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ON THE EXISTENCE OF
A GLOBAL MILD SOLUTION FOR

A NONLINEAR INTEGRODIFFERENTIAL EQUATION
WITH A SINGULAR KERNEL

J. HEIKONEN

ABSTRACT. We study the equation

ut(t, x) =

∫ t

0

b(t − s)g(ux(s, x))x ds + f(t, x),

where u is the unknown and the kernel b, the nonlinear
function g, and the forcing function f are given. We assume
that the kernel b : (0,∞) → R is nonnegative, nonincreasing,
convex and singular.

Making use of energy estimates and the theory of maximal
monotone operators, we prove the global existence of a mild
solution.

1. Introduction. We consider the equation

(1.1)
ut(t, x) =

∫ t

0

b(t − s)g(ux(s, x))x ds + f(t, x);

t > 0, 0 ≤ x ≤ 1,

with the boundary and initial conditions

u(t, 0) = u(t, 1) = 0; t > 0,

u(0, x) = u0(x); 0 ≤ x ≤ 1.

Here u is the unknown and the kernel b, the nonlinear function g,
the forcing function f , and the initial data u0 are given. Under
certain assumptions, the equation (1.1) models the behavior of a thin
viscoelastic body (see [8, 11, 15]).

We study the equation (1.1) with a singular kernel, that is, we assume
that b ∈ L1

loc([0,∞)) and that limt→0+ b(t) = ∞. While the singularity
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of the kernel should make solutions smoother, it also makes the analysis
of the equation harder. One of the major research interests in this
field is to prove the existence of a global strong solution to (1.1) with
arbitrary initial data.

So far this has been achieved only partially: one has to assume that
the kernel is more singular at 0 than for example t−1/2 (see [6]), or
t−2/3 (see [4]). These are only technical restrictions that do not have
any physical meaning and it is reasonable to expect that a strong
solution exists for a general singular kernel. As a step towards the
above mentioned goal we prove the existence of a global mild solution
with arbitrary initial data.

The method of proof is based on two regularized versions of the origi-
nal equation and energy estimates. The primary regularized equation is
obtained by adding a viscosity term to the original equation (1.1). The
energy estimates for the primary regularized equation are established
via the secondary regularized equation that has a smoother kernel in
addition to the viscosity term. A sequence of solutions of the primary
regularized equation is shown to converge to a solution of the equation
(1.1). The theory of maximal monotone operators is applied to handle
the nonlinearity and weak convergence.

2. Theorem and comments. We now give the assumptions
and our result followed by some comments on the earlier work and the
notation.

We assume that the kernel b satisfies

i) b ∈ L1
loc([0,∞)),

ii) b is nonnegative, nonincreasing, and convex, and

(iii)
∫ δ

0
b′(s) ds = −∞, for δ > 0.

For the nonlinear function g ∈ C1(−∞,∞), we require that g(0) = 0,
and that there are constants α and β such that 0 < α ≤ g′(t) ≤ β < ∞,
for all t ∈ R. Moreover, we assume that the forcing function f and the
initial value u0 satisfy

f ∈ W 1,2
loc ([0,∞); L2(0, 1)),

u0 ∈ W 2,2
0 (0, 1),

respectively.
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Then the following holds.

Theorem. Let b, g, f , and u0 be as above. Then there exists a
function u such that

u ∈ L∞
loc([0,∞); W 1,2

0 (0, 1)) ∩ W 1,∞
loc ([0,∞); L2(0, 1)),

g(ux)x ∈ L∞
loc([0,∞); W−1,2(0, 1)),

b ∗ g(ux)x ∈ L∞
loc([0,∞); L2(0, 1)),

and the equation (1.1) holds for almost every t ∈ (0,∞). Moreover, u
is weakly continuous on [0,∞) with values in W 1,2

0 (0, 1) and the initial
condition is attained in this sense.

We say that the function u given by the theorem is a mild solution
because g(ux)x has its values in W−1,2(0, 1), which is a space of
distributions.

This is an extension of an earlier result by Londen (see [14]). He
assumes that the kernel is more singular than t−1/2 and then proves
the existence of a solution u that satisfies

u ∈ L∞(0, T ; W 1,2
0 (0, 1)) ∩ C([0, T ]; L2(0, 1)),

g(ux)x ∈ L∞(0, T ; W−1,2(0, 1)),

and

u(t) − u0 =
∫ t

0

b(t − τ )
∫ τ

0

g(ux(s))x ds dτ

+
∫ t

0

f(τ ) dτ,

for t ∈ [0, T ], where T appears in a condition for the kernel b. That is,
the equation holds in a weaker sense.

As we mentioned earlier, Gripenberg proves in [6] that if the kernel
is more singular than t−1/2, then there exists a function u such that

u ∈ W 1,∞
loc ([0,∞); L2(0, 1)) ∩ L2

loc([0,∞); W 2,2
0 (0, 1))

and the equation (1.1) holds. In particular, g(ux)x ∈ L2
loc([0,∞);

L2(0, 1)), so that the function u is a strong solution.
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Finally, we introduce some notation. The duality between W 1,2
0 (0, 1)

and W−1,2(0, 1) as well as the innerproduct on L2(0, 1) is denoted by
〈·, ·〉. The corresponding norms are denoted by ‖ · ‖1, ‖ · ‖−1 and ‖ · ‖0.
Let E be one of the above mentioned Hilbert spaces. For T > 0 and
1 ≤ p ≤ ∞, we define

W 1,p(0, T ; E) =
{

ϕ ∈ AC([0, T ]; E) :
d

dt
ϕ ∈ Lp(0, T ; E)

}
.

3. On the regularized equations and their solutions. The
primary and secondary regularized equations are

(3.1)
uε

t (t, x) =
∫ t

0

b(t − s)g(uε
x(s, x))x ds + εuε

xx(t, x) + f(t, x),

uε(t, 0) = uε(t, 1) = 0, uε(0, x) = u0(x),

and
(3.2)

uε,n
t (t, x) =

∫ t

0

bn(t − s)g(uε,n
x (s, x))x ds + εuε,n

xx (t, x) + fn(t, x),

uε,n(t, 0) = uε,n(t, 1) = 0, uε,n(0, x) = un
0 (x),

respectively. The viscosity terms εuε
xx and εuε,n

xx , where ε > 0 allow us
to treat (3.1) and (3.2) like perturbed linear diffusion equations.

The kernels bn, n = 1, 2, 3 . . . , whose construction is described in
Appendix B, satisfy

bn ∈ C2([0,∞)) ∀n,

(−1)ib(i)
n ≥ 0; i = 0, 1, 2, ∀n,

bn → b in L1
loc([0,∞)), as n → ∞,

bn → b in Cloc((0,∞)), as n → ∞,
b′n → b′ in L1

loc((0,∞)), as n → ∞ and
bn ≤ b + 1 ∀n.

The sequence of the approximating forcing functions fn ∈ W 1,2
loc ([0,∞);

L2(0, 1)) is defined as follows:

fn = f + (fn
0 − f(0)),
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where the functions fn
0 ∈ W 1,2

0 (0, 1) are chosen so that ‖fn
0 −f(0)‖0 →

0, as n → ∞.

Finally, the approximating initial functions un
0 ∈ W 3,2

0 (0, 1) are
chosen so that

‖u0 − un
0‖W 2,2

0 (0,1) → 0,

as n tends to infinity.

To simplify the notation, we define

G : W 1,2
0 (0, 1) → [0,∞); G(ϕ) =

∫ 1

0

∫ ϕx(x)

0

g(τ ) dτ dx.

Then g(ϕx)x = ∂G(ϕ), where ∂ is the subdifferential operator.

We have the following basic result.

Lemma 3.1. For every T > 0, the problems (3.1) and (3.2) have
unique solutions uε, uε,n ∈ W 1,2(0, T ; L2(0, 1)) such that uε(t), uε,n(t) ∈
W 1,2

0 (0, 1)∩W 2,2(0, 1) and the equations are satisfied for almost every
t ∈ (0, T ). Moreover,

sup
0≤t≤T

‖uε(t)‖1, sup
0≤t≤T

‖uε,n(t)‖1 < ∞,

uε
xx, g(uε

x)x, uε,n
xx , g(uε,n

x )x ∈ L2(0, T ; L2(0, 1)),
G(uε), G(uε,n) ∈ AC([0, T ]),

and for all ε > 0,

sup
n

∫ T

0

‖g(uε,n
x (t))x‖2

0 dt < ∞.

The proof of the existence of solutions uses Yosida approximations
and the theory of maximal monotone operators and is similar to the
proof of Lemma 1 from [13] (see also Corollary 2.1 in [3]). The proof of
the uniqueness of the solutions is straightforward. A detailed version
of the proof of Lemma 3.1 can be found in [10].

To establish some estimates for the solution of the primary regularized
equation (3.1) we would like to be able to differentiate the secondary
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regularized equation (3.2) with respect to time. Lemma 3.1 does not
guarantee enough regularity for this and hence we need an additional
regularity result.

Lemma 3.2. The solution uε,n of the secondary regularized equation
(3.2) satisfies uε,n

t , uε,n
xx ∈ W 1,2(0, T ; L2(0, 1)), uε,n

t (t) ∈ W 1,2
0 (0, 1) ∩

W 2,2(0, 1), and

uε,n
tt (t) − εuε,n

xxt(t) =
d

dt

∫ t

0

bn(t − s)g(uε,n
x (s))x ds + fn

t (t)

for almost every t ∈ [0, T ].

Outline of the proof. By differentiating the equation (3.2) formally
with respect to t and defining v = uε,n

t we obtain the equation

vt(t) − εvxx(t) =
d

dt

∫ t

0

bn(t − s)g(uε,n
x (s))x ds + fn

t (t)

with the initial condition

v(0) = εun
0,xx + fn

0 ∈ W 1,2
0 (0, 1).

We can apply [2, Théorème 3.6] to prove the existence of a solution to
this problem. It is easy to see that

w(t) =
∫ t

0

v(τ ) dτ − (uε,n(t) − un
0 )

satisfies wt = εwxx with w(0) = 0. Hence w = 0 and

uε,n(t) = un
0 +

∫ t

0

v(τ ) dτ

which leads to the desired conclusion. The complete proof of this lemma
is given in [10].

Next we present an important lemma that allows us to derive energy
estimates for the solutions of the primary regularized equation from the
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energy estimates of the solutions of the secondary regularized equation.
More precisely, we prove that the solution of the secondary regularized
equation converges to the solution of the primary regularized equation
as the smoother kernels tend to the original kernel.

Lemma 3.3. Let ε > 0. If uε and uε,n are the solutions of the
equations (3.1) and (3.2), respectively, then sup0≤t≤T ‖uε(t)−uε,n(t)‖0,
‖uε − uε,n‖L2(0,T ;W 1,2

0 (0,1)), ‖g(uε
x) − g(uε,n

x )‖L2(0,T ;L2(0,1)) → 0, as
n → ∞.

Outline of the proof. We subtract the equation (3.2) from the
equation (3.1) and obtain

uε
t (t) − uε,n

t (t) −
∫ t

0

b(t − s)[g(uε
x(s))x − g(uε,n

x (s))x] ds

−
∫ t

0

[b(t − s) − bn(t − s)]g(uε,n
x (s))x ds−ε[uε

xx(t) − uε,n
xx (t)]

= f(t) − fn(t).

By manipulating the previous equation and choosing T̂ ∈ (0, T ] to be
small enough one can show that for t ∈ [0, T̂ ]

1
2
‖uε(t) − uε,n(t)‖2

0 +
ε

2
‖uε − uε,n‖2

L2(0,t;W 1,2
0 (0,1))

≤ An‖uε − uε,n‖L2(0,t;L2(0,1)) +
1
2
‖u0 − un

0‖2
0,

where {An}n is a sequence of positive constants that converges to zero
due to the convergence of approximating kernels and forcing functions.
It then follows that the lemma holds on the interval [0, T̂ ] and it is easy
to extend this result to the interval [0, T ] and complete the proof of the
lemma. A detailed version of this proof can be found in [10].

4. Proof of the theorem. We first derive uniform bounds for
the solutions of the primary regularized equation and then use the
weak compactness of the spaces involved to extract weakly convergent
subsequences of solutions. We finish the proof by proving a strong
convergence result and applying the theory of maximal monotone
operators to the nonlinear convolution term.
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The uniform boundedness results are given in three lemmas. In all
cases, the main idea is to first establish bounds for the solutions of the
secondary regularized equation, which is easier to manipulate due to
the smoothness of the kernel, and then use the convergence results of
Lemma 3.3 to derive bounds for the solutions of the primary regularized
equation. Three crucial technical lemmas are presented in Appendix
A.

Lemma 4.1. Let uε and uε,n be the solutions of the regularized
equations (3.1) and (3.2), respectively, on the interval [0, T ]. Then

sup
n,ε>0,0≤t≤T

‖uε,n(t)‖1 < ∞,(4.1)

sup
n,ε>0,0≤t≤T

∥∥∥∥
∫ t

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
0

< ∞,(4.2)

sup
n,ε>0

ε

∫ T

0

‖g(uε,n
x (τ ))x‖2

0 dτ < ∞,(4.3)

and

sup
ε>0,0≤t≤T

‖uε(t)‖1 < ∞,(4.4)

sup
ε>0,0≤t≤T

∥∥∥∥
∫ t

0

g(uε
x(τ ))x dτ

∥∥∥∥
0

< ∞,(4.5)

sup
ε>0

ε

∫ T

0

‖g(uε
x(τ ))x‖2

0 dτ < ∞.(4.6)

Proof. Let t ∈ [0, T ]. Form the scalar product of (3.2) and −g(uε,n
x )x

and integrate over (0, t). With [2, Lemme 3.3], this yields

G(uε,n(t)) + ε

∫ t

0

〈uε,n
xx (τ ), g′(uε,n

x (τ ))uε,n
xx (τ )〉 dτ

+
∫ t

0

〈
g(uε,n

x (τ ))x,

∫ τ

0

bn(τ − s)g(uε,n
x (s))x ds

〉
dτ

= G(un
0 ) +

∫ t

0

〈fn(τ ),−g(uε,n
x (τ ))x〉 dτ.
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Next, we use the relation (3.26) of [12] on the convolution term and
integrate the last term on the righthand side by parts. After some
straightforward estimates we obtain

(4.7)
1
2
α‖uε,n(t)‖2

1 +
ε

β

∫ t

0

‖g(uε,n
x (τ ))x‖2

0 dτ

+
bn(t)

2

∥∥∥∥
∫ t

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
2

0

− 1
2

∫ t

0

b′n(τ )
∥∥∥∥

∫ τ

0

g(uε,n
x (s))x ds

∥∥∥∥
2

0

dτ

− 1
2

∫ t

0

b′n(t − τ )
∥∥∥∥

∫ t

τ

g(uε,n
x (s))x ds

∥∥∥∥2

0

dτ

+
1
2

∫ t

0

∫ τ

0

b′′n(τ − s)
∥∥∥∥

∫ τ

s

g(uε,n
x (v))x dv

∥∥∥∥2

0

ds dτ

≤ 1
2
β‖un

0‖2
1 + ‖fn(t)‖0

∥∥∥∥
∫ t

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
0

+ max
0≤s≤t

∥∥∥∥
∫ s

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
0

∫ t

0

‖fn
t (τ )‖ dτ.

Note that all the terms on the lefthand side are positive.

Let T̂ > 0 be such that c = inf{bn(t) : n > 0, 0 ≤ t ≤ T̂} > 0. By
continuity there exists a t∗ = t∗(ε, n) ∈ [0, T̂ ] such that

∥∥∥∥
∫ t∗

0

g(uε,n
x (s))x ds

∥∥∥∥
0

= max
0≤τ≤T̂

∥∥∥∥
∫ τ

0

g(uε,n
x (s))xs

∥∥∥∥
0

.

Hence (4.7) with t = t∗ leads to

c

2

∥∥∥∥
∫ t∗

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
2

0

≤ bn(t∗)
2

∥∥∥∥
∫ t∗

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
2

0

≤ A

∥∥∥∥
∫ t∗

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
0

+ B,

where the constants A and B are finite, since the forcing functions fn

and the initial values un
0 converge. Thus it follows from the previous
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inequality that

K = sup
ε>0,n,0≤t≤T̂

∥∥∥∥
∫ t

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
0

≤ sup
ε>0,n

∥∥∥∥
∫ t∗

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
0

< ∞.

Consequently,

sup
ε>0,n

ε

∫ T

0

‖g(uε,n
x (τ ))x‖2

0 dτ < ∞,

and
sup

ε>0,n,0≤t≤T̂

‖uε,n(t)‖1 < ∞.

We use the previously obtained bounds as a starting point to obtain
bounds valid on the whole interval [0, T ]. Write z(t) = g(uε,n

x (t))x and
consider the inequality (4.7) for t > T̂ . In particular, using only the
fifth term on the lefthand side, we have for all 0 ≤ δ ≤ T̂∫ t−δ

0

(−b′n)(t − τ )
∥∥∥∥

∫ t

0

z(σ) dσ −
∫ τ

0

z(σ) dσ

∥∥∥∥
2

0

dτ

≤ A

∥∥∥∥
∫ t

0

z(σ)dσ

∥∥∥∥
0

+ B.

After applying the Triangle Inequality and rearranging the terms, we
have

(4.8)
( ∫ t−δ

0

(−b′n)(t − τ ) dτ

)∥∥∥∥
∫ t

0

z(σ)dσ

∥∥∥∥
2

0

≤
(

A + 2
∫ t−δ

0

(−b′n)(t − τ )
∥∥∥∥

∫ τ

0

z(σ) dσ

∥∥∥∥
0

dτ

)∥∥∥∥
∫ t

0

z(σ) dσ

∥∥∥∥
0

+
∫ t−δ

0

(−b′n)(t − τ )
∥∥∥∥

∫ τ

0

z(σ) dσ

∥∥∥∥
2

0

dτ + B.

Now ∫ t−δ

0

(−b′n)(t − τ ) dτ = bn(δ) − bn(t) ≥ bn(δ) − bn(T̂ ),
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where the inequality follows from the fact that bn is nonincreasing. By
using the singularity of b and the convergence of the sequence {bn}n it
is easy to see that we can choose a δ∗ ∈ (0, T̂ ) and N so that

c = inf
t≥T̂ ,n≥N

∫ t−δ∗

0

(−b′n)(t − τ ) dτ > 0.

We also define

C = b(δ∗) + 1 ≥ bn(δ∗) ≥
∫ t−δ∗

0

(−b′n)(t − τ ) dτ.

Then it follows from the inequality (4.8) with δ = δ∗ that for t ∈
[0, T̂ + δ∗]

∥∥∥∥
∫ t

0

z(σ) dσ

∥∥∥∥
2

0

≤ 1
c

(A + 2KC)
∥∥∥∥

∫ t

0

z(σ) dσ

∥∥∥∥
0

+
1
c

(
B + CK2

)
.

Thus

sup
ε>0,0≤t≤T̂+δ∗,n

∥∥∥∥
∫ t

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
0

< ∞,

and it is easy to see that we can continue in the same way so that we
finally have

(4.9) sup
ε>0,0≤t≤T,n

∥∥∥∥
∫ t

0

g(uε,n
x (τ ))x dτ

∥∥∥∥
0

< ∞.

By using the previous estimate in the inequality (4.7), we obtain

sup
ε>0,n

ε

∫ T

0

‖g(uε,n
x (τ ))x‖2

0 dτ < ∞,

and
sup

ε>0,0≤t≤T,n
‖uε,n(t)‖1 < ∞.

This completes the proof of the first part of the Lemma.
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By (4.9) and Lemma 3.3, for each t ∈ [0, T ], there exists a subsequence
{uε,n}n such that

∫ t

0

g(uε,n
x (τ ))x dτ ⇀

∫ t

0

g(uε
x(τ ))x dτ, weakly in L2(0, 1),

as n → ∞. Then it follows from (4.9) that

(4.10) sup
ε>0,0≤t≤T

∥∥∥∥
∫ t

0

g(uε
x(τ ))x dτ

∥∥∥∥
0

< ∞.

From (3.1) we obtain

G(uε(t)) + ε

∫ t

0

〈uε
xx(τ ), g′(uε

x(τ ))uε
xx(τ )〉 dτ

+
∫ t

0

〈
− g(uε

x(τ ))x,

∫ τ

0

b(τ − s)(−g(uε
x(s))x) ds

〉
dτ

= G(u0) +
〈
f(t),

∫ t

0

−g(uε
x(s))x ds

〉

−
∫ t

0

〈
ft(τ ),

∫ τ

0

−g(uε
x(s))x ds

〉
dτ.

Since b is of positive type, the term containing the convolution is pos-
itive (see Chapter 16 of [7]). Thus, using (4.10) and some straightfor-
ward estimates, we get

1
2
α‖uε(t)‖2

1 +
ε

β

∫ t

0

‖g(uε
x(τ ))x‖2

0 dτ ≤ 1
2
β‖u0‖2

1 + C,

where the constant C is determined by f and (4.10). Thus,

sup
ε>0,0≤t≤T

‖uε(t)‖1 < ∞,

and

sup
ε>0

ε

∫ T

0

‖g(uε
x(τ ))x‖2

0 dτ < ∞.

This completes the proof of Lemma 4.1.
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Lemma 4.2. Let uε and uε,n be the solutions of the regularized
equations (3.1) and (3.2), respectively, on the interval [0, T ]. Then

(4.11) sup
n,ε>0,0≤t≤T

‖un,ε
t (t)‖0 < ∞,

(4.12) sup
n,ε>0

ε

∫ T

0

‖uε,n
t (τ )‖2

1 dτ < ∞,

and

(4.13) sup
ε>0

‖uε
t‖L∞(0,T ;L2(0,1)) < ∞.

Proof. Differentiate the equation (3.2) with respect to t, form the
scalar product with uε,n

t , and integrate over (0, t). This yields

∫ t

0

〈uε,n
tt (τ ), uε,n

t (τ )〉 dτ − ε

∫ t

0

〈uε,n
xxt(τ ), uε,n

t (τ )〉 dτ

+
∫ t

0

〈 d

dτ

∫ τ

0

bn(τ − s)(−g(uε,n
x (s))x) ds, uε,n

t (τ )
〉

dτ

=
∫ t

0

〈fn
t (τ ), uε,n

t (τ )〉 dτ.

We wish to apply a result from Appendix A to the convolution term.
For this purpose, the term must be slightly manipulated. Write

g̃(uε,n(t)) = −g(uε,n
x (t))x + g(un

0,x)x,

so that∫ t

0

〈 d

dτ

∫ τ

0

bn(τ − s)(−g(uε,n
x (s)))x ds, uε,n

t (τ )
〉

dτ

=
∫ t

0

〈 d

dτ

∫ τ

0

bn(τ − s)g̃(uε,n(s)) ds, uε,n
t (τ )

〉
dτ

−
∫ t

0

〈 d

dτ

∫ τ

0

bn(τ − s)g(un
0,x)x ds, uε,n

t (τ )
〉

dτ.
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Now,∫ t

0

〈 d

dτ

∫ τ

0

bn(τ − s)g(un
0,x)x ds, uε,n

t (τ )
〉

dτ

≤
∫ t

0

bn(τ )β‖un
0,xx‖0‖uε,n

t (τ )‖0 dτ,

and Lemma A.1 (use H = L2(0, 1), ϕ(·) = G(·)−G(un
0 )+ 〈g(un

0,x)x, ·−
un

0 〉) gives∫ t

0

〈 d

dτ

∫ τ

0

bn(τ − s)g̃(uε,n(s)) ds, uε,n
t (τ )

〉
dτ ≥ 0.

Hence, for all t ∈ [0, T ],

1
2
‖uε,n

t (t)‖2
0 + ε

∫ t

0

‖uε,n
t (τ )‖2

1 dτ

≤ c1 +
∫ t

0

(c2 (b(τ ) + 1) + ‖ft(τ )‖0) ‖uε,n
t (τ )‖0 dτ,

where c1 and c2 are constants independent of ε and n. They are finite
due to the convergence of the initial values and the forcing functions.

With [2, Lemme A.5] we obtain from the previous inequality the
estimate

‖uε,n
t (t)‖0 ≤ c1 +

∫ t

0

(c2 (b(τ ) + 1) + ‖ft(τ )‖0) dt,

which holds for all t ∈ [0, T ]. Then

(4.14) sup
n,ε>0,0≤t≤T

‖un,ε
t (t)‖0 < ∞

and

sup
n,ε>0

ε

∫ T

0

‖un,ε
t (τ )‖2

1 dτ < ∞.

From (4.14) and Lemma 3.3 it follows that there is a subsequence
{uε,n}n such that

uε,n
t

∗
⇀ uε

t , weakly-∗ in L∞(0, T ; L2(0, 1)).



GLOBAL MILD SOLUTION 523

Then it is easy to show that

sup
ε>0

‖uε
t‖L∞(0,T ;L2(0,1)) < ∞,

which completes the proof of Lemma 4.2.

We now give an important result that allows us to prove a strong
convergence result.

Lemma 4.3. Let uε and uε,n be the solutions of the regularized
equations (3.1) and (3.2), respectively, on the interval [0, T ]. Then

(4.15) sup
0<ε<1,n

∫ T

0

∫ t

0

(−b′n)(t−s)‖g(uε,n
x (t))−g(uε,n

x (s))‖2
0 ds dt < ∞,

and

(4.16) sup
0<ε<1

∫ T

0

∫ t

0

(−b′)(t − s)‖g(uε
x(t)) − g(uε

x(s))‖2
0 ds dt < ∞.

Note that since b′ is not integrable at zero the latter inequality implies
that ‖g(uε

x(t)− g(uε
x(s)‖2

0 must be small (uniformly in ε) when t− s is
close to zero. Hence the estimate gives information about the continuity
of the limit of g(uε

x).

Proof. We differentiate the equation (3.2) with respect to t, form the
scalar product with uε,n and integrate over (0, T ). This yields, after a
partial integration,

(4.17)
∫ T

0

〈uε,n
tt (t), uε,n(t)〉 dt

+
∫ T

0

〈 d

dt

∫ t

0

bn(t − s)(−g(uε,n
x (s))x) ds, uε,n(t)

〉
dt

= −ε

∫ T

0

〈uε,n
x (t), uε,n

xt (t)〉 dt +
∫ T

0

〈uε,n(t), fn
t (t)〉 dt.
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To handle the convolution term, we apply Lemma A.2 with Auε,n =
−g(uε,n

x )x, ϕ(uε,n) =
∫ 1

0

∫ uε,n
x

0
g(τ ) dτ dx and integrate partially twice,

which results in∫ T

0

〈 d

dt

∫ t

0

bn(t − s)(−g(uε,n
x (s))x) ds, uε,n(t)

〉
dt

=
∫ T

0

bn(t)
∫ 1

0

∫ uε,n
x (t)

0

g(τ ) dτ dx dt

−
∫ T

0

bn(T − s)
∫ 1

0

∫ uε,n
x (s)

0

g(τ ) dτ dx ds

+
∫ T

0

bn(T − s)〈g(uε,n
x (s)), uε,n

x (s)〉 ds

−
∫ T

0

∫ t

0

b′n(t − s)
∫ 1

0

∫ uε,n
x (t)

0

g(τ ) dτ dx ds dt

+
∫ T

0

∫ t

0

b′n(t − s)
∫ 1

0

∫ uε,n
x (s)

0

g(τ ) dτ dx ds dt

+
∫ T

0

∫ t

0

b′n(t − s)〈g(uε,n
x (s)), uε,n

x (t) − uε,n
x (s)〉 ds dt.

By using this and combining terms we can rewrite the equation (4.17)
in the following way:∫ T

0

∫ t

0

(−b′n)(t − s)
∫ 1

0

∫ uε,n
x (t)

uε,n
x (s)

[g(τ ) − g(uε,n
x (s))] dτ dx ds dt

+
∫ T

0

bn(t)
∫ 1

0

∫ uε,n
x (t)

0

g(τ ) dτ dx dt

+
∫ T

0

bn(T − s)〈g(uε,n
x (s)), uε,n

x (s)〉 ds

=
∫ T

0

bn(T − s)
∫ 1

0

∫ uε,n
x (s)

0

g(τ ) dτ dx ds

− 〈uε,n(T ), uε,n
t (T )〉

+ 〈un
0 , εun

0,xx + fn
0 〉 +

∫ T

0

‖uε,n
t (t)‖2

0 dt

− ε

∫ T

0

〈uε,n
xt (t), uε,n

x (t)〉 dt +
∫ T

0

〈ft(t), uε,n(t)〉 dt.
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Note that the second and the third term on the lefthand side are
positive and that the righthand side is uniformly bounded in ε and
n by Lemma 4.1 and Lemma 4.2. Since∫ T

0

∫ t

0

(−b′n)(t − s)
∫ 1

0

∫ uε,n
x (t)

uε,n
x (s)

[g(τ ) − g(uε,n
x (s))] dτ dx ds dt

≥ 1
2β

∫ T

0

∫ t

0

(−b′n)(t − s)‖g(uε,n
x (t)) − g(uε,n

x (s))‖2
0 ds dt,

it then follows that

(4.18) sup
0<ε<1,n

∫ T

0

∫ t

0

(−b′n)(t−s)‖g(uε,n
x (t))−g(uε,n

x (s))‖2
0 ds dt < ∞.

Next, let τ ∈ (0, T ). We have

(4.19)
∫ T

τ

∫ t−τ

0

(−b′)(t − s)‖g(uε
x(t)) − g(uε

x(s))‖2
0 ds dt

≤ lim sup
n→∞

∫ T

τ

∫ t−τ

0

(−b′n)(t − s)‖g(uε
x(t)) − g(uε

x(s))‖2
0 ds dt

+ lim sup
n→∞

∣∣∣∣
∫ T

τ

∫ t−τ

0

[(−b′) − (−b′n)](t − s)‖g(uε
x(t))

− g(uε
x(s))‖2

0 ds dt

∣∣∣∣.
To investigate the first term on the righthand side of (4.19), use the
triangle inequality to get∫ T

τ

∫ t−τ

0

(−b′n)(t − s)‖g(uε
x(t)) − g(uε

x(s))‖2
0 ds dt

≤ 3
∫ T

τ

∫ t−τ

0

(−b′n)(t − s)‖g(uε
x(t)) − g(uε,n

x (t))‖2
0 ds dt

+ 3
∫ T

τ

∫ t−τ

0

(−b′n)(t − s)‖g(uε,n
x (t)) − g(uε,n

x (s))‖2
0 ds dt

+ 3
∫ T

τ

∫ t−τ

0

(−b′n)(t − s)‖g(uε,n
x (s)) − g(uε

x(s))‖2
0 ds dt

= I1 + I2 + I3.
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The sequence of approximating kernels is constructed so that for t−s ≥
τ > 0 there exist constants Cτ such that (−b′n)(t− s) ≤ (−b′n)(τ ) ≤ Cτ

uniformly in n. Thus by Lemma 3.3,

I1 ≤ 3TCτ

∫ T

0

‖g(uε
x(t)) − g(uε,n

x (t))‖2
0 dt → 0,

and

I3 ≤ 3TCτ

∫ T

0

‖g(uε,n
x (s)) − g(uε

x(s))‖2
0 ds → 0,

as n → ∞. By the estimate (4.18), sup0<τ<T,0<ε<1,n I2 < ∞, so that
the first term on the righthand side of (4.19) is uniformly bounded in
ε and τ .

By Lemma 4.1 and the L1 convergence of {b′n}n on compact subsets
of (0,∞), the second term on the righthand side of (4.19) vanishes for
every 0 < τ < T .

Hence the lefthand side of (4.19) is uniformly bounded in τ and ε and

sup
ε

( ∫ T

0

∫ t

0

(−b′)(t − s)‖g(uε
x(t)) − g(uε

x(s))‖2
0 ds dt

)

= sup
ε

(
lim
τ→0

∫ T

τ

∫ t−τ

0

(−b′)(t − s)‖g(uε
x(t)) − g(uε

x(s))‖2
0 ds dt

)
< ∞.

This completes the proof of Lemma 4.3.

We are now ready to finish the proof of the Theorem. By Lemma 4.1,
there exists a subsequence {uε}ε and functions u∗ ∈ L∞(0, T ; W 1,2

0 (0, 1))
and g∗ ∈ L∞(0, T ; L2(0, 1)) such that

(4.20) uε
x

∗
⇀ u∗

x, weakly-∗ in L∞(0, T ; L2(0, 1)),

and

(4.21) g(uε
x) ∗

⇀ g∗, weakly-∗ in L∞(0, T ; L2(0, 1)).

Moreover, by using Lemma 4.2, the compact imbedding W 1,2
0 (0, 1) ↪→

L2(0, 1), and the Arzela-Ascoli Theorem, it is easy to show that
u∗ ∈ W 1,∞(0, T ; L2(0, 1)) and that

(4.22) uε
t

∗
⇀ u∗

t , weakly-∗ in L∞(0, T ; L2(0, 1)).
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We now apply the method of proof of Theorem 1 from [5] to prove
a strong convergence result for the nonlinear term in the convolution
integral. Only an outline without the rather mechanical intermediate
steps is given below.

With the contraction semigroup {Js}s≥0 : L2(0, T ; L2(0, 1)) →
L2(0, T ; L2(0, 1)) given by

(Jsϕ)(t) =
{

ϕ(t + s), if 0 ≤ t ≤ T − s

0, if T − s < t ≤ T

we define

gε,h =
1
h

∫ h

0

Jsg(uε
x) ds

for h ∈ (0, 1]. The function g∗,h is defined in a similar way. We use
(4.5) to prove that

(4.23) sup
ε>0,0≤t≤T

‖gε,h(t)‖1 ≤ C/h,

where C is a constant. From (4.4) and (4.16) it follows that we
can apply Lemma A.3 and hence there exists a continuous function
ω : [0, T ] → [0,∞) such that ω(0) = 0 and

(4.24) sup
0<ε<1

‖Jsg(uε
x) − g(uε

x)‖L2(0,T ;L2(0,1)) ≤ ω(s).

A similar estimate can be proved for g∗. Now it is easy to show that

(4.25) ‖gε,h(t + τ ) − gε,h(t)‖2
0 ≤ 1

h
[ω(τ )]2,

uniformly in t and ε. For every fixed h, (4.23) and (4.25) together with
the Arzela-Ascoli Theorem guarantee the existence of a subsequence
gε,h such that

gε,h → g∗,h, strongly in C([0, T ]; L2(0, 1)),

as ε tends to zero. By using (4.24) and the corresponding estimate for
g∗ it can be shown that

sup
ε>0

‖gε,h − g(uε
x)‖2

L2(0,T ;L2(0,1)) , ‖g∗,h − g∗‖2
L2(0,T ;L2(0,1))

≤ 1
h

∫ h

0

[ω(s)]2 ds.



528 J. HEIKONEN

Hence

lim sup
ε→0

‖g(uε
x) − g∗‖L2(0,T ;L2(0,1))

≤ lim sup
ε→0

‖g(uε
x) − gε,h‖L2(0,T ;L2(0,1))

+ lim sup
ε→0

‖gε,h − g∗,h‖L2(0,T ;L2(0,1))

+ lim sup
ε→0

‖g∗,h − g∗‖L2(0,T ;L2(0,1))

≤ 2
(

1
h

∫ h

0

[ω(s)]2 ds

)1/2

.

Since the right-most side of the previous inequality can be made
arbitrarily small by letting h → 0+,

(4.26) g(uε
x) → g∗, strongly in L2(0, T ; L2(0, 1)).

A complete proof of this result can be found in [10].

From the strong convergence of g(uε
x) and the weak-∗ convergence of

uε
x it follows that

(4.27) lim sup
ε→0

(g(uε
x), uε

x)L2(0,T ;L2(0,1)) − (g∗, u∗
x)L2(0,T ;L2(0,1))

= lim sup
ε→0

(g(uε
x) − g∗, uε

x − u∗
x)L2(0,T ;L2(0,1))

≤ lim sup
ε→0

‖g(uε
x) − g∗‖L2(0,T ;L2(0,1))‖uε

x − u∗
x‖L2(0,T ;L2(0,1))

= 0.

Since the function g is maximal monotone in L2(0, 1), it defines a
maximal monotone operator in L2(0, T ; L2(0, 1)) (see [9, Proposition
12]). We can then apply Proposition 2.5 from [2] with (4.27) to conclude
that

(4.28) g∗ = g(u∗
x).

Now we let ε tend to zero in the primary regularized equation. Since
L∞(0, T ; L2(0, 1)) is compactly imbedded in L2(0, T ; W−1,2(0, 1)), the
result (4.22) implies that

uε
t → u∗

t , strongly in L2(0, T ; W−1,2(0, 1)).
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By (4.26) and (4.28),
∫ t

0
b(t− s)g(uε

x(s))x ds → ∫ t

0
b(t− s)g(u∗

x(s))x ds,
strongly in L2(0, T ; W−1,2(0, 1)). From (4.6) it follows that

εuε
xx → 0, strongly in L2(0, T ; W−1,2(0, 1)).

Hence, by letting ε tend to zero in (3.1), we obtain

u∗
t (t) =

∫ t

0

b(t − s)g(u∗
x(s))x ds + f(t)

for almost every t ∈ (0, T ]. From u∗
t , f ∈ L∞(0, T ; L2(0, 1)) we

conclude that b ∗ g(u∗
x)x ∈ L∞(0, T ; L2(0, 1)). Clearly g(u∗

x)x ∈
L∞(0, T ; W−1,2(0, 1)). Finally, it is easy to show that u∗ is weakly
continuous with values in W 1,2

0 (0, 1) and the initial condition is attained
in this sense.

Having obtained a subsequence of approximating solutions that con-
verges to a solution on the interval [0, T ] we can select a further sub-
sequence that works on the interval [0, 2T ]. Continuing in this way
we finally get a solution that is valid on [0,∞) and has the properties
stated in the theorem.

Appendix

A. Auxiliary lemmas. Throughout this section we assume that H
is a Hilbert space and we denote the corresponding inner product by
〈·, ·〉.

The following lemma is an infinite dimensional version of Lemma
20.5.3 from [7].

Lemma A.1. Let T ′ > 0 and assume that a ∈ C2([0, T ′]) is such
that (−1)ia(i) ≥ 0 for i = 0, 1, 2. Let ϕ : H → [−∞,∞] be a proper,
l.s.c., and convex function and let A be the subdifferential of ϕ:

A = ∂ϕ.

Assume that the function u satisfies u ∈ W 1,2(0, T ′; H), u(t) ∈ D(A)
for almost every t ∈ [0, T ′], and Au ∈ L2(0, T ′; H). Moreover, assume
that

ϕ(u(0)) = 0, ϕ(u(t)) ≥ 0 ∀ t ∈ [0, T ′].
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Then

∫ T

0

〈 d

dt

∫ t

0

a(t − s)Au(s) ds, u′(t)
〉

dt ≥ 0

for 0 ≤ T ≤ T ′.

Proof. By using [2, Lemme 3.3], it is easy to show that

(A.1)
∫ T

0

〈 d

dt

∫ t

0

a(t − s)Au(s) ds, u′(t)
〉

dt

= a(T )ϕ(u(T ))−
∫ T

0

a′(t)ϕ(u(t)) dt

−
∫ T

0

a′(T − s)ϕ(u(T )) ds

+
∫ T

0

a′(T − s)ϕ(u(s)) ds

+
∫ T

0

a′(T − s)〈Au(s), u(T )− u(s)〉 ds

+
∫ T

0

∫ t

0

a′′(t − s)ϕ(u(t)) ds dt

−
∫ T

0

∫ t

0

a′′(t − s)ϕ(u(s)) ds dt

−
∫ T

0

∫ t

0

a′′(t − s)〈Au(s), u(t)− u(s)〉 ds dt,

for 0 ≤ T ≤ T ′. It remains to show that the righthand side of (A.1)
is nonnegative. The first two terms on the righthand side of (A.1)
are nonnegative by the nonnegativity of ϕ(u) and the properties of the
function a. Furthermore, we employ the definition of the subdifferential
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and find out that

−
∫ T

0

a′(T − s)ϕ(u(T )) ds +
∫ T

0

a′(T − s)ϕ(u(s)) ds

+
∫ T

0

a′(T − s)〈Au(s), u(T )− u(s)〉 ds

=
∫ T

0

(−a′)(T − s)[−(ϕ(u(s))− ϕ(u(T ))

− 〈Au(s), u(s)− u(T )〉)] ds ≥ 0,

and

∫ T

0

∫ t

0

a′′(t − s)ϕ(u(t)) ds dt−
∫ T

0

∫ t

0

a′′(t − s)ϕ(u(s)) ds dt

−
∫ T

0

∫ t

0

a′′(t − s)〈Au(s), u(t)− u(s)〉 ds dt

=
∫ T

0

∫ t

0

a′′(t − s)[−(ϕ(u(s))− ϕ(u(t))

− 〈Au(s), u(s)− u(t)〉)] ds dt ≥ 0.

Hence the righthand side of (A.1) is nonnegative and the proof is
complete.

The following lemma is an infinite dimensional version of Lemma
20.5.1 from [7], and the proof is a trivial modification of the proof
presented there.

Lemma A.2. Let T ′ > 0 and a ∈ C1([0, T ′]). Let A : H ⊃ D(A) →
H and ϕ : H ⊃ D(ϕ) → [−∞,∞]. Assume that the function u satisfies

u ∈ L2(0, T ′; H),

u ∈ D(A) ∩ D(ϕ) for almost every t ∈ [0, T ′] and

Au ∈ L2(0, T ′; H), ϕ(u) ∈ L1(0, T ′).
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Then∫ T

0

〈 d

dt

∫ t

0

a(t − s)Au(s) ds, u(t)
〉

dt

=
∫ T

0

a(t)ϕ(u(t)) dt

−
∫ T

0

a(T − s)ϕ(u(s)) ds

+
∫ T

0

a(T − s)〈Au(s), u(s)〉 ds

−
∫ T

0

∫ t

0

a′(t − s)ϕ(u(t)) ds dt

+
∫ T

0

∫ t

0

a′(t − s)ϕ(u(s)) ds dt

+
∫ T

0

∫ t

0

a′(t − s)〈Au(s), u(t)− u(s)〉 ds dt

for 0 ≤ T ≤ T ′.

The following lemma is a further development of Lemma A.2 from
[5] applied to a special case.

Lemma A.3. Let {Js}s≥0 : L2(0, T ; H) → L2(0, T ; H) be the
translation semigroup defined by

(Jsϕ)(t) =
{

ϕ(t + s), if 0 ≤ t ≤ T − s

0, if T − s < t ≤ T

and let the nonnegative function a ∈ L1
loc((0, T ]; R) be such that

lim
α→0+

∫ T

α

a(τ ) dτ = ∞.

Assume that vε ∈ L2(0, T ; H) for ε > 0, and that the family {vε}ε>0

satisfies

(A.2) sup
ε>0

∫ T

0

a(s)‖Jsvε − vε‖2
L2(0,T ;H) ds < ∞,
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and

(A.3) sup
ε>0

‖vε‖L2(0,T ;H) < ∞.

Then there exists a nonnegative continuous function ω defined on [0, T ]
such that ω(0) = 0, and

sup
ε>0

‖Jsvε − vε‖L2(0,T ;H) ≤ ω(s)

for s ∈ [0, T ].

Outline of the proof. Let h > 0. Choose δ(h) ∈ (0, h) so that∫ h

δ(h)
a(τ ) dτ = 1/h, and define a function dh ∈ L1((0, T ); R) by

dh = hχ[δ(h),h]a, where χ[δ(h),h] is the characteristic function of the
interval [δ(h), h]. Note that 0 ≤ dh(s) ≤ ha(s) for all s ∈ (0, T ] and

(A.4)
∫ T

0

dh(τ ) dτ = h

∫ h

δ(h)

a(τ ) dτ = 1.

Let eh ∈ C∞
0 ((0, T ); R) be a nonnegative function such that

(A.5)
∫ T

0

|eh(τ ) − dh(τ )| dτ ≤
√

h

and define

vh
ε =

∫ T

0

eh(s)Jsvε ds ∈ L2(0, T ; H).

For any s ∈ [0, T ]

‖Jsvε − vε‖L2(0,T ;H) ≤ 2‖vh
ε − vε‖L2(0,T ;H) + ‖Jsv

h
ε − vh

ε ‖L2(0,T ;H),

where we used the fact that Js is a contraction semigroup. With (A.2)-
(A.5) and the contraction property of Js one can show that

‖vh
ε − vε‖2

L2(0,T ;H) ≤ Ch,
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where C is a constant independent of ε. Let A be the generator of the
semigroup Js. From the theory of semigroups it then follows that

‖Jsv
h
ε − vh

ε ‖L2(0,T ;H) ≤
∫ T

0

|e′h(τ )|‖JτA−1 (Jsvε − vε) ‖L2(0,T ;H) dτ,

where

A−1v = −
∫ T

t

v(τ ) dτ

for v ∈ L2(0, T ; H). Define C(h) = ‖e′h‖L∞(0,T ). Then

‖Jsv
h
ε − vh

ε ‖L2(0,T ;H) ≤ C(h)T‖A−1 (Jsvε − vε) ‖L2(0,T ;H)

≤ C(h)T
√

2sT‖vε‖L2(0,T ;H).

Thus we find that the lemma follows if we set

ω(s) = inf
h>0

(
2
√

Ch + C(h)T
√

2sT‖vε‖L2(0,T ;H)

)
.

B. Construction of the approximating kernels. Since b is
convex it is absolutely continuous on each closed subinterval of (0,∞)
and its right derivative b′+ is a nondecreasing right-continuous function.
The derivative exists everywhere except on a countable subset of (0,∞).

The approximating kernels bn : [0,∞) → R; n ≥ 1 are required to
satisfy:

bn ∈ C2([0,∞)) ∀n,(B.1)

(−1)ib(i)
n ≥ 0; i = 0, 1, 2 ∀n,(B.2)
bn → b in L1

loc([0,∞)), as n → ∞,(B.3)
bn → b in Cloc((0,∞)), as n → ∞,(B.4)
b′n → b′ in L1

loc((0,∞)), as n → ∞,(B.5)
bn ≤ b + 1 ∀n.(B.6)

The functions bn will be constructed by approximating b′+. Let
T > 0 be fixed and consider intervals [1/n, T

√
n] for n ≥ 1. By the

uniform continuity of b on [1/n, T
√

n], there exists a δn > 0 such that
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|b(t) − b(s)| ≤ 1/n if |s − t| ≤ δn. Let {tj} be a division of the interval
[1/n, T

√
n] and b̃n ∈ C2([1/n, T

√
n]) a nonnegative, nonincreasing and

convex function such that tj+1 − tj ≤ δn,
∫ T

√
n

1/n
|b′(s) − b̃′n(s)| ds =∫ T

√
n

1/n
|b′+(s)− b̃′n(s)| ds ≤ 1/n, and b̃n(tj) = b(tj). The function b̃′n can

be constructed by suitably smoothing a piecewise constant function
that approximates b′+ and b̃n is then obtained by integrating.

Since tj+1 − tj ≤ δn, one has suptj≤t≤tj+1
|b̃n(t) − b(t)| ≤ 1/n for all

j, so that

sup
1/n≤t≤T

√
n

|b̃n(t) − b(t)| ≤ 1/n.

Finally, let bn be an extension of b̃n to the interval [0,∞) such that
bn ∈ C2([0,∞)), bn is nonnegative, nonincreasing and convex and
bn ≤ b + 1. It is then easy to see that the sequence {bn}n satisfies
all the requirements (B.1) (B.6).
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