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ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS
OF THE INTEGRO-DIFFERENTIAL EQUATIONS

ON POSITIVE HALF-AXIS WITH NON-DIFFERENCE
KERNEL OF A CERTAIN TYPE

ANNA MITINA

ABSTRACT. The asymptotic behavior of the solutions of a
class of integro-differential equations on positive half-axis with
non-difference kernel is investigated. The solutions are equal
asymptotically to the sum of terms having the form of product
of an exponent epkx and a polynomial. Numbers pk are zeros
of a function which is found in explicit form. Location of these
zeros in the complex plane is also investigated. To obtain these
results the technique of analytical continuation is used.

1. Introduction. Formulation of the problem, and the main
result. There are many applied problems which lead to the equations
of the form:

(1) −d2y

dx2
+ y =

∫ ∞

0

R(x−t)y(t) dt +
∫ ∞

0

R1(x+t)y(t) dt, x > 0.

Equations of this kind arise in various fields of physics. As such, we
may mention radiative equilibrium of stars [3], anomalous skin-effect in
metals [8,4,2] stationary neutron density in multiplying media [1, 5],
wave propagation in acoustic and electrodynamic waveguides [10, 11,
7, 9]. In all these fields of research there are many particular problems
and cases which lead to the equation (1) with R1 ≡ 0. These cases have
been exhaustively treated with the standard Wiener-Hopf technique.
However, there are many problems which cannot be simplified in this
way. That is why the equation (1) in its general form deserves an
independent investigation. It turned out rather unexpectedly that in
many cases the results obtained in this paper as far as asymptotic
behavior is concerned justify replacing of equation (1) with the equation
with kernel R1 ≡ 0. However, as is often the case, the more subtle
features of the solution essentially depend on the kernel R1. As an
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example, we may mention a problem in theory of neutron physics
considered by the author [6] several years ago. The solution of the
problem considered in [6] had a linear asymptotic behavior y = ax + b
and the problem of physical interest was to find the ratio a/b. It
was shown [6] that this ratio was essentially affected by the second
integral in (1), so the results obtained in [6] were new ones. It is the
author’s intention to apply the technique introduced in this paper to
the investigation of some physical problems in the above mentioned
fields.

We restrict the class of considered equations by the following three
conditions:

(i) R(x) is an even function with positive range;

(ii) the set of all numbers s such that:

(2)
∫ ∞

−∞
R(x)esx dx < ∞

has a positive or infinite superior boundary s∗, we also assume that
s∗ > 1;

(iii) the integrals
∫ ∞
−∞ |R1(x)|esx dx converge for all 0 ≤ s < s∗:

(3)
∫ ∞

−∞
|R1(x)|esx dx < ∞, 0 ≤ s < s∗.

In many applied problems there is a natural restriction on desired
solution, i.e.,

|y(x)| < const · eλx, x > 0,

where λ is an a priori determined positive or negative number.

Let us consider the class of all twice differentiable functions satisfying
the last condition with the same λ but not necessarily the same
constant. We denote this class by Qλ. In this paper we are concerned
with solutions of equation (1) only in the class Qλ provided λ < s∗.

The problem of solving the equation (1) is rather a formidable one.
Fortunately, in many cases it is enough to investigate the qualitative
side of the question. In particular, it is often of principal interest
to determine the asymptotic behavior of solutions of equation (1) as
x → ∞. This is precisely the problem we are going to solve. Under



ASYMPTOTIC BEHAVIOR 575

three additional restrictions this problem was solved in [1]. These
restrictions were:

(i) the function R1(x) was assumed to be proportional to the
function R(x);

(ii) R(x) was normalized by the condition
∫ ∞
−∞ R(x) dx = 1;

(iii) sought solutions were assumed to grow not faster than a polyno-
mial. In this article we dispense with the first two of these restrictions
and essentially weaken the last one.

The main result of the present paper is comprised in the following
theorem.

Theorem 1. If the conditions (2) and (3) are satisfied and λ > −s∗,
then all solutions for (1) in the class Qλ (if any) have the asymptotic
behavior of the form:

y(x) =
∑

k

Pk(x)epkx + O(eμx).

The summation is over all zeros pk of the function

(4) G(p) = 1 − p2 − φ(ip)

lying in the open strip

μ < Re p < λ, μ > −s∗,

φ being the Fourier transform of the function R(x)

φ(t) =
∫ ∞

−∞
eitxR(x) dx, |Im t| < s∗.

Function Pk(x) is a polynomial of degree νk = mk − 1, mk being the
multiplicity of the zero pk.

Notice that the main characteristics of the asymptotic behavior of
the desired solution, i.e., numbers pk, do not depend on the function
R1 and may be fully determined as soon as we know the function R.
The same is true for the degrees of the polynomials Pk(x) but not for
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their coefficients. They essentially depend on both kernels R and R1

and cannot be evaluated without knowing the solution y(x) on positive
x-axis. Nevertheless, the formula for the coefficients of polynomials
Pk which we obtain in the process of proving the theorem permits
us to get their approximate values as soon as we have obtained some
approximation of the solution y(x).

2. Proof of Theorem 1. To prove Theorem 1 we use the technique
of Laplace and Fourier transforms. With the help of equation (1) we
deduce the important analytical properties of Laplace transform

Y (p) =
∫ ∞

0

y(t)e−pt dt, Re p > λ

assuming the existence of the solution y(x) ∈ Qλ. One can easily see
that under the conditions (2) and (3) the following inequalities hold:

∫ ∞

0

R(x − t)y(t) dt ≤ const · eλx

∫ ∞

0

R1(x + t)y(t) dt ≤ const · eλx.

Thus, both integrals in the right-hand side of the equation (1) have
Laplace transforms analytic in the half-plane Re p > λ. Therefore we
may apply Laplace transformation to both sides of equation (1) and
obtain the following relation:

Y (p)(1−p2) + y′(0) + py(0)
(5)

=
∫ ∞

0

e−px

[ ∫ ∞

0

R(x−t)y(t) dt + R1(x+t)y(t) dt

]
dx.

Let us consider Fourier transforms of functions R(t) and R1(t), R1(t) ≡
0 if t < 0,

φ(α) =
∫ ∞

−∞
eiαtR(t) dt, |Im α| < s∗

φ1(α) =
∫ ∞

−∞
eiαtR1(t) dt, Im α < s∗.
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Inverting these formulas we may write:

R(t) =
1
2π

∫ ∞

−∞
e−iαtφ(α) dα

R1(t) =
1
2π

∫ ∞

−∞
e−iαtφ1(α) dα.

The path of integration in expression for R(t) may be shifted upward
within the strip |Im α| < s∗:

R(t) =
1
2π

∫ ∞+is0

−∞+is0

e−iαtφ(α) dα

where s0 is an arbitrary number in the interval λ < s0 < s∗. Similarly:

R1(t) =
1
2π

∫ ∞−is1

−∞−is1

e−iαtφ1(α) dα, λ < s1 < s∗.

Substituting R(t) and R1(t) into (5) and reversing the order of inte-
gration which is permissible due to the conditions λ < s0 < s∗ and
λ < s1 < s∗ we obtain for Re p > s0:∫ ∞

0

e−px dx

∫ ∞

0

R(x−t)y(t) dt

=
1

2πi

∫ ∞+is0

−∞+is0

φ(α)Y (−iα)
p + iα

dα, Re p > s0

∫ ∞

0

e−px dx

∫ ∞

0

R1(x+t)y(t) dt

=
1

2πi

∫ ∞−is1

−∞−is1

φ1(α)Y (iα)
p + iα

dα, Re p > s1.

Therefore the relation (5) may be rewritten in the form

Y (p)(1 − p2) + y′(0) + py(0) =
1

2πi

∫ ∞+is0

−∞+is0

φ(iz)Y (z)
p − z

dz

+
1

2πi

∫ ∞−is1

−∞−is1

φ1(iz)Y (−z)
p − z

dz,
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for all p in the half-plane Re p > max{s0, s1}. The remarkable fact is
that the second term in the right-hand side of the equation (5) is an
analytic function in the half-plane Re p > −s1 while the first one may
be analytically continued onto the strip λ < Re p < s0, its analytical
continuation being:

Φ1(p) =
1

2πi

∫ i∞+s0

−∞+s0

φ(iz)Y (z)
p − z

dz + Y (p)φ(ip),

λ < Re p < s0.

So in the strip λ < Re p < s0 we obtain:

Y (p)(1 − p2) + y′(0) + py(0) =
1

2πi

∫ i∞+s0

−i∞+s0

φ(iz)Y (z)
p − z

dz

+ Y (p)φ(ip)

+
1

2πi

∫ i∞−s1

−i∞−s1

φ1(iz)Y (−z)
p − z

dz

or

(6) Y (p) =
1

2πiG(p)

[ ∫ i∞+s0

−i∞+s0

Y (z)φ(iz)
p − z

dz

+
∫ i∞−s1

−i∞−s1

φ1(iz)Y (−z)
p − z

dz

]
− y′(0) + py(0)

G(p)

where λ < Re p < s0 and

G(p) = 1 − p2 − φ(ip).

The expression in brackets is an analytical function in the strip −s1 <
Re p < s0. Thus the only singularities of the right-hand side of the last
equation in the strip −s1 < Re p < s0 are the zeros of the function
G(p). It is obvious that G(p) has no singular points in this strip. Thus,
we have proved the following

Lemma 1. Laplace transform of any solution y(x) of equation (1)
such that y(x) ∈ Qλ has an analytical continuation onto the strip
−s∗ < Re p < λ with no other singularities except possibly zeros of
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the function G(p) = 1 − p2 − φ(ip) where φ(z) is a Fourier transform
of the kernel R(x).

Notice that G(p) has no more than finite number of zeros in any
closed strip within the strip −s∗ < Re p < λ. Moreover, according to
the representation (6) function Y (p) satisfies in the said closed strip
the following inequality:

(7) |Y (p)| < const /|p|
(if |p| is sufficiently large).

Lemma 1 allows us to investigate the asymptotic behavior of the
solution y(x), x → ∞. For this purpose we use the inversion formula

y(x) =
1

2πi

∫ i∞+s

−i∞+s

Y (p)epx dp, s > s∗.

Due to (7) we may shift to the left the contour of integration and get
the formula:

(8) y(x) =
1

2πi

∫ i∞+μ

−i∞+μ

Y (P )epx dp+
∑

k

Pk(x)epkx, −s∗ < μ < λ

where
Pk(x) = e−pkxRe sp=pk

Y (p)epx.

The sum at the right-hand side of (8) accounts for all poles of the
integrand lying in the strip μ < Re p < λ. It is not difficult to see that
for the first term of (8) the following estimation is valid:

1
2πi

∫ i∞+μ

−i∞+μ

Y (p)epx dp = O(eμx)

which concludes the proof of Theorem 1.

Remark. Theorem 1 remains valid if the second term in the right-
hand side of equation (1) is replaced with the integral

∫ ∞

0

R1(x + t, y(t)) dt
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provided it has Laplace transform analytic in the half-plane Re p > −s∗.

3. Zeros of the function G(p). According to Theorem 1 it is
sufficient to locate zeros of the function G(p) in the complex plane to
obtain the most important characteristic of the asymptotic behavior of
the solutions y(x) ∈ Qλ. Therefore, it seems worthwhile to investigate
this problem. We will begin with

Lemma 2. The function G(p) takes on only real values on the
imaginary axis and on the interval −s∗ < p < s∗. The function G(p)
decreases on the interval 0 ≤ p < s∗ and

lim
p→±i∞

G(p) = +∞.

Also,

Re G(α + iβ) ≥ G(α), −s∗ < α < s∗, −∞ < β < ∞.

To prove Lemma 2 it is sufficient to rewrite the definition (4) of the
function G(p) in the following way

G(α + iβ) = 1−α2+β2− 2iαβ −
∫ ∞

−∞
R(t)e−αt(cos βt − i sin βt) dt.

Thus, since R(t) is an even function, we have

(9) Re G(α+iβ) = 1−α2+β2−2
∫ ∞

0

R(t) coshαt cos βt dt, |α| < s∗.

The last representation of the function ReG(α + iβ) makes evident all
three assertions of Lemma 2. The following properties of the zeros of
the function G(p) now become obvious.

i) If the integral

φ(0) =
∫ ∞

−∞
R(t) dt
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is greater than the unity, then the interval (−s∗, s∗) has no zeros of the
function G(p). The imaginary axis contains at least two zeros.

ii) If φ(0) = 1, then the single zero lying in the interval (−s∗, s∗) is
the point p = 0. Its multiplicity equals two.

iii) If φ(0) < 1, the interval (−s∗, s∗) contains exactly two zeros
p = −p∗ and p = p∗. p∗ < 1 because G(1) = −φ(i) < 0 and
G(0) = 1 − φ(0) > 0. The strip |Re p| < p∗ is free from zeros of
G(p).

The relation (9) allows us to reveal more properties of real and pure
imaginary zeros of the function G(p).

Let φ(0) < 1 and p∗ be the sole positive zero of G(p). Setting α = p∗,
β = 0 in relation (9) we get:

0 = 1 − (p∗)2 − 2
∫ ∞

0

R(t) cosh p∗t dt.

Hence,

(10) p∗ <
1 − φ(0)

1 +
∫ ∞
0

R(t)t2 dt

since
cosh x ≥ 1 + x2/2.

Inequality (10) simplifies the numerical evaluation of the quantity p∗.

If φ(0) > 1 and p∗ = iβ, β > 0, is a pure imaginary zero of G(p), the
relation (9) yields in a similar way two inequalities:

φ(0) − 1
1 +

∫ ∞
0

R(t)t2 dt
< β2 < φ(0) − 1.

Relation (9) yields a sufficient condition for imaginary axis having
precisely two zeros of G(p). Indeed, setting in relation (9) α = 0 and
differentiating with respect to β, we get

d

dβ
G(iβ) = 2β + 2

∫ ∞

0

R(t)t sin βt dt < 2β

(
1 −

∫ ∞

0

R(t)t2 dt

)
.
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So if the inequality ∫ ∞

0

R(t)t2 dt < 1

holds, the function G(p) increases along the positive imaginary axis
and therefore cannot have there more than one zero, φ(0) > 1.

4. The non-increasing and slowly increasing solutions of the
equation (1). The last two properties of zeros of G(p) allow us to
strengthen Theorem 1 in case when φ(0) ≤ 1:

Theorem 2. If φ(0) < 1 and |λ| < p∗ where p∗ is the sole zero of
G(p) lying on the positive axis then all solutions y(x) of the equation
(1) belonging to the class Qλ asymptotically decrease not slower than
e−p∗x. If φ(0) = 1 and λ is any positive number such that the strip
0 < Re p ≤ λ is free from zeros of function G(p), then all solutions of
(1) from Qλ have the following asymptotic representation

y(x) = a + bx + O(e−μx)

where μ is an arbitrary positive number such that the strip −μ < Re p <
0 is free from zeros of function G(p), i.e., they cannot increase faster
than some polynomial of the first degree.

Proof. If φ(0) < 1, the function G(p) has no zeros in the strip
−p∗ < Re p < p∗. Thus, all zeros lying to the left from the line Re p = λ
(λ < p∗) are situated in the half-plane Re p ≤ −p∗. Therefore the first
statement of the theorem is an immediate consequence of Theorem 1.
If φ(0) > 1, then at least one zero of the function G(p) belongs to the
imaginary axis. Since the function G(p) has only finite number of zeros
there exist λ > 0 such that all zeros with positive real part are lying to
the right from the line Re p = λ. Applying once more Theorem 1 we
obtain the second statement of Theorem 2.
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