
butions). We will especially be interested in the subspace H! of odd
functions, H, = {f € H' : f(—s) = —f(s)}. There holds

(50) (Aow)ljo) = A(wlp,),  w € Hy,

where

(51) Ayw(s) = —pf / w4
1 sin® (s — 0)/2

An easy computation shows that A, maps odd functions into odd
functions and even functions into even functions.

We continue g to an odd function on [—1, 1] by g(—s) := —g(s) and set
& = —=&;k=1,...,n—1, which corresponds to an odd continuation
of w. Then the quadrature method (49) is equivalent to

n—1 2 2

by 1 nmw
(52) g(tk) = _—5 - _Eka 0= EO)
P T AR
j=k+1mod2

with k =1—n,... ,n—1, k # 0. The restriction k& # 0 can be omitted,

because g(0) = f(71(0))v1(0) = 0 and the sum of the righthand side of
(52) is zero if k = 0, because of &; = —§_;.

Furthermore, A, is the hypersingular integral operator on the unit
circle (cf. [13]). Stability and error estimates for the following
quadrature method applied to this hypersingular integral are proved
n [13]:

g2 1 nmw?
tr) = — & — — &,
W= 2 e ppt 2
(53) j=k+1mod2

n—1
=D&
j=1l—n

with k =1—n,...,n—1. In the papers of Kress [13] and Pro§sdorf and
Saranen [21], it is shown that the product integration formula leads to
the same quadrature method. The quadrature methods (52) and (53)
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differ from each other only by the one-dimensional functional which
guarantees the uniqueness of the solution. So we get the stability of (52)
and of (49) by perturbation theorems (cf. [17]). For the quadrature
method (53), the following convergence estimate is proved in [13]

(54)  lw—wally <O lwlls,  [lw = walliz < On' 7wl
provided w € H, and s > 3/2, s > r > 1. Repeating the arguments of
[13], we get the same convergence estimate for (52) and for (49). Thus,
cf. Lemma 5.1,

lu—unlliyz = llw = walli/z,a < lw = wall2 < Cn' =],

if we Hg and s > 3/2.

7. Numerical results. We consider numerical tests for the
functions f = f;, 1 =1,2,3, with f1(t) = —2x, f2(t) = —8w(1 —2t) and
f3(t) = (0.00001 +¢3)'/2, Clearly, we get Du = f, u = u;, i = 1,2 with
up(t) = 2t12(1 — t)V/2 and wy(t) = 4t1/2(1 — ¢)V/2(1 — 2t). Because
we do not know the exact solution in the case ¢ = 3, we compute
the error by setting u ~ usgss, where uggag is the solution of (6) with
n = 2048. With the corresponding function g(s) = f(v(s))y'(s), we
have computed u,, by using the quadrature method (6). To solve the
equation system of (6) we use the conjugate-gradient-method (cf., e.g.,
10)).

In Tables 1-3, we give the supremum-error

errn = sup u(y(t5)) = un((t))]

as well as the associated experimental convergence orders

7log(errn) — log(erry,/2)
log(n) — log(n/2)

for « = 2, a = 3, a = 4 and for the cos-transformation. All
computations are performed with a maximum accuracy of 9 - 1011,
When the error err, is close to 1071° then ord, decreases with
increasing m. But this is a numerical effect, and we only list the
computations, where err,, > 107°.

ord,, :=
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Theorem 4.1 guarantees a convergence of order s with 0 < s < a/2—1.
During the estimation, we have used Sobolev’s embedding theorem and
hence we expect that our convergence order is not optimal. In fact, we
expect an order «/2 instead of a/2 — 1. The numerical results seem to
confirm this hypothesis. In all tests the numerical convergence rate for
a = 2 is better than expected; indeed, ord,, is approximately 2. For
a = 2, the transformed function w is smooth, because the end-point
behavior of u is t1/2(1 — t)%, and thus the better convergence order in
this case is not surprising.

In the case of the cos-transformation, an arbitrarily high convergence
order is expected. The numerical tests in the case of f; and f, show
an error close to the accuracy err, ~ 10~!! already for n = 4. This
results from the fact that our quadrature method is equivalent to the
method for the unit circle (see [13]), and the function w belongs to the
set of trial functions. Thus, the error cannot be improved and we get
a meaningless value for the convergence order. The numerical results
in the case f3 show that the order is increasing.

Finally we give an example for the hypersingular integral equation on
a smooth open curve I'. Let 3 denote the parametrization of I'. Then

(1) = Dru(t) = pt. /F % dr

B
=t | B(s) — Bloyp P (@)l

TABLE 1. wi(t) = 2t1/2(1 — t)1/2,  f1(t) = —2m.

a=2 a=3 a=4 cos-trans.
erry, | ordp, erry, | ordy, erry, | ordy, erry, | ordy,
1.22-1072 5.71-1072 7.75- 1072 7.05- 1011

81294.1073 | 2.05|1.51-1072 | 1.92 | 1.29-10~2 | 2.28

16 | 7.05-107% | 2.06 | 5.03-103 | 1.59 | 3.03-10~3 | 2.09
32| 1.74-107% | 2.02 | 1.73-1073 | 1.53 | 7.42-10~% | 2.02
64 | 4.31-1075 | 2.01 | 6.06-10~% | 1.51 | 1.84-10—* | 2.01
128 | 1.07-10-5 | 2.00 | 2.13-10~% | 1.50 | 4.59-10% | 2.00
256 | 2.68-10~% | 2.00 | 7.51-1075 | 1.50 | 1.14-10~% | 2.00
512 | 6.69-10~7 | 2.00 | 2.65-10"° | 1.50 | 2.86-10~% | 2.00
1024 | 1.67-10~7 | 2.00 | 9.37-10-6 | 1.50 | 7.14-10~7 | 2.00
2048 | 5.10-1078 | 1.71 | 3.31-10=% | 1.50 | 1.79-10~7 | 2.00
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TABLE 2. ua(t) = 4t1/2(1 — ¢)1/2(1 — 2t),
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fa(t) = —8m(1 — 2t).

a=2 a=3 a=414 cos-trans.
erry, | ordp, erry, | ordy, erry, | ordy, erry, | ordy,
1.78 - 102 1.31-101 2.28 1071 0.00 - 10°
8(590-1073 | 1.60 | 3.01-10~2 | 2.12 | 2.56-10~2 | 3.16 | 7.04-10—11
16 | 1.41-1073 | 2.06 | 1.00-10"2 | 1.58 | 6.05-10~3 | 2.07
32(347-107%| 2.02|3.47-1073 | 1.53 | 1.48-10"3 | 2.03
64 | 8.61-1075 | 2.01 | 1.21-1073 | 1.52 | 3.68-10~* | 2.01
128 | 2.15-1075 | 2.00 | 4.26-10~% | 1.51 | 9.17-10% | 2.00
256 | 5.36-10~% | 2.00 | 1.50-10~% | 1.50 | 2.29-10~% | 2.00
512 | 1.34-1076 | 2.00 | 5.30-107° | 1.50 | 5.72-10~% | 2.00
1024 | 3.35-10~7 | 2.00 | 1.87-10~% | 1.50 | 1.43-10% | 2.00
2048 | 8.37-10~8 | 2.00 | 6.62-10~6 | 1.50 | 3.75-10~7 | 2.00
TABLE 3. f3(t) = —(0.00001 + ¢3)/2.
a=2 a=3 a=4 cos-trans.
n err, | ord, err, | ord, err,, | ordy, err,, | ordy,
411.27-1073 6.82-103 1.05-1072 4.38-10°°
813.20-107%| 1.99|1.63-1073 | 2.06 | 1.39-10"3 | 2.92 | 3.24-10"6 | 3.74
16 | 7.64-107° | 2.07 | 5.43-10=% | 1.58 | 3.27-10~% | 2.09 | 1.62-10~7 | 4.31
32(1.88-1075 | 2.02 | 1.87-10~% | 1.53 | 8.02-107% | 2.03 | 3.90-10° | 5.38
64 | 4.65-107% | 2.01 | 6.55-107% | 1.52 | 1.99-10=5 | 2.01
128 | 1.16-10~% | 2.00 | 2.30-1075 | 1.51 | 4.96-10=6 | 2.00
256 | 2.89-10~7 | 2.00 | 8.11-10~% | 1.50 | 1.23-10-6 | 2.00
512 | 7.16-10~8 | 2.01 | 2.83-10=6 | 1.52 | 3.08-10~7 | 2.00
1024 | 1.69-10~8 | 2.08 | 9.34-10~7 | 1.60 | 7.12-1078 | 2.11
holds, and
1 1
s sl =pt. [ X o [ sts.apulsio) o
with
cs,0) = LF@BE 1
’ 1B(s) = B(o)]* [s—0of
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Transforming this equation with the help of v, we get

— o /0 1 |;U£U;|h(s,a)da+ /0 k(s 0)w(0) do,

with
w(s) =u(B(v(s)),  9(s) = F(BO(())IB'(v(s)7'(s)
s = o (1 (0)
A TR ]
k(s,0) = B (v () (v ()Y () (0) A (s)v'(0)
’ 1B((s)) = B(v(0))[? [v(s) = v(o)[?
We consider the example where ' is a circular arc, 8(s) = e'"*,
0 < s < 1. Then k takes the form
s 1 , ,
ks, o) = <4sin2 7(v(s) —1(e)/2) () — 7(0)|2>7 ()7 (e)-

In Table 4 we give the supremum error and the associated experimental
convergence orders for the example function f4(t) = —27. Because we
do not know the exact solution in this case, we compute the error again
by setting u ~ wug04s. The results in Table 4 show the same behavior
as for the case of a straightline segment.

TABLE 4. f4(t) = —2 % m. The case of the circle arc.

a=2 a=3 a=14 cos-trans.
n err, | ords, err, | ords, err, | ord, err, | ords,
411.85-107? 7.12.1072 9.13.1072 1.58-1073

813.37-1073 | 246 | 1.72-1072 | 2.05 | 1.47-10"2 | 2.63 | 7.69-10"7 | 1.10
16 | 7.99-10~% | 2.08 | 5.68-10~3 | 1.60 | 3.42-10=3 | 2.10 | 7.66-10~8 | 3.33
32(1.96-10% | 2.03 | 1.96-10"3 | 1.54 | 8.37-10"* | 2.03
64 | 4.86-10° | 2.01 | 6.84-10~4 | 1.52 | 2.08-10—% | 2.01
128 | 1.21-1075 | 2.00 | 2.40-10—% | 1.51 | 5.17-10~° | 2.00
256 | 3.02-1076 | 2.00 | 8.46-10"% | 1.50 | 1.29-10~% | 2.00
512 | 7.47-10~7 | 2.01 | 2.95-10% | 1.51 | 3.21-10-6 | 2.00
1024 | 1.76-10~7 | 2.08 | 9.75-1076 | 1.60 | 7.44-10"7 | 2.11




300 K. BUHRING

Acknowledgment. The author wishes to thank A. Rathsfeld for
making a number of useful suggestions.

REFERENCES

1. S.M. Berlotzerkovski and I.LK. Lifanov, Berechnungsmethoden fir singuldre
Integralgleichungen, Nauka, Moskau 1985. (Russian)

2. M. Costabel, Boundary integral operators on Lipschitz domains: Elementary
results, SIAM J. Math. Anal. 19 (1988), 613-626.

3. M. Costabel and E. Stephan, The normal derivative of the double layer
potential on polygons and Galerkin approzimation, Appl. Anal. 83 (1983), 205-228.

4. P.J. Davis and P. Rabinowitz, Methods of numerical integration, Academic
Press, New York, 1975.

5. D. Elliot and S. Prossdorf, S., An algorithm for the approzimate solution of
integral equations of Mellin type, Num. Math., to appear.

6. J. Elschner and G. Schmidt, On spline interpolation in periodic Sobolev spaces,
Preprint P-Math 1, Karl-Weierstra3—Inst. Math., Berlin, 1983.

7. V.J. Erwin and E. Stephan, Collocation with Chebyshev polynomials for a
hypersingular equation on an interval, J. Comput. Appl. Math. 43 (1992), 221-229.

8. M.A. Golberg, The convergence of several algorithms for solving integral
equations with finite-part integrals, J. Integral Equations Appl. 5 (1983), 329-340.

9. , The convergence of several algorithms for solving integral equations
with finite- paTt integrals 11, J. Integral Equations Appl. 9 (1985), 267-275.

10. W. Hackbusch, Iterative Losung grofSer schwachbesetzter Gleichungssysteme,
Teubner Studienbiicher Mathematik, Stuttgart 1991.

11. L. Hormander, The analysis of linear partial differential operators Vol. 1,
Springer-Verlag, New York, 1983.

12. R. Kieser, Uber einseitige Sprungrelationen und hypersingulire Operatoren
in der Methode der Randelemente, Dissertation, Universitdat Stuttgart, 1990.

13. R. Kieser, B. Kleemann and A. Rathsfeld, On a full discretisation scheme
for a hypersingular boundary integral equation over smooth curves, Z. Anal. An-
wendungen 11, (1992), 385-396.

14. R. Kress, R., A Nystrém method for boundary integral equations in domains
with corners, Numer. Math. 58 (1990), 145-161.

15. , On the numerical solution of a hypersingular integral equation in
scattering theory, J. Comp. Appl. Math., to appear.

16. P.A. Martin, Fzact solution of a simple Hypersingular integral equation, J.
Integral Equations Appl. 4 (1992), 197-204.

17. S.G. Michlin and S. Prossdorf, Singuldre Integraloperatoren, Akademie-
Verlag, Berlin (1980), 1-514.

18. H. Multhopp, Die Berechnung der Auftriebsverteilung von Tragfligeln,
Luftfahrt—Forschung 15 (1938), 153-169.



HYPERSINGULAR INTEGRAL EQUATION 301

19. T. von Petersdorff and E. Stephan, A multigrid method on graded meshes for
a hypersingular integral equation, preprint.

20. S. Prossdorf and A. Rathsfeld, Quadrature methods for strongly elliptic
Cauchy singular integral equations on an interval, Oper. Theory: Adv. Appl. 41
(1989), 435-471.

21. S. Prossdorf and J. Saranen, A fully discrete approximation method for the
exterior Neumann problem of the Helmholtz equation, Z. Anal. Anwendungen, 13
(1994), 683-695.

22. S. Prossdorf and B. Silbermann, Numerical analysis for integral and related
operator equations, Akademie-Verlag, Berlin, 1991.

23. H. Triebel, Interpolation theory, function spaces, differential operators, VEB
Deutscher Verlag der Wissenschaften, Berlin 1978, North Holland, Publ. Comp.,
Amsterdam, 1978.

24. G. Vainikko, Funktionalanalysis der Diskretisierungsmethoden, Teubner
Texte zur Mathematik, Leipzig, 1976.

WEIERSTRASS-INSTITUT FUR ANGEWANDTE ANALYSIS UND STOCHASTIK, MOHREN-
STRASSE 39, BERLIN, D — 10117, GERMANY



