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VARIATIONAL METHOD WITH
APPLICATION TO CONVOLUTION EQUATIONS

DANIEL GOELEVEN

ABSTRACT. The aim of this paper is to solve the convo-
lution equation k ∗ u2 = |u| for k subject to the conditions

k ∈ L3/2(R), k(x) ≥ 0, k(x) = k(−x) and k symmetrically
decreasing. By using a result of the Ljusternik-Schnirelman
theory on C1-manifold due to A. Szulkin we improve some
recent results of J.B. Baillon and M. Théra.

1. Introduction. Recently, J.B. Baillon and M. Théra [1] intro-
duced a notion of self-adjoint nonlinear operator T with respect to
a duality mapping Jθ. Using the properties of such a mapping they
studied the optimization problem

(P) max{〈Tu, Jθu〉 : u ∈ X, ||u|| = 1},

where X is a reflexive real Banach space equipped with a sufficiently
smooth norm.

In their papers [1, 2, 12], they showed that problem (P) was very
useful to obtain solutions of some convolution equations such as the
following:

(E) k ∗ u2 = u, u ∈ L3(R),

where k ∈ L3/2(R)∩L3(R) is assumed to be symmetrically decreasing,
even and positive.

In this paper we use a recent result of the Ljusternik-Schnirelman
theory on C1-manifold [10] due to A. Szulkin to find critical points of
the norm || · || on the Banach manifold M := {u ∈ X : 〈Tu, Jθu〉 = 1}.
By using the Lagrange multiplier theorem we prove that our approach
can also be used to find solutions of convolution equations and of some
set-valued integral equations.
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2. Preliminaries. Let 〈X, X∗〉 be a dual system of real reflexive
Banach spaces, where || · || will be the norm on X and || · ||∗ the
corresponding dual norm. We write N(u) for ||u|| and we assume
the norm is C1-Gâteaux differentiable, i.e., for each x ∈ X\{0}, the
Gâteaux directional derivative of the norm given by

〈N ′(u), h〉 = lim
t→0

(N(u + th) − N(u))/t

exists, is linear and continuous in h for all u in a neighborhood of x.

2.1. Ljusternik-Schirelmann result for even functions on C1-
manifold. Let M be a closed symmetric C1-submanifold. Denote
the tangent bundle of M by T (M) and the tangent space of M at
x by Tx(M). T (M)∗ will be the cotangent bundle and Tx(M)∗ the
cotangent space of M at x. Let f ∈ C1(M,R). df(x) ∈ Tx(M)∗

denotes the differential of f at x and a point x ∈ M is said to be a
critical point of f if df(x) = 0. The function f is said to satisfy the
Palais-Smale condition at level c ∈ R ((PS)c for short) if each sequence
{un} ⊂ M such that f(un) → c in R and df(un) → 0 in Tx(M) has a
convergent subsequence [10].

In what follows we shall need the notions of Ljusternik-Schnirelmann
genus. Let Σ be the collection of all symmetric subsets of X\{0} which
are closed in X. A nonempty set A ∈ Σ is said to have genus k (i.e.,
γ(A) = k) if k is the smallest integer with the property that there exists
an odd continuous mapping η : A → Rk\{0}. If there is no such k, then
we say that γ(A) = +∞ and if A = ∅, we set γ(A) = 0. Properties
of the genus may be found in [3]. We only recall here that if N is a
symmetric and bounded neighborhood of the origin in Rk and if A is
homeomorphic to the boundary of N by an odd homeomorphism, then
γ(A) = k.

The following result is due to A. Szulkin [10].

Theorem 2.1. Suppose that M is a closed symmetric C1-submanifold
of a real Banach space X and 0 /∈ M . Suppose also that f ∈ C1(M,R)
is even and bounded from below. Define

cj := inf
A∈Δj

sup
x∈A

f(x),
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where Δj := {A ⊂ M, A ∈ Σ, γ(A) ≥ j and A is compact}. If Δk �= ∅

for some k ≥ 1 and if f satisfies (PS)c for all c = cj, j = 1, . . . , k,
then f has at least k distinct pairs of critical points.

2.2. Self-adjoint operator with respect to a duality mapping.
We say that j : [0, +∞) → [0, +∞) is a gauge function if j is an
increasing continuous function such that j(0) = 0 and j(t) → +∞ as
t → +∞.

The convex continuous function θ : [0, +∞) → [0, +∞); t → θ(t) :=∫ t

0
j(s) ds is called a potential. The duality mapping Jθ : X → X∗

associated with θ, is given by 〈u, Jθu〉 = j(||u||)||u|| and ||Jθu||∗ =
j(||u||) for every u ∈ X. We list the properties of Jθu which will be
referred to in the following section [4].

i) Jθ(λu) = j(λ||u||) · Jθ(u)/j(||u||), for all u �= 0, λ > 0,

ii) Jθ is odd,

iii) 〈u − v, Jθ(u) − Jθ(v)〉 ≥ j(||u||) − j(||v||) · (||u|| − ||v||), for all
u, v ∈ X,

and, since the norm on X is Fréchet-differentiable,

iv) Jθ is continuous

v) 〈v, Jθu〉 = j(||u||) · 〈N ′(u), v〉 for all u, v ∈ X.

We now consider an operator T : X → X. Following J.B. Baillon
and M. Théra [1], we say that T is self-adjoint with respect to Jθ if

〈Tu, Jθ(v)〉 = 〈Tv, Jθ(u)〉, ∀u, v ∈ X.

In [1] and [12] some properties of such operators are proved. In the
following lemma, we only list some of them which will be referred to in
the following section.

Lemma 2.2.1 (J.B. Baillon- M. Théra). Let T be a self-adjoint
operator with respect to a duality mapping Jθ.

i) T (0) = 0,

ii) T (λv) = j(λ||v||) · Tv/j(||v||), for all v �= 0, λ > 0,

iii) Let {un; n ∈ N} be a sequence such that Tn ⇀ Tu and Jθ(un) ⇀
μ then 〈Tu, Jθ(u)〉 = 〈Tu, μ〉.
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The following mapping will play an important part in the next
section. Let Φ : X → R; u → Φ(u) := 〈Tu, Jθ(u)〉. We prove the
following:

Proposition 2.2.1. Let T be a self-adjoint operator with respect
to a duality mapping Jθ. If T is compact, then Φ is compact and
continuous.

Proof. a) Let {un; n ∈ N} be a bounded sequence in X. There exist
M > 0 such that ||un|| ≤ M and thus ||Jθun||∗ = j(||un||) ≤ j(M).
Thus, since X is reflexive, T is compact and {Jθun; n ∈ N} is bounded,
there exists a subsequence {un; n ∈ N} such that un ⇀ u, Tun → T
and Jθun ⇀ μ so that Φ(un) → Φ and, as a result, Φ is compact.

b) Suppose that un → u. We have

|〈Tu, Jθ(v)〉 − 〈Tun, Jθun〉| ≤ |〈Tu, Jθ(u) − Jθun〉|
+ |〈Tu, Jθun〉 − 〈Tun, Jθun〉|.

Since T is self-adjoint with respect to Jθ, this yields

|〈Tu, Jθ(v)〉 − 〈Tun, Jθun〉| ≤ |〈Tu, Jθ(u) − Jθ(un)〉|
+ |〈Tun, Jθu − Jθun〉|

≤ ||Tu|| · ||Jθ(u) − Jθun||∗
+ ||Tun|| · ||Jθu − Jθun||∗.

Since T is compact, the set {Tun; n ∈ N} is bounded, and since Jθ is
continuous, we get the continuity of Φ.

Remark 2.2.1. Recall that if Φ is uniformly Fréchet-differentiable
and completely continuous (un ⇀ u ⇒ Φ(un) → Φ(w), then Φ′ is also
completely continuous [13].

3. Multiplicity results. In the sequel we assume that the gauge
function j is positively homogeneous of order α/2 > 0. This assumption
is not a real limitation for most of the applications. We also make the
following hypotheses:

(H1) X is Kadec,
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(H2) Φ is uniformly Fréchet-differentiable,

(H3) T is odd,

(H4) T is self-adjoint with respect to the duality mapping Jθ,

(H5) Φ is completely continuous,

(H6) Φ(u) > 0, for all u �= 0.

We define
M := {u ∈ X : Φ(u) = 1}.

For each u ∈ M , we have

〈Φ′(u), u〉 = lim
λ↓0

[j((1 + λ)||u||)2 − j(||u||)2]/λj(||u||)2

= lim
λ↓0

α(1 + λ)α−1

= α �= 0,

so that Φ′(u) �= 0 on M and thus M is a C1-submanifold on X. By
Assumption (H5), M is closed. By Assumption (H3) and Property ii)
of Jθ, Φ is even and M is symmetric. Thus, M is a closed symmetric
C1-submanifold on X.

Theorem 3.2.1. Under assumptions (H1) (H6) there exist infinitely
many distinct pairs of couples (λ, u), (λ − u) ∈ R × X such that

i) λ > 0,

ii) u �= 0,

iii) Φ(u) = 1,

iv) N ′(u) = λΦ′(u).

Proof. Let J : X → X∗ be the duality mapping (i.e., j(t) = t) and
define the projection mapping Pu : X → Tu(M) by

Puv = v − J−1Φ′(u) · 〈Φ′(u), v〉/||Φ′(u)||2∗.

Put f := N |M . We remark that 〈N ′(u), v〉 = 〈df(u), v〉 for each
v ∈ Tu(M). Thus

〈df(u), Puv〉 = 〈N ′(u), v〉−〈N ′(u), J−1Φ′(u)〉〈Φ′(u), v〉/||Φ′(u)||2∗
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so that

df(u) = N ′(u) − 〈N ′(u), J−1Φ′(u)〉 · Φ′(u)/||Φ′(u) ||2∗.

1◦) f satisfies (PS)c at any level c ∈ R. Indeed, let {un} ⊂ M be
a sequence such that N(un) → c and df(un) → 0. This sequence
is bounded and, since X is a reflexive space, ||N ′un||∗ ≤ 1, there
exists a subsequence, denoted again by {un}, such that un ⇀ u,
Φ′(un) → Φ′(u) and N ′(un) → β. We have

N ′(un) −→ 〈N ′(un), J−1Φ′(un)〉Φ′(un)/||Φ′(un)||∗,
−→ 〈β, J−1Φ′(u)〉Φ′(u)/||Φ′(u)||∗.

Thus,
〈N ′(un), un − u〉 − 〈N ′(u), un − u〉 → 0,

and by property v) of the duality mapping, we also have

〈Jθun, un − u〉/j(||un||) − 〈Jθu, un − u〉/j(||u||) → 0.

Thus,

(〈Jθun, un − u〉 − 〈Jθu, un − u〉)/j(||un||) + 〈Jθu, un − u〉/j(||un||)
− 〈Jθu, un − u〉/j(||u||) → 0.

Now there exist c, C > 0, such that c ≤ j(||un||) ≤ C. The majoration
is due to the fact that {un; n ∈ N} is bounded and j increasing. The
minoration is due to the fact that {un; n ∈ N} lies in M . Indeed, if such
a c > 0 does not exist then we can find a subsequence {un′ ; n′ ∈ N}
such that un′ → 0 and Φ(un′) = 1 which is absurd since Φ is continuous
and Φ(0) = 0. As a consequence, we get

〈Jθun, un − u〉 − 〈Jθu, un − u〉 → 0.

Thus, by property iii) of the duality mapping, we get

lim j(||un||) − j(||u||) · (||un|| − ||u||) ≤ 0.

Since j is increasing, it is necessary that

lim j(||un||) − j(||u||) · (||un|| − ||u||) = 0,
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and thus ||un|| → ||u||. From assumption (H1), we get un → u and the
Palais-Smale condition is satisfied.

2◦) For each k ≥ 1, k ∈ N : Δk �= ∅. Let Sk−1 := {x ∈
Rk; ||x|| = 1} be the unit-sphere in Rk. Sk−1 is the boundary of
a symmetric and bounded neighborhood of the origin in Rk. Let
η : Sk−1 → M ; x → x · (1/Φ(x))1/α. By assumption (H6), η is well
defined. Φ(x · (1/Φ(x))1/α) = j(||x||(1/Φ(x))1/α)2 · Φ(x) · j(||x||)2 = 1,
and thus η takes its values in M . Put A := η(Sk−1). It is clear that A
is a symmetric compact subset of M , and thus, since η : Sk−1 → A is
an odd homeomorphism, we have γ(A) = k.

3◦) By Theorem 2.1 f has infinitely many distinct pairs (u,−u) of
critical points. Since f is convex, each u is a relative minimum for
the convex function N , and by the Lagrange multiplier theorem there
exists λ �= 0, such that N ′(u) = λΦ′(u). We get ||u|| = 〈N ′(u), u〉 =
λ〈Φ′(u), u〉 = λα, and thus λ > 0 and ||u|| �= 0.

Corollary 3.2.1. Let α > 0. Under assumptions (H1) (H6), there
exist infinitely many distinct pairs of couples (μ, u), (μ,−u) ∈ R × X
such that

i) μ > 0,

ii) u �= 0,

iii) Φ(u) = 1,

iv) (Nα(u))′ = μΦ′(u).

Proof. Let (λ, u) satisfy i) iv) of Theorem 2.2.1. We have

(Nα(u))′ = αNα−1(u)N ′(u) = αλ||u||α−1Φ′(u).

Put μ := αλ||u||α−1. The conclusion follows from Theorem 2.2.1.

Remark 3.3.1. By comparison with the work of J.B. Baillon and
M. Théra [1, 2], we remark that our approach is restricted to gauge
functions which are positively homogeneous of order α > 0 and to
operators T which are odd. On the other hand, the norm is only
assumed Fréchet-differentiable and our Theorem 3.2.1 is a multiplicity
result. As we shall see in the following section, the field of applications
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of our approach is larger and include, for instance, some set-valued
integral equations.

Remark 3.3.2. Let I := [−π, π], and let Φ(u) :=
∫

I
k ∗ cos(u2)u2 dx,

where k ∈ L3(I) is even and symmetrically decreasing. It is easy to see
that all the assumptions of Corollary 3.2.1 are satisfied. Thus, there
exist infinitely many distinct pairs of elements (−u, u) ∈ L3(I)\{0}
such that |u| = k ∗cos(u2)−u ·k ∗ sin(2u). In this manner, it is possible
to prove the existence of nontrivial solutions for several equations.
In the following section we consider a specific problem for which the
calculations are related in detail.

4. Applications. We consider the problem

(E′) k ∗ u2 = |u|, u ∈ L3(R),

where k ∈ L3/2(R) satisfies k(−x) = k(x) and is symmetrically
decreasing. Recall that if k ∈ L3/2(R) and if v ∈ L3/2(R), then
k∗v ∈ L3(R) [5].

It is clear that if u is a solution of Problem (E′), then v := |u| is a
positive solution of Problem (E).

We take

j(t) := t3, N(u) :=
( ∫

R

|u|3
)1/3

and
Tu := k ∗ u2 sign (u)

so that
Jθ(u) = u2 sign (u), Φ(u) =

∫
R

k ∗ u2u2,

and

M =
{

u ∈ L3(R) :
∫
R

k ∗ u2u2 = 1
}

.

It is easy to see that
(N3(u))′ = 3u|u|

and since k(x) = k(−x),

Φ′(u) = 4k ∗ u2 · u.
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It is clear that if u is a solution of (N3(u))′ = λΦ′(u), then w := 4λu/3
is a solution of Problem (E′).

Assumptions (H1) (H4) and (H6) are satisfied [1]. We now consider
the approximate problem

(E′
n) k ∗ u2 = |u|, u ∈ L3(R), support (u) ⊂ [−n, +n].

We put Xn := L3([−n, +n]) and, to apply Corollary 3.2.1 on this
subspace, we still have to prove that Φ is completely continuous. In
fact, the result has been proved by J.B. Baillon and M. Théra [2]. We
can apply Corollary 3.2.1 to Problem E′

n and obtain infinitely many
pair of distinct (self up to a translation, since the support is fixed)
solutions. We thus have the following result.

Proposition 4.1. There exist infinitely many pairs of distinct
elements (−u, u) in L3([−n, +n]) × L3([−n, +n]) such that u �= 0, and

k ∗ u2 = |u| on [−n, +n].

By applying Corollary 3.2.1 to each Xn as n → ∞, we get a sequence
un such that un ∈ M , un positive and k ∗ u2

n = un. Thus, ||un|| = 1
and there exists a subsequence such that un ⇀ z in L3(R), u2

n ⇀ v
in L3/2(R) and thus k ∗ u2

n(x) → k ∗ v(x) for all x. Hence, we get
un(x) → k ∗ v(x) for all x. Therefore, z = k ∗ v and v = z2, so that
z = k ∗ z2. If we suppose that z = 0, then by using an argument
of Hardy-Littlewood-Pólya [7] as in [2], it is possible to prove that
u2

n ∗ u2
n ⇀ 0 in L3(R). We get 1 = limn→∞

∫
R

k ∗ u2
nu2

n = 0, which is
a contradiction. The following result is thus also true.

Proposition 4.2. There exists at least a pair (−u, u) ∈ L3(R) ×
L3(R) such that u �= 0, and

k ∗ u2 = |u| on R.

If u is a solution of (E′), then v := |u| is a positive solution of (E) and
we get the existence of at least one nontrivial solution of the convolution
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equation (E) which is in accordance with the result of J.B. Baillon and
M. Théra [1, 2]. Moreover, each solution of Problem (E′

T ), T > 0, is a
solution of the set-valued integral equation

u(t) ∈
∫ T

−T

k(t − s)F (u(s)) ds,

where F : R → 2R denotes the set-valued function

x → F (x) := [−x2, x2].

Such set-valued integral equations are useful for the study of some
unilateral problems [9, 6].

Remark 4.1. A similar application of Theorem 2.1 to homogeneous
second order differential equations can be found in [8].
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