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PARABOLIC VOLTERRA INTEGRODIFFERENTIAL
EQUATIONS OF CONVOLUTION TYPE

GABRIELLA DI BLASIO

ABSTRACT. Linear abstract parabolic Volterra integrodif-
ferential equations of convolution type with L1 kernel are con-
sidered. Under suitable assumptions it is proved that strict
solutions exist and that many of the maximal regularity prop-
erties of the solutions of parabolic evolution equations are
inherited. The results are then applied to parabolic partial
integrodifferential equations.

1. Introduction. Let X be a Banach space, and let A : D(A) ⊂
X → X be the infinitesimal generator of an analytic semigroup S(t)
on X. Moreover, let B : D(B) ⊂ X → X be a linear operator with
domain D(B) ⊇ D(A). Given T > 0 we shall consider the following
initial value problem

(1.1)
u′(t) = Au(t) +

∫ t

0

k(t − s)Bu(s) ds + f(t), t ∈ ]0, T [

u(0) = x

where f and x are given. In this paper we do not assume that f is
continuous.

Problem (1.1) arises as an abstract version of parabolic partial inte-
grodifferential equations of the following kind:

(1.2)
ut(t, ξ) = Eu(t, ξ) +

∫ t

0

k(t − s)Lu(s, ξ) ds + f(t, ξ),

(t, ξ) ∈ ]0, T [ × Ω
u(0, ξ) = x(ξ), ξ ∈ Ω

with suitable boundary conditions. Here E is an elliptic operator in Ω
and L is a differential operator of order less than or equal to the order
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of E. Moreover, Ω is a bounded subset of Rn with regular boundary
∂Ω.

The main object of this paper is the existence of differentiable
solutions of problem (1.1) in the sense of L1. By this we mean a
function u ∈ W 1.1(0, T ; X) ∩ L1(0, T ; D(A)) satisfying (1.1). Under
the assumption k ∈ L1(]0, T [) we give existence results for solutions of
(1.1) and prove that they satisfy many of the regularity properties of
the solutions of the differential problem (see [5] and the Appendix)

(1.3)
u′(t) = Au(t) + f(t), t ∈ ]0, T [
u(0) = x

under the same assumptions on the data.

We use the following notation. X(θ) := (D(A), X)θ,1, θ ∈ ]0, 1[, are
the real interpolation spaces between D(A) and X, X(θ + 1) := {x ∈
D(A), Ax ∈ X(θ)}, X(0) denotes an intermediate space between D(A)
and X and W θ,1(0, T ; X) are the Sobolev spaces of fractional order (see
Section 2).

In particular in Section 4 we prove the following results.

If f belongs to a Sobolev space we prove that:

(A) Let f ∈ W θ,1(0, T ; X) for some θ ∈ ]0, 1[. Then if x ∈ X(θ) the
solution u of (1.1) satisfies

(i) u ∈ C(0, T ; X(θ)),

(ii) u′, Au ∈ W θ,1(0, T ; X),

(iii) u′ ∈ L1(0, T ; X(θ)).

We note that the assumption x ∈ X(θ) is also necessary in order to
get a solution satisfying (ii). This result proves that W θ,1(0, T ; X) is a
space of maximal regularity.

If f takes values in some interpolation space we will show that:

(B) Let f ∈ L1(0, T ; X(θ)) for some θ ∈ ]0, 1[. Then if x ∈ X(θ) the
solution u of (1.1) satisfies

(i) u ∈ C(0, T ; X(θ)),
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(ii) Au ∈ W θ,1(0, T ; X)

(iii) u′ ∈ L1(0, T ; X(θ)).

If in addition B : X(θ + 1) �→ X(θ) (for example if B = A) then

(iv) Au ∈ L1(0, T ; X(θ)).

Also in this case the assumption x ∈ X(θ) is necessary in order to
get (ii). Moreover, in case (iv) this result proves that L1(0, T ; X(θ)) is
a space of maximal regularity.

Finally, if k satisfies the additional assumption

(1.4)
∫ T

0

dt

∫ T

0

ds
|k(t) − k(s)|

|t − s| < +∞

then we can prove the following result:

(C) Let f satisfy the property∫ T

0

dt

∫ T

0

ds
||f(t) − f(s)||

|t − s| < +∞

then if x ∈ X(0) the solution u satisfies

(∗) u′, Au ∈ L1(0, T ; X).

Again we note that the assumption x ∈ X(0) is also necessary for
(∗).

For k = 0 assertion (C) gives an existence result for differentiable
solutions in L1 to problem (1.3) (see Theorem 7.6) which seems to be
new. This result is analogous to the one proved by Webb [16] for the
case u(0) = 0 and f of bounded variation.

Next we study in the case where B = A the following weak form of
problem (1.1):

(1.5)
u(t) = S(t)x + A

∫ t

0

S(t − s) ds

∫ s

0

k(s − σ)u(σ) dσ

+
∫ t

0

S(t − s)f(s) ds.
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When f ∈ L1(0, T ; X) and x ∈ X we prove that the solutions u of
(1.5) satisfy u ∈ W θ,1(0, T ; X) ∩ L1(0, T ; X(θ)), for each θ ∈ ]0, 1[. If,
in addition, (1.4) holds, then u ∈ C(0, T ; X).

Finally, in Section 6 we apply the above results to the partial inte-
grodifferential problem (1.2).

Problem (1.1) with noncontinuous f has been studied by various
authors under different assumptions on k, B and X.

Concerning maximal regularity results we refer to Clément and Da
Prato [3] who study (1.1) on the whole line, with B = A and a kernel
of monotone type, in the spaces W θ,p(0, T ; X) and Lp(0, T ; D(θ, p));
Di Blasio [6] considers (1.1) in the nonautonomous case in the spaces
Lp(0, T ; D(θ, p)), p > 1, under the assumptions D(B2) = D(A2) and
k ∈ Lp′

(]0, T [); in Lorenzi and Paparoni [9] (1.1) is studied in the spaces
W θ,p(0, T ; X) with k ∈ L1(]0, T [), p, q > 1; and, finally, Prüss and Sohr
[13] study (1.1) in the spaces Lp(0, T ; X) in the case where p > 1 and
X is ζ-convex.

Regularity results are obtained in [11] by Prüss who considers (1.1)
with the integral term

∫ t

0
k(t−s)Bu(s) ds replaced by

∫ t

0
dB(t−s)u(s),

where B(t) is a family of linear operators of bounded variation satis-
fying D(A) ⊆ D(B(t)). Given f in a suitable subspace of L1(0, T ; X),
denoted by Bα(0, T ; X), Prüss gives sufficient conditions to u(0) for
the existence of solutions u such that u′, Au ∈ Bα(0, T ; X). In [11] a
result similar to (C) is also proved in the case where u(0) = 0 and f is
of bounded variation.

Finally, we recall the recent monograph of Prüss [12] where maximal
regularity results for integral equations of parabolic type are obtained.
From these results it is possible to deduce assertion (ii) of (A) under
additional assumptions on f .

We refer to [12] and the references therein also for results for problem
(1.1) in the case where f is continuous which has not been considered
in this paper.

2. Notation. Let X be a Banach space with norm || · || and let
A : D(A) ⊆ X → X be the infinitesimal generator of an analytic
semigroup S(t). Without loss of generality we assume that 0 belongs
to the resolvent set of A. This can always be achieved by replacing A
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by A − αI, for suitable α. From this we have that there exist M and
ω > 0 such that for t > 0 and x ∈ X

(2.1) ||S(t)x|| ≤ Me−ωt||x||, t||AS(t)x|| ≤ Me−ωt||x||.

Moreover, D(A) is a Banach space under the norm

||x||D(A) = ||Ax||.

For θ ∈ [0, 1[ we denote by X(θ) the intermediate space between
D(A) and X defined as (see [2] for the case θ ∈ ]0, 1[ and [8] for the
case θ = 0).

(2.2) X(θ) =
{

x ∈ X : Hθ(x) :=
∫ +∞

0

σ−θ||AS(σ)x|| dσ < +∞
}

with norm
||x||θ = ||x|| + Hθ(x).

It is known that for θ ∈ ]0, 1[ the spaces X(θ) are real interpolation
spaces between X and D(A). We refer to [2] and [8] for a detailed
description of the properties of these spaces and to [14] for the case in
which A is the realization of the Laplace operator. Here we recall the
following inclusions which will be used throughout

D(A) ⊆ X(θ′) ⊆ X(θ) ⊆ X, 0 ≤ θ ≤ θ′ < 1.

We denote by X(θ + 1) the Banach space

X(θ + 1) = {x ∈ D(A) : Ax ∈ X(θ)}

with norm
||x||θ+1 = ||x|| + ||Ax||θ.

In what follows we shall be concerned with the following spaces of
functions u from an interval [0, b] into a Banach space Y .

i) L1(0, b; Y ) is the Banach space of integrable functions u on ]0, b[
with norm

||u||L1(0,b;Y ) =
∫ b

0

||u(t)||Y dt



484 G. DI BLASIO

ii) C(0, b; Y ) is the Banach space of continuous functions on [0, b]
with norm

||u||C(0,b;Y ) = sup
0≤t≤b

||u(t)||Y

iii) Wα,1(0, b; Y ), for α ∈ [0, 1[, is the Banach space of functions u
in L1(0, b; Y ) such that

Nα
1 (0, b; u) :=

∫ b

0

dt

∫ b

0

||u(t) − u(s)||Y
|t − s|α+1

ds < +∞

with norm

||u||W α,1(0,b;Y ) = ||u||L1(0,b;Y ) + Nα
1 (0, b; u).

For α ∈ ]0, 1[ it can be proved (for a proof see, e.g., [5]) that if
u ∈ Wα,1(0, b; Y ) then u(t)t−α ∈ L1(0, b; Y ) and we have

Nα
2 (0, b; u) :=

∫ b

0

t−α||u(t)||Y dt ≤ c(b)||u||W α,1(0,b;Y ).

Therefore if we denote by Ŵα,1(0, b; Y ) the space of functions u ∈
Wα,1(0, b; Y ) with norm

||u||
Ŵ α,1(0,b;Y )

= ||u||W α,1(0,b;Y ) + Nα
2 (0, b; u)

we have that Ŵα,1(0, b; Y ) � Wα,1(0, b; Y ) (α ∈ ]0, 1[).

iv) W 1,1(0, b; Y ) is the Banach space of functions u in L1(0, b; Y )
with their first distributional derivative u′ in L1(0, b; Y ) with norm

||u||W 1,1(0,b;Y ) = ||u||L1(0,b;Y ) + ||u′||L1(0,b;Y ).

3. Properties of the convolution operator. Let k ∈ L1(]0, T [)
for given T > 0. In what follows we denote by K : L1(0, T ; X) →
L1(0, T ; X) the operator defined as

(Ku)(t) = (k ∗ u)(t) :=
∫ t

0

k(t − s)u(s) ds.
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The following lemmas collect some properties of the operator K.

Lemma 3.1. Let u ∈ L1(0, b; X(θ)), with b ≤ T . Then Ku ∈
L1(0, b; X(θ)) and we have

(3.1) ||Ku||L1(0,b;X(θ)) ≤ |k|b||u||L1(0,b;X(θ))

where we have set

|k|b =
∫ b

0

|k(s)| ds.

Proof. Interchanging the order of integration, we have

||Ku||L1(0,b;X) ≤
∫ b

0

dt

∫ t

0

||k(t − s)u(s)|| ds ≤ |k|b||u||L1(0,b;X).

Moreover

||Hθ(Ku)||L1(0,b;X) =
∫ b

0

dt

∫ +∞

0

∥∥∥∥AS(σ)
∫ t

0

k(t − s)u(s) ds

∥∥∥∥dσ

σθ

≤ |k|b||u||L1(0,b;X(θ))

and the result follows.

Lemma 3.2. Let u ∈ Wα,1(0, b; X), with α ∈ ]0, 1[ and b ≤ T . Then
Ku ∈ Wα,1(0, b; X) and we have

(3.2) ||Ku||W α,1(0,b;X) ≤ 2|k|b[Nα
1 (0, b; u) + α−1Nα

2 (0, b; u)]

and

(3.3) Nα
2 (0, b; Ku) ≤ |k|bNα

2 (0, b; u).

Proof. Interchanging the order of integration we have

||Ku||L1(0,b;X) ≤
∫ b

0

dt

∫ t

0

||k(t − s)u(s)|| ds

≤ |k|b||u||L1(0,b;X).
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Moreover,

Nα
1 (0, b; Ku) =2

∫ b

0

dt

×
∫ t

0

ds

(t−s)α+1

∥∥∥∥
∫ t

0

k(σ)u(t−σ) dσ−
∫ s

0

k(σ)u(s−σ) dσ

∥∥∥∥
≤ 2

∫ b

0

dt

∫ t

0

ds

(t − s)α+1

∥∥∥∥
∫ s

0

k(σ)[u(t − σ) − u(s − σ)] dσ

∥∥∥∥
+ 2

∫ b

0

dt

∫ t

0

ds

(t − s)α+1

∥∥∥∥
∫ t

s

k(σ)u(t − σ) dσ

∥∥∥∥ =: I1 + I2.

Now
I1 ≤ |k|bNα

1 (0, b; u)

and

I2 ≤ 2α−1|k|b
∫ b

0

t−α||u(t)|| dt

and (3.2) follows.

Finally,

Nα
2 (0, b; Ku) =

∥∥∥∥
∫ b

0

k(s) ds

∫ t

s

u(t − s)t−α dt

≤ |k|bNα
2 (0, b; u),

and the proof is complete.

4. Solutions of the integrodifferential equation. We now
investigate sufficient conditions for the existence of solutions of the
problem

(4.1)
u′(t) = Au(t) +

∫ t

0

k(t − s)Bu(s) ds + f(t), t ∈ ]0, T [

u(0) = x

where A satisfies the assumptions of Section 2, k ∈ L1(]0, T [) and
B : D(B) ⊆ X → X is a linear operator with D(B) ⊇ D(A) satisfying,
for some β > 0,

(4.2) ||Bx|| ≤ β||Ax||, ∀x ∈ D(A).
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Given f ∈ L1(0, T ; X) we say that u is a strict solution of problem
(4.1) if Au, u′ ∈ L1(0, T ; X) and (4.1) is satisfied. It is easy to see that
if u is a strict solution of (4.1), then u verifies the integral equation

(4.3)
u(t) = S(t)x +

∫ t

0

S(t − s)(k ∗ Bu)(s) ds

+
∫ t

0

S(t − s)f(s) ds.

Conversely, if u ∈ L1(0, T ; D(A)) ∩ W 1,1(0, T ; X) and satisfies (4.3),
then u is a strict solution of (4.1). Therefore we study equation (4.3).
To this end we introduce the operator

(4.4) (Γu)(t) =
∫ t

0

S(t − s)(k ∗ Bu)(s) ds.

The following lemmas describe the properties of Γ.

Lemma 4.1. For each θ ∈ ]0, 1[ the operator Γ maps W θ,1(0, T ; D(A))
into itself and there exists c1 = c1(θ, T ) such that for each τ ≤ T

(i) ||Γu||W θ,1(0,τ ;D(A)) ≤ c1|k|τ [Nθ
1 (0, τ ; Au) + Nθ

2 (0, τ ; Au)]

and

(ii) Nθ
2 (0, τ ; AΓu) ≤ c1|k|τ [Nθ

1 (0, τ ; Au) + Nθ
2 (0, τ ; Au)].

Proof. Let u ∈ W θ,1(0, τ ; D(A)). From (4.2) we have that Bu ∈
W θ,1(0, τ ; X), so that by Lemma 3.2 we get k ∗ Bu ∈ W θ,1(0, T ; X).
Hence, using Lemma 7.5 (ii) we get AΓu ∈ W θ,1(0, T ; X) and assertion
(i). Let us prove (ii). We have

Nθ
2 (0, τ ; AΓu) ≤

∫ τ

0

dt t−θ

∥∥∥∥
∫ t

0

AS(t−s)[(k ∗ Bu)(s)−(k ∗ Bu)(t)] ds

∥∥∥∥
+

∫ τ

0

dt t−θ

∥∥∥∥
∫ t

0

AS(t−s)(k ∗ Bu)(t) ds

∥∥∥∥ =: J1 + J2.

Using (2.1), we get

J1 ≤ M

∫ τ

0

dt t−θ

∫ t

0

||(k ∗ Bu)(s) − (k ∗ Bu)(t)||(t − s)−1 ds

≤ MNθ
1 (0, τ ; (k ∗ Bu))
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and
J2 =

∫ τ

0

t−θ dt[S(t)(k ∗ Bu)(t) − (k ∗ Bu)(t)]

≤ (1 + M)Nθ
2 (0, τ ; (k ∗ Bu));

therefore, assertion (ii) follows from Lemma 3.2 and (4.2).

Lemma 4.2. Let B ∈ L (X(θ+1), X(θ)). Then the operator Γ maps
L1(0, T ; X(θ + 1)) into itself and there exists c2 = c2(θ, T ) such that
for each τ ≤ T

||Γu||L1(0,τ ;X(θ+1)) ≤ c2|k|τ ||u||L1(0,τ ;X(θ+1)).

Proof. Let u ∈ L1(0, T ; X(θ+1)). By assumption Bu ∈ L1(0, T ; X(θ))
so that by Lemma 3.1 we get k ∗ Bu ∈ L1(0, T ; X(θ)). Therefore, the
result follows from Lemma A.4 (ii).

Remark 4.3. The assumption B ∈ L (X(θ + 1), X(θ)) is obviously
verified in the case in which B = A.

We now investigate the properties of the operator Γ if the kernel
function k satisfies the additional assumption

(4.5) ||k||T :=
∫ T

0

dt

∫ T

0

ds
|k(t) − k(s)|

|t − s| < +∞.

For example, assumption (4.5) is satisfied if k is of bounded variation
on [0, T ]. Another example is the function k(t) = t−γ for γ ∈ ]0, 1[.

Then we have the following result.

Lemma 4.4. Let k also satisfy (4.5). Then if u ∈ L1(0, T ; D(A)) we
have Γu ∈ L1(0, T ; D(A)) and for each τ ≤ T ,

||Γu||L1(0,τ ;D(A)) ≤ (1 + M)β[|k|τ + ||k||τ ]||u||L1(0,τ ;D(A))

where β is given by (4.2).
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Proof. As

AΓu(t) = A

∫ t

0

S(t − s) ds

∫ s

0

k(s − σ)Bu(σ) dσ

we get

∫ τ

0

||AΓu(t)|| dt ≤
∫ τ

0

dt

∥∥∥∥
∫ t

0

ds

∫ s

0

AS(t − s)k(t − σ)Bu(σ) dσ

∥∥∥∥
+

∫ τ

0

dt

∫ t

0

ds

∫ s

0

dσ

× ||AS(t − s)[k(t − σ) − k(s − σ)]Bu(σ)||
=: I1 + I2.

Interchanging the order of integration and using (2.1)

I1 =
∫ τ

0

dt

∥∥∥∥
∫ t

0

dσ

∫ t

σ

dsAS(t − s)k(t − σ)Bu(σ)
∥∥∥∥

=
∫ τ

0

dt

∥∥∥∥
∫ t

0

[S(t − σ) − I]k(t − σ)Bu(σ) dσ

∥∥∥∥
≤ (1 + M)|k|τ ||Bu||L1(0,τ ;X)

and

I2 ≤ M

∫ τ

0

dt

∫ t

0

ds

∫ s

0

dσ
|k(t − σ) − k(s − σ)|

t − s
||Bu(σ)||

= M

∫ τ

0

dσ||Bu(σ)||
∫ τ

σ

dt

∫ t

σ

ds
|k(t − σ) − k(s − σ)|

t − s

≤ M ||k||τ ||Bu||L1(0,τ ;X).

Therefore

||ΓAu||L1(0,τ ;X) ≤ (1 + M)[|k|τ + ||k||τ ]||Bu||L1(0,τ ;X)

and hence the conclusion follows from (4.2).

We now turn to the problem of finding solutions of (4.1).
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The following result concerns the case in which f takes values in some
interpolation space.

Theorem 4.5. Let f ∈ L1(0, T ; X(θ)) for some θ ∈ ]0, 1[. Then if
x ∈ X(θ) there exists a unique strict solution u ∈ W θ,1(0, T ; D(A)) of
problem (4.1) and we have:

(i) u ∈ C(0, T ; X(θ))

(ii) u′ ∈ L1(0, T ; X(θ)),

(iii) Au ∈ W θ,1(0, T ; X).

Moreover, there exists c3 = c3(θ, T ) verifying

(iv) ||u||C(0,T ;X(θ)) ≤ c3[||x||θ + ||f ||L1(0,T ;X(θ))]

(v) ||u′||L1(0,T ;X(θ)) ≤ c3[||x||θ + ||f ||L1(0,T ;X(θ))]

(vi) ||Au||W θ,1(0,T ;X) ≤ c3[||x||θ + ||f ||L1(0,T ;X(θ))]

Proof. Set

u0(t) = S(t)x

and

u1(t) =
∫ t

0

S(t − s)f(s) ds.

If x ∈ X(θ) and f ∈ L1(0, T ; X(θ)) by Lemmas A.2 and A.4 (ii) of the
Appendix we have that Au0, Au1 ∈ W θ,1(0, T ; X). Moreover, there
exist a2 = a2(θ) and b2 = b2(θ, T ) verifying

||u0||W θ,1(0,τ ;D(A)) ≤ a2(θ)||x||θ
and

||u1||W θ,1(0,τ ;D(A)) ≤ b2(θ, T )||f ||L1(0,τ ;X(θ)).

Therefore using Lemma 4.1 we obtain that u0 + u1 + Γ maps
W θ,1(0, τ ; D(A)) into itself, for each τ ≤ T . Let us now prove that
there exists τ ≤ T such that u0 + u1 + Γ is a contraction with respect
to the norm

|| · ||
Ŵ θ,1(0,τ ;D(A))

= || · ||W θ,1(0,τ ;D(A)) + Nθ
2 (0, τ ; ·).
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As it has been recalled before, we have

|| · ||W θ,1(0,τ ;D(A)) � || · ||
Ŵ θ,1(0,τ ;D(A))

but the use of this latter space is more convenient in this context. From
Lemma 4.1 we have that if τ satisfies

γ1 := c1(θ, T )|k|τ (1 + θ−1) ≤ 1/2

then u0 + u1 + Γ is a contraction on Ŵ θ,1(0, τ ; D(A)). Consequently
there exists u ∈ Ŵ θ,1(0, τ ; D(A)) satisfying

u = u0 + u1 + Γu;

moreover, we have

(4.6) ||u||
Ŵ θ,1(0,τ ;D(A))

≤ 1
1 − γ1

[a2||x||θ + b2||f ||L1(0,τ ;X(θ))].

Now from Lemma A.5 (i) and (iii) we get Γu ∈ C(0, T ; X(θ)) and
(Γu)′ ∈ L1(0, τ ; X(θ)). Moreover, from Lemmas A.2 and A.4 (i) and (ii)
we have that u0, u1 ∈ C(0, T ; X(θ)) and u′

0, u
′
1 ∈ L1(0, τ ; X(θ)). Hence

u is a strict solution on [0, τ ] of problem (4.1) and satisfies assertions (i),
(ii) and (iii) on [0, τ ]. If τ < T we use standard continuation method
and consider the following equation for the function v(t) := u(t + τ )

(4.7)

v(t) = S(t + τ )x +
∫ t

0

S(t − s)(KBv)(s) ds

+
∫ t+τ

0

S(t + τ − s)(KBũ)(s) ds

+
∫ t+τ

0

S(t + τ − s)f(s) ds

where ũ(t) = u(t) if t ≤ τ and ũ(t) = 0 if t > τ . It is easy to see that
ũ ∈ W θ,1(0, T ; D(A)). Moreover, it can be seen that if a function w
belongs to W θ,1(0, T ; D(A)) then the function t �→ w(t + τ ) belongs to
W θ,1(0, τ ∧ (T − τ ); D(A)) and moreover

||w(· + τ )||W θ,1(0,τ∧(T−τ);D(A)) = ||w||W θ,1(τ,τ+τ∧(T−τ);D(A)).
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Therefore the functions t �→ u0(t + τ ), t �→ u1(t + τ ) and

t �→ u2(t + τ ) :=
∫ t+τ

0

S(t + τ − s)(KBũ)(s) ds

belong to W θ,1(0, τ ∧ (T − τ ); D(A)), and we have

||u0(· + τ )||W θ,1(0,τ∧(T−τ);D(A)) = ||u0||W θ,1(τ,τ+τ∧(T−τ);D(A))

(4.8)

||u1(· + τ )||W θ,1(0,τ∧(T−τ);D(A)) = ||u1||W θ,1(τ,τ+τ∧(T−τ);D(A))

(4.9)

and

(4.10) ||u2(· + τ )||W θ,1(0,τ∧(T−τ);D(A))

= ||u2||W θ,1(τ,τ+τ∧(T−τ);D(A))

≤ ||u2||W θ,1(0,τ+τ∧(T−τ);D(A))

≤ c1|k|τ+τ∧(T−τ)||u||W θ,1(0,τ ;D(A))

≤ c1|k|τ+τ∧(T−τ)
1

1 − γ1
[a2||x||θ + b2||f ||L1(0,τ ;X(θ))]

where we used Lemma 4.1 and (4.6).

Hence, by an argument similar to the one used above we can prove
that u0(·+ τ ) + u1(·+ τ ) + u2 + Γ is a contraction on Ŵ θ,1(0, τ ∧ (T −
τ ); D(A)). Consequently, we find that there exists v ∈ Ŵ θ,1(0, τ ∧ (T −
τ ); D(A)) which satisfies (4.7). Therefore, the function U(t) = u(t) if
t ∈ [0, τ ], and U(t) = v(t− τ ), if t ∈ [τ, τ + τ ∧ (T − τ )] satisfies (4.1) on
[0, τ + τ ∧ (T − τ )]. Moreover, using (4.6), (4.8), (4.9) and (4.10) we get
that U satisfies an estimate similar to (4.6) on [0, τ + τ ∧ (T − τ )].
Iterating this procedure we then obtain the existence of a unique
solution u ∈ W θ,1(0, T ; D(A)) of (4.1); moreover, u satisfies (i), (ii)
and (iii) and

||u||W θ,1(0,T ;D(A)) ≤ c3[||x||θ + ||f ||L1(0,T ;X(θ))].

Finally, assertion (iv) can be accomplished by using Lemma A.4.

If B preserves spatial regularity, then Theorem 4.5 can be improved
by the following.
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Theorem 4.6. Let f ∈ L1(0, T ; X(θ)), for some θ ∈ ]0, 1[. Assume
in addition that B ∈ L (X(θ + 1), X(θ)). Then if x ∈ X(θ) there exists
a unique strict solution u ∈ W θ,1(0, T ; D(A)) of problem (4.1) and we
have

(i) u ∈ C(0, T ; X(θ)),

(ii) u′, Au ∈ L1(0, T ; X(θ)),

(iii) Au ∈ W θ,1(0, T ; X).

Moreover, there exists c4 = c4(θ, T ) satisfying

(iv) ||u||C(0,T ;X(θ)) ≤ c4[||x||θ + ||f ||L1(0,T ;X(θ))]

(v) ||u′||L1(0,T ;X(θ)), ||Au||L1(0,T ;X(θ)) ≤ c4[||x||θ + ||f ||L1(0,T ;X(θ))]

(vi) ||Au||W θ,1(0,T ;X) ≤ c4[||x||θ + ||f ||L1(0,T ;X(θ))].

Proof. Let u0 and u1 be the functions introduced in the proof
of Theorem 4.5. By Lemmas A.2 and A.4 (ii) we get Au0, Au1 ∈
L1(0, T ; X(θ)). Hence by Lemma 4.2 we find that u0 + u1 + Γ maps
L1(0, T ; X(θ + 1)) into itself. Moreover, using Lemma 4.2 and a
fixed point argument we get that if τ is sufficiently small then there
exists u ∈ L1(0, τ ; X(θ + 1)) satisfying (4.3) on [0, τ ]. Furthermore,
using Lemma 5.1 and Lemmas A.2 and A.4 (iii), we get AΓu, Au0,
Au1 ∈ W θ,1(0, τ ; X) and hence u ∈ W θ,1(0, τ ; D(A)). If τ ≤ T
the result can be extended on [0.T ] by using the usual continuation
procedure. Finally the remaining assertions can be proved by using
Theorem 4.5.

The following result concerns the case where f belongs to a Sobolev
space.

Theorem 4.7. Let f ∈ W θ,1(0, T ; X) for some θ ∈ ]0, 1[. Then if
x ∈ X(θ) there exists a unique strict solution u ∈ W θ,1(0, T ; D(A)) of
problem (4.1) and we have

(i) u ∈ C(0, T ; X(θ)),

(ii) u′, Au ∈ W θ,1(0, T ; X),

(iii) u′ ∈ L1(0, T ; X(θ)).

Moreover, there exists c5 = c5(θ, T ) verifying
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(iv) ||u||C(0,T ;X(θ)) ≤ c5[||x||θ + ||f ||
Ŵ θ,1(0,T ;X)

]

(v) ||u′||W θ,1(0,T ;X), ||Au||W θ,1(0,T ;X) ≤ c5[||x||θ + ||f ||
Ŵ θ,1(0,T ;X)

]

(vi) ||u′||L1(0,T ;X(θ)) ≤ c5[||x||θ + ||f ||
Ŵ θ,1(0,T ;X)

].

Proof. Let u0 and u1 be the functions introduced in the proof of
Theorem 4.5. Then by a computation similar to the one used in
Theorem 4.5 we get the existence of a unique u ∈ W θ,1(0, T ; D(A))
satisfying u = u0 + u1 + Γu and

||u||W θ,1(0,T ;D(A)) ≤ c5[||x||θ + ||f ||
Ŵ θ,1(0,T ;X)

].

Furthermore, from Lemmas A.2 and A.5(i) we have that u0, u1, Γu ∈
C(0, T ; X(θ)) and that u′

0, Au0, u
′
1, Au1, (Γu)′ ∈ W θ,1(0, T ; X). Fi-

nally, from Lemmas A.2 and A.5 (iii) we get u′
0, Au0, u

′
1, Au1, (Γu)′ ∈

L1(0, T ; X(θ)). Therefore, u satisfies (i) (iv).

Remark 4.8. If f ∈ L1(0, T ; X(θ)) it follows from (4.3), Lemmas 3.2
and 7.4 that Au ∈ W θ,1(0, T ; X) only if x ∈ X(θ). Therefore, the
assumption x ∈ X(θ) is also necessary in Theorem 4.5. Similarly, if
f ∈ W θ,1(0, T ; X).

From Theorems 4.5, 4.6 and 4.7, we get the existence of a solution
u ∈ W θ,1(0, T ; D(A)). The following result concerns existence of strict
solutions.

Theorem 4.9. Let k satisfy (4.5). Let x ∈ X(0), and let f ∈
W 0,1(0, T ; X). Then there exists a unique strict solution of (4.1).
Moreover, there exists c6 satisfying

(i) ||u||L1(0,T ;D(A)) ≤ c6[||x||0 + ||f ||W 0,1(0,T,X)],

(ii) ||u||W 1,1(0,T,X) ≤ c6[||x||0 + ||f ||W 0,1(0,T,X)].

Proof. Let u be a strict solution of (4.1). Using Lemmas 4.4 and A.6,
we find that if τ satisfies

(4.11) γ2 := (1 + M)β[|k|τ + ||k||τ ] ≤ 1/2
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then
||Au||L1(0,τ ;X) ≤ 3M

1 − γ2
[||x||0 + ||f ||W 0,1(0,τ ;X)].

Therefore, if x = 0 and f = 0 we have u = 0, which implies uniqueness.

To prove existence, let {xn} ⊂ X(θ) and {fn} ⊂ W θ,1(0, T, X)
verifying xn → x in X(0) and fn → f in W 0,1(0, T, X). From Theorem
4.7 there exists vn ∈ W θ,1(0, T, D(A)) satisfying

v′n(t) = Avn(t) +
∫ t

0

k(t − s)Bvn(s) ds + fn(t), t ∈ ]0, T [

vn(0) = xn.

Moreover, using Lemma 4.4 and Theorem A.6, we find that if τ satisfies
(4.11), then

||Avn||L1(0,τ ;X) ≤ 3M

1 − γ2
[||xn||0 + ||fn||W 0,1(0,τ ;X)]

and

||Avn− Avm||L1(0,τ ;X) ≤ 3M

1− γ2
[||xn− xm||0 + ||fn− fm||W 0,1(0,τ ;X)].

Therefore we find that vn is Cauchy in L1(0, τ ; D(A)). Since A is closed
we have that there exists u ∈ L1(0, τ ; D(A)) such that

vn → u, in L1(0, τ ; D(A)).

Moreover,

||Au||L1(0,τ ;X) ≤ 3M

1 − γ2
[||x||0 + ||f ||W 0,1(0,τ ;X)].

This in turn implies that u ∈ W 1,1(0, τ ; X) and v′n → u′ in L1(0, τ ; X).
Therefore u is a strict solution of (4.1) on [0, τ ] that satisfies (i).

Finally, from (4.1) we obtain

||u′||L1(0,τ ;X) ≤ ||Au||L1(0,τ ;X)(1 − γ2) + ||f ||L1(0,T ;X)

≤ c6[||x||0 + ||f ||W 0,1(0,T,X)],

so that u satisfies (ii) on [0, τ ].
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If τ < T we can iterate this procedure and obtain the existence
of a function u ∈ L1(0, T ; D(A)) ∩ W 1,1(0, T ; X) satisfying (4.1) and
assertions (i) and (ii).

Remark 4.10. If f ∈ W 0,1(0, T ; X) it follows from Theorem A.6 and
Lemma 4.4 that if u ∈ L1(0, T ; D(A)) then x ∈ X(0). Therefore the
assumption x ∈ X(0) in Theorem 4.9 is also necessary.

5. Solutions of the integrodifferential equation in the case
B = A. We now study the existence of solutions of the following
problem

(5.1)
u′(t) = Au(t) +

∫ t

0

k(t−s)Au(s) ds + f(t), 0 < t < T

u(0) = x.

As before, a function u ∈ L1(0, T ; D(A))∩W 1,1(0, T ; X) which satisfies
(5.1) is called a strict solution of (5.1). It is easy to see that if u is a
strict solution of (5.1), then we have

(5.2) u(t) = S(t)x + A

∫ t

0

S(t − s)(Ku)(s) ds +
∫ t

0

S(t − s)f(s) ds.

Equation (5.2) will be called the mild form of (5.1). A function
u ∈ L1(0, T ; X) such that

t �→
∫ t

0

S(t − s)(Ku)(s) ds

belongs to L1(0, T ; D(A)) and that (5.2) is satisfied will be called a
mild solution of (5.1).

Existence results for strict solutions of (5.1) have been obtained in
Section 4; we now study the existence of mild solutions. To this end,
we introduce the operator

(5.3) (Γu)(t) = A

∫ t

0

S(t − s)(Ku)(s) ds.

The following results concern the properties of the operator Γ.
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Lemma 5.1. For each θ ∈ ]0, 1[, the operator Γ maps L1(0, T ; X(θ))
into itself, and for each τ ≤ T we have

||Γu||L1(0,τ ;X(θ)) ≤ b2|k|τ ||u||L1(0,τ ;X(θ))

where b2 = b2(θ, T ) is given by Lemma A.4.

Proof. Let u ∈ L1(0, T ; X(θ)). Then by Lemma 3.1 we have that
k ∗ u ∈ L1(0, T ; X(θ)). Moreover, by Lemma A.4 (ii) there exists
b2 = b2(θ, T ) verifying

||Γu||L1(0,τ ;X(θ)) ≤ b2||k ∗ u||L1(0,τ ;X(θ)).

Hence the conclusion follows from (3.1).

We now study the property of the operator Γ in the case where k
satisfies the additional assumption:

(5.4) ||k||T :=
∫ T

0

dt

∫ T

0

ds
|k(t) − k(s)|

|t − s| < +∞.

We have

Lemma 5.2. Let k also satisfy assumption (5.4). Then the operator
Γ maps C(0, T ; X) into itself and we have for each τ ≤ T

||Γu||C(0,τ ;X) ≤ (1 + M)[|k|τ + ||k||τ ]||u||C(0,τ ;X).

Proof. We have

||Γu(t)|| ≤
∥∥∥∥

∫ t

0

ds

∫ s

0

AS(t − s)k(t − σ)u(σ) dσ

∥∥∥∥
+

∫ t

0

ds

∫ s

0

dσ||AS(t − s)[k(t − σ) − k(s − σ)]u(σ)||
=: I1 + I2.
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Now

I1 =
∥∥∥∥

∫ t

0

dσ

∫ t

σ

dsAS(t − s)k(t − σ)u(σ)
∥∥∥∥

=
∥∥∥∥

∫ t

0

[S(t − σ) − I]k(t − σ)u(σ) dσ

∥∥∥∥
≤ (1 + M)|k|τ ||u||C(0,τ ;X)

and

I2 ≤ M

∫ t

0

ds

∫ s

0

dσ
|k(t − σ) − k(s − σ)|

t − s
||u(σ)||

= ||u||C(0,τ ;X)M

∫ t

0

ds

∫ s

0

dσ
|k(t − σ) − k(s − σ)|

t − s

≤ M ||k||τ ||u||C(0,τ ;X).

Therefore
||Γu|| ≤ (1 + M)[|k|τ + ||k||τ ]||u||C(0,τ ;X)

and the result is proved.

We are now able to prove the following existence result.

Theorem 5.3. For each x ∈ X and f ∈ L1(0, T ; X) there exists a
unique mild solution u ∈ L1(0, T ; X(α)) for some α ∈ ]0, 1[, of problem
(5.1). In addition, u ∈ L1(0, T ; X(θ))∩W θ,1(0, T ; X) for each θ ∈ ]0, 1[,
and there exists d1 = d1(θ, T ) satisfying

(i) ||u||L1(0,T ;X(θ)) ≤ d1[||x|| + ||f ||L1(0,T ;X)],

(ii) ||u||W θ,1(0,T ;X) ≤ d1[||x|| + ||f ||L1(0,T ;X)].

Proof. Let u ∈ L1(0, T ; X(α)) be a mild solution of (5.1). Using
Lemma 5.1 and Lemmas A.1 and A.3(i) we get that if τ satisfies

(5.5) b2|k|τ ≤ 1/2,

then

||u||L1(0,τ ;X(α)) ≤ a1 + b1

1 − b2|k|τ [||x|| + ||f ||L1(0,τ ;X)].
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Hence, if x = 0 and f = 0 we get u = 0 on [0, τ ], which implies
uniqueness.

To prove existence, let {xn} ⊂ D(A), {fn} ⊂ L1(0, T, D(A)), xn → x
in X and fn → f in L1(0, T, X). By virtue of Theorem 4.5 there exists
vn ∈ W θ,1(0, T, D(A)) satisfying

(5.6) vn(t) = S(t)xn+A

∫ t

0

S(t−s)(Kvn)(s) ds+
∫ t

0

S(t−s)fn(s) ds.

Moreover, using Lemma 5.1 and Lemmas A.1 and A.3(i) we get that if
τ satisfies (5.5) then

||vn||L1(0,τ ;X(θ)) ≤ a1 + b1

1 − b2|k|τ [||xn|| + ||fn||L1(0,τ ;X)]

and

||vn− vm||L1(0,τ ;X(θ)) ≤ a1 + b1

1 − b2|k|τ [||xn− xm|| + ||fn− fm||L1(0,τ ;X)].

Therefore, {vn} is Cauchy in L1(0, τ ; X(θ)) for each θ ∈ ]0, 1[. Conse-
quently, there exists u such that

vn → u in L1(0, τ ; X(θ))

and
||u||L1(0,τ ;X(θ)) ≤ a1 + b1

1 − b2|k|τ [||x|| + ||f ||L1(0,τ ;X)].

Furthermore, passing to the limit as n → ∞ in (5.6) and using the fact
that A is closed, we obtain that u is a solution of (5.2) on [0, τ ].

If τ < T we can iterate this procedure and obtain a solution u ∈
L1(0, T ; X(θ)) satisfying (i).

Finally, using Lemmas A.1 and A.3(ii) and Lemma A.4(iii) we find
that u ∈ W θ,1(0, T ; X) for each θ ∈ ]0, 1[. Using (5.2) and (i), we get

||u||W θ,1(0;X) ≤ a1||x|| + b1||f ||L1(0,T ;X) + b2|k|τ ||u||L1(0,T ;X(θ))

≤ const [||x|| + ||f ||L1(0,T ;X)]

so that u satisfies (ii).
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From Theorem 5.3 we have the following uniqueness result for strict
solutions.

Corollary 5.4. The strict solution of (5.1) is unique.

If k is assumed to be more regular we can prove the following.

Theorem 5.5. Let k also satisfy property (5.4). Then there exists a
unique mild solution u ∈ C(0, T ; X) of (5.1). Moreover, there exists d2

satisfying
||u||C(0,T ;X) ≤ d2[||x|| + ||f ||L1(0,T ;X)].

Proof. Let u ∈ C(0, T ; X) be a mild solution of (5.1). Using (2.1)
and Lemma 5.2 we find that if τ satisfies

(5.7) γ3 := (1 + M)[|k|τ + ||k||τ ] ≤ 1/2

then
||u||C(0,τ ;X) ≤ M

1 − γ3
[||x|| + ||f ||L1(0,τ ;X)].

Therefore if x = 0 and f = 0 we have u = 0 on [0, τ ], which implies
uniqueness. To prove existence we use a density argument similar to
the one used in the proof of Theorem 5.3.

6. Parabolic partial integrodifferential equations. Let Ω be a
bounded subset of Rn with C2 boundary ∂Ω, and let E be an elliptic
operator in Ω which, for simplicity in notation, we take of order 2

Eu =
n∑

i,j=1

(aij(ξ)uξi
)ξj

+
n∑

i=1

bi(ξ)uξi
+ c(ξ)u

where aij , bi and c are given functions satisfying the properties

aij ∈ C1(Ω); bi ∈ C(Ω).

Let L be a linear differential operator on Ω with suitable regular
coefficients, and let k ∈ L1(]0, T [).



CONVOLUTION TYPE EQUATIONS 501

We want to study the following problem

(6.1)

ut(t, ξ) = Eu(t, ξ) +
∫ t

0

k(t − s)Lu(s, ξ) ds + f(t, ξ),

(t, ξ) ∈ ]0, T [ × Ω
u(t, ξ) = 0, (t, ξ) ∈ ]0, T [ × ∂Ω
u(0, ξ) = x(ξ), ξ ∈ Ω.

It is well known that the realization of E with homogeneous Dirichlet
boundary conditions in the spaces C(Ω) or Lp(Ω), 1 ≤ p < ∞,
generates an analytic semigroup. Hence, using the results of the
preceding sections we can study (6.1) in these spaces. As an example,
we choose X = L1(Ω) since this case seems to be less studied in the
literature.

We introduce some notation. Let A be the operator defined by

D(A) = {u ∈ H1,1
0 (Ω) : Eu ∈ L1(Ω)}

Au = Eu

where Eu is understood in the sense of distributions. Then it is known,
see [1, 10, 15] that A generates an analytic semigroup on L1(Ω).
Moreover, we have the following characterization of the interpolation
spaces X(θ), θ ∈ ]0, 1[, defined by (2.2) (see [7])

(6.2) X(θ) =

⎧⎪⎨
⎪⎩

H2θ,1(Ω), if 2θ < 1
B1,1(Ω), if 2θ = 1
H2θ,1

0 (Ω), if 2θ > 1

where Hθ,1(Ω) are the Sobolev space of fractional order and B1,1(Ω) is
the Besov space.

If θ = 0 then we do not have a simple concrete characterization of
such spaces. We refer to [14] for the case E = Δ.

Finally, if the order of L is < 2, we denote by B the following operator

D(B) = {u ∈ L1(Ω) : Lu ∈ L1(Ω)}
Bu = Lu,
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whereas if L has order 2 we define

D(B) = {u ∈ H1,1
0 (Ω) : Lu ∈ L1(Ω)}

Bu = Lu.

In what follows, we assume that

(6.3) D(B) ⊇ D(A).

For example, assumption (4.2) is satisfied if the order of L is < 2 or if
L and E have the same principal part.

Using the results of Section 4 we get the following:

Theorem 6.1. Let f ∈ W θ,1(0, T ; L1(Ω)), for some θ ∈ ]0, 1[, and
let x ∈ X(θ), where X(θ) is defined by (6.2). Then the solution of (6.1)
satisfies

(i) u ∈ C(0, T : X(θ)),

(ii) ut, Eu ∈ W θ,1(0, T ; L1(Ω)),

(iii) ut ∈ L1(0, T ; X(θ)).

Proof. The results follow from Theorem 4.7.

If f is regular with respect to ξ, we have

Theorem 6.2. Let f ∈ L1(0, T ; X(θ)) and x ∈ X(θ) for some
θ ∈ ]0, 1[. Then the solution of (6.1) satisfies

(i) u ∈ C(0, T : X(θ)),

(ii) ut ∈ L1(0, T ; X(θ)),

(iii) Eu ∈ W θ,1(0, T ; L1(Ω))).

If, in addition, L = α(ξ)E, with α regular and α ≥ α0 > 0, then

(iv) Eu ∈ L1(0, T ; X(θ)).

Proof. Assertions (i), (ii) and (iii) follow from Theorem 4.5. Assertion
(iv) follows from Theorem 4.6 and from the fact that if u ∈ x(θ + 1),
then Bu = αEu ∈ X(θ) if α is regular.
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We now consider the case where k also satisfies

(6.4)
∫ T

0

dt

∫ t

0

|k(t) − k(s)|(t − s)−1 ds < +∞.

We have:

Theorem 6.3. Let k also satisfy (6.4), let x ∈ X(0) and∫ T

0

dt

∫ t

0

(t − s)−1 ds

∫
Ω

|f(t, ξ) − f(s, ξ)| dξ < +∞.

Then the solution of (6.1) satisfies ut, Eu ∈ L1(]0, T [ × Ω).

Proof. The result follows from Theorem 4.9.

Finally we consider the case L = E.

Theorem 6.4. Let f ∈ L1(]0, T [ × Ω), and let x ∈ L1(Ω). Then
there exists a function u ∈ L1(0, T ; X(θ))∩W θ,1(0, T ; L1(Ω)), for each
θ ∈ ]0, 1[, satisfying in the mild sense (6.1) with L = E. If, in addition,
k satisfies (6.4), then u ∈ C(0, T ; L1(Ω)).

Proof. The results follow from Theorems 5.3 and 5.5.

Appendix

In this section we recall the results for abstract parabolic equations
which have been used before.

Let A : D(A) ⊆ X → X be the infinitesimal generator of an analytic
semigroup S(t) in a Banach space X satisfying the assumptions of
Section 2. Given f ∈ L1(0, T ; X) and x ∈ X, we consider the following
problem

(A.1)
u′(t) = Au(t) + f(t), 0 < t < T

u(0) = x.

A function u is called a strict solution of problem (A.1) if u ∈
L1(0, T ; D(A)) ∩ W 1,1(0, T ; X) and we have u′(t) = Au(t) + f(t) for
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almost every t ∈ ]0, T [ and u(0) = x. It is known that if u is a strict
solution of (A.1), then for each t ∈ ]0, T [, we have

(A.2) u(t) = S(t)x +
∫ t

0

S(t − s)f(s) ds.

Conversely, if the function u given by (A.2) satisfies u ∈ L1(0, T ; D(A))
∩W 1,1(0, T ; X) then u is a strict solution of (A.1). As usual, we call
the function u given by (A.2) the mild solution of (A.1). The regularity
properties of the mild solutions of (A.1) are widely investigated in [4]
and [5]. In the following we summarize the results that are used in this
paper. To this end, it is useful to introduce the functions

u0(t) = S(t)x

and

u1(t) =
∫ t

0

S(t − s)f(s) ds.

We have:

Lemma A.1. For each x ∈ X we have that u0 ∈ C(0, T ; X) and
that u0 ∈ L1(0, T ; X(θ)) ∩ W θ,1(0, T ; X) for each θ ∈ ]0, 1[. Moreover,
there exists a1 = a1(θ, T ) verifying, for each τ ≤ T ,

(i) ||u0||L1(0,τ ;X(θ)) ≤ a1(θ, T )||x||
(ii) ||u0||W θ,1(0,τ ;X) ≤ a1(θ, T )||x||.

Proof. For the proof we refer to Theorems 2 and 7 of [5].

Lemma A.2. Let x ∈ X(θ) for some θ ∈ ]0, 1[. Then we have
that u0 ∈ C(0, T ; X(θ)) and u′

0, Au0 ∈ L1(0, T ; X(θ)) ∩ W θ,1(0, T ; X).
Moreover, there exists a2 = a2(θ) verifying, for each τ ≤ T ,

(i) ||u0||C(0,T ;X(θ)) ≤ a2(θ)||x||θ,
(ii) ||u′

0||L1(0,τ ;X(θ)), ||Au0||L1(0,τ ;X(θ)) ≤ a2(θ)||x||θ,
(iii) ||u′

0||W θ,1(0,τ ;X), ||Au0||W θ,1(0,τ ;X) ≤ a2(θ)||x||θ.

Proof. See Theorems 5 and 15 of [5].
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Lemma A.3. For each f ∈ L1(0, T ; X) we have that u1 ∈ C(0, T ; X)
and that u1 ∈ L1(0, T ; X(θ)) ∩ W θ,1(0, T ; X) for each θ ∈ ]0, 1[.
Moreover, there exists b1 = b1(θ, T ) verifying, for each τ ≤ T ,

(i) ||u1||L1(0,τ ;X(θ)) ≤ b1(θ, T )||f ||L1(0,τ ;X)

(ii) ||u1||W θ,1(0,τ ;X) ≤ b1(θ, T )||f ||L1(0,τ ;X).

Proof. See Theorems 17 and 18 of [5].

Lemma A.4. Let f ∈ L1(0, T ; X(θ)) for some θ ∈ ]0, 1[. Then
u1 ∈ C(0, T ; X(θ)), u′

1, Au1 ∈ L1(0, T ; X(θ)) and Au1 ∈ W θ,1(0, T ; X).
Moreover, there exists b2 = b2(θ, T ) verifying, for each τ ≤ T ,

(i) ||u1||C(0,τ ;X(θ)) ≤ b2(θ, T )||x||θ,
(ii) ||u′

1||L1(0,τ ;X(θ)), ||Au1||L1(0,τ ;X(θ)) ≤ b2(θ, T )||f ||L1(0,τ ;X(θ)),

(iii) ||Au1||W θ,1(0,τ ;X) ≤ b2(θ, T )||f ||L1(0,τ ;X(θ)).

Proof. For the proof we refer to Theorems 20, 21, 22 and 23 of [5].

Lemma A.5. Let f ∈ W θ,1(0, T ; X) for some θ ∈ ]0, 1[. Then
u1 ∈ C(0, T ; X(θ)), u′

1, Au1 ∈ W θ,1(0, T ; X) and u′
1 ∈ L1(0, T ; X(θ)).

Moreover, there exists b3 = b3(θ, T ) verifying, for each τ ≤ T ,

(i) ||u1||C(0,τ ;X(θ)) ≤ b3(θ, T )[||f ||W θ,1(0,τ ;X) + Nθ
2 (0, τ ; f)],

(ii) ||u′
1||W θ,1(0,τ ;X), ||Au1||W θ,1(0,τ ;X) ≤ b3(θ, T )[||f ||W θ,1(0,τ ;X) +

Nθ
2 (0, τ ; f)],

(iii) ||u′
1||L1(0,τ ;X(θ)) ≤ b3(θ, T )[||f ||W θ,1(0,τ ;X) + Nθ

2 (0, τ ; f)].

Proof. See Lemma 2 and Theorems 25 and 27 of [5].

Finally we prove the following existence result (which seems to be
new) for L1-strict solutions of problem (A.1).

Theorem A.6. Let x ∈ X(0) and f ∈ W 0,1(0, T ; X). Then we have
u0, u1 ∈ C(0, T ; X(0)) and u0, u1 ∈ L1(0, T ; D(A)) ∩ W1, 1(0, T ; X).
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Moreover,

(i) ||u0||C(0,T ;X(0)) ≤ M ||x||0
(ii) ||u0||L1(0,T ;D(A))∩W 1,1(0,T ;X) ≤ ||x||0,
(iii) ||u1||C(0,T ;X(0)) ≤ [2M + M(Tω)−1]||f ||W 0,1(0,T ;X),

(iv) ||u1||L1(0,T ;D(A))∩W 1,1(0,T ;X) ≤ 3M ||f ||W 0,1(0,T ;X).

Proof. We have

(A.3) ||Au0||L1(0,T ;X) = ||u′
0||L1(0,T ;X) =

∫ T

0

||AS(t)x|| dt ≤ H0(x)

and hence u0 ∈ L1(0, T ; D(A)) ∩ W 1,1(0, T, X), and (ii) is verified.

Moreover,

||u0(t)||0 =
∫ +∞

0

||AS(t + σ)x|| dσ ≤ MH0(x)

and (i) follows.

To prove u1 ∈ L1(0, T ; D(A)) ∩ W 1,1(0, T, X), we use a density
argument. Let {fn} ⊂ W 1,1(0, T, X) verifying fn → f in W 0,1(0, T, X),
and set

vn =
∫ t

0

S(t − s)fn(s) ds.

We have vn ∈ L1(0, T ; D(A)) ∩ W 1,1(0, T, X) and vn → u1 in
L1(0, T ; X). Moreover, using (2.1), we get

||Avn||L1(0,T ;X) ≤
∫ T

0

dt

∥∥∥∥A

∫ t

0

S(t − s)[fn(s) − fn(t)] ds

∥∥∥∥
+

∫ T

0

dt

∥∥∥∥A

∫ t

0

S(t − s)fn(t) ds

∥∥∥∥
≤ M

∫ T

0

dt

∫ t

0

||fn(t) − fn(s)||(t − s)−1 ds

+
∫ T

0

dt||S(t) − I)fn(t)||
≤ 2M ||fn||W 0,1(0,T,X)
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and hence

||Avn − Avm||L1(0,T ;X) ≤ 2M ||fn − fm||W 0,1(0,T,X).

Therefore Avn is Cauchy in L1(0, T ; X) so that u1 ∈ L1(0, T ; D(A))
and Avn → Au1 in L1(0, T ; X) since A is closed.

Finally, from the equality v′n = Avn + fn, we get that u1 ∈
W 1,1(0, T ; X) and that u′

1 = Au1 + f . Therefore, u1 satisfies (iv).
Let us prove (iii). We have

H0(u1(t)) =
∫ T

0

∥∥∥∥
∫ t

0

AS(σ + t − s)f(s) ds

∥∥∥∥dσ

+
∫ +∞

T

∥∥∥∥
∫ T

0

AS(σ + t − s)f(s) ds

∥∥∥∥dσ

=: I1 + I2.

By a computation similar to the one used above we find

I1 ≤ 2M ||f ||W 0,1(0,T ;X).

Moreover,

I2 ≤ MT−1

∫ +∞

T

e−ωσ dσ||f ||L1(0,T ;X),

and (iii) follows.

Remark A.7. It follows from (A.3) that the assumption x ∈ X(0) is
also necessary for property (ii).
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