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TWO REMARKS ON SPECTRAL APPROXIMATIONS
FOR WIENER-HOPF OPERATORS

A. BÖTTCHER AND H. WIDOM

ABSTRACT. In this note we give the answers to two
questions posed recently by P.M. Anselone and I.H. Sloan in
this journal.

The Wiener-Hopf integral operator W (a) induced by a complex-
valued function a ∈ L∞(R) is the bounded operator acting on L2(0,∞)
by the rule

(W (a)ϕ)(t) =
1
2π

∫ ∞

−∞
e−ixta(x)

∫ ∞

0

eixsϕ(s) ds dx, t > 0.

If

(1) a(x) = c +
∫ ∞

−∞
eixtk(t) dt, x ∈ R

with c ∈ C and k ∈ L1(R), then W (a) can also be written in the form

(W (a)ϕ)(t) = cϕ(t) +
∫ ∞

0

k(t − s)ϕ(s) ds, t > 0.

The finite sections Wτ (a), τ > 0, of W (a) are the compressions
PτW (a) | Im Pτ , where Pτ : L2(0,∞) → L2(0, τ ) is defined by
(Pτϕ)(t) = ϕ(t) for 0 < t < τ and (Pτϕ)(t) = 0 for t > τ . Thus,
in case a is of the form (1), we have

(Wτ (a)ϕ)(t) = cϕ(t) +
∫ τ

0

k(t − s)ϕ(s) ds, 0 < t < τ.
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The comparison of the spectral properties of W (a) and Wτ (a) as well
as the discrete analogue of this problem, the comparison of the spectra
of an infinite Toeplitz matrix and its finite sections, has been the subject
of extensive investigations since at least the sixties (see [1 20], to cite
only a few selected works).

One of the questions arising in this connection is the determination
of the limit set of the spectra of Wτ (a) as τ → ∞: find the set B(a)
of all λ ∈ C such that λ = lim λn with λn ∈ sp Wτn

(a) and τn → ∞.
Another question is how B(a) is related to the spectrum of W (a).
Both questions turn out to be very difficult in general, but there are
two “extremal” cases in which an answer is available. These two cases
are the situations in which a is real-valued or rational.

If a is real-valued, then the spectrum sp W (a) of W (a) is equal to the
closed interval [m, M ], where

m = ess inf
x∈R

a(x), M = ess sup
x∈R

a(x),

and it is easy to show that B(a) also coincides with this interval (see
[18] for the Toeplitz case). Since this seems unexpectedly not to be
widely known (e.g., in [2] it was conjectured that this occurs if a is
of the form (1) and a proof was given under the additional hypothesis
that a − c be in L1(R)), we present a proof here.

Theorem 1. Let a ∈ L∞(R) be real-valued. Then sp Wτ (a) ⊂
sp W (a) for every τ > 0, and given any ε > 0, there is some τ0 > 0
such that sp W (a) is contained in the ε-neighborhood of sp Wτ (a) for
every τ > τ0. In particular, B(a) = sp W (a).

Proof. We first show that sp Wτ (a) ⊂ sp W (a) for every τ > 0, which
implies that B(a) ⊂ sp W (a). So let λ /∈ sp W (a) = [m, M ]. Then a−λ
is a sectorial function, that is, its essential range is contained in some
open half-plane whose boundary passes through the origin. It follows
that there is a number γ ∈ C\{0} such that ||γ(a − λ) − 1|| < 1, and,
since the norm of a Wiener-Hopf operator is at most the norm of its
symbol, we obtain

||γ(Wτ (a) − λI) − I|| = ||Wτ (γ(a − λ) − 1)|| < 1,
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from which we infer that Wτ (a) − λI is invertible for every τ > 0.

To show the other half of the assertion, assume the contrary, i.e.,
assume there are a λ ∈ sp W (a) = [m, M ], an ε > 0, and a sequence
{τn} such that τn → ∞ and

(λ − ε, λ + ε) ∩ sp Wτn
(a) = ∅

for all n. Then (−ε, ε) ∩ sp Wτn
(a − λ) = ∅ for all n, and the spectral

theorem shows that Wτn
(a − λ) is invertible and

sp (W−1
τn

(a − λ) | Im Pτn
) ⊂ (−1/ε, 1/ε)

for all n. Since W−1
τn

(a − λ) | Im Pτn
is self-adjoint, its spectral radius

is equal to the norm, whence

||W−1
τn

(a − λ) | Im Pτn
|| < 1/ε

for all n and consequently,

(2) ||Wτn
(a − λ)Pτn

ϕ|| ≥ ε||Pτn
ϕ||

for all ϕ ∈ L2(0,∞) and all n. Taking into account that Pτn
converges

strongly to the identity operator as τ → ∞, we obtain from (2) the
estimate

(3) ||W (a − λ)ϕ|| ≥ ε||ϕ|| for all ϕ ∈ L2(0,∞).

Because W (a − λ) is self-adjoint, we may conclude from (3) that
W (a − λ) is invertible, which contradicts our assumption that λ be
in sp W (a).

Our second remark concerns the case where a is a (bounded) rational
function. Without loss of generality one may suppose that a is a proper
rational function, i.e., a(x) = f(x)/g(x) with

f(x) = xr + fr−1x
r−1 + · · · + f0, g(x) = xp + gp−1x

p−1 + · · · + g0,

and 0 ≤ r < p. If λ 	= 0, then

λ ∈ sp Wτ (a) ⇐⇒ Wτ (a) − λI is not invertible
⇐⇒ I − (1/λ)Wτ (a) is not invertible
⇐⇒ det 2(I − (1/λ)Wτ (a)) = det 2Wτ (1 − (1/λ)a) = 0,
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where det 2 refers to the (second) regularized determinant of operators
of the form identity minus Hilbert-Schmidt operator; note that in the
case at hand (1/λ)a ∈ L2(R), which guarantees that (1/λ)Wτ (a) is
Hilbert-Schmidt. We may write

1 − (1/λ)a(x) = (g(x) − (1/λ)f(x))/g(x)

=
q+s∏
n=1

(x − ξn(λ))
/( q∏

l=1

(x + iρl)
s∏

m=1

(x − iμm)
)

,

where Re ρl > 0 and Reμm > 0, and we index the roots ξ1(λ), . . . ,
ξq+s(λ) by increasing imaginary part, so that

Im ξ1(λ) ≤ Im ξ2(λ) ≤ · · · ≤ Im ξq+s(λ).

Then define

C(a) = {λ ∈ C : Im ξs(λ) = Im ξs+1(λ)}.

Theorem 2. C(a) is a nonempty bounded set, which consists of a
finite union of closed analytic arcs. We have B(a) = {0} ∪ C(a).

Proof. This follows from combining Theorem 5.1 of [3] with the
techniques of Schmidt and Spitzer [17] and Day [5].

Notice that in general C(a) is in no obvious way related to sp W (a).

Example. Let k(t) = et for t < 0 and k(t) = 2e−t for t > 0. Then

a(x) =
∫ ∞

−∞
eixtk(t) dt = (3 + ix)/(1 + x2), x ∈ R.

In [2] it was conjectured that B(a) is the union of the circle {λ ∈ C :
|λ − 1/12| = 1/12} and the interval [3/2 − √

2, 3/2 +
√

2]. In fact,
Theorem 2 is all we need to determine B(a).

Indeed, we have

1 − 1
λ

a(x) = 1 − 1
λ

3 + ix

1 + x2
=

(x − ξ1(λ))(x − ξ2(λ))
(x + i)(x − i)
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where
ξ1/2(λ) =

i

2λ
± 1

2λ

√
−4λ2 + 12λ − 1,

and Theorem 2 tells us that a nonzero λ belongs to B(a) if and only if

Im ξ1(λ) = Im ξ2(λ) ⇐⇒ ξ1(λ) − ξ2(λ) is real
⇐⇒ (ξ1(λ) − ξ2(λ))2 ≥ 0
⇐⇒ −4 + 12(1/λ) − 1/λ2 = δ ≥ 0

⇐⇒ λ = 1/(6+
√

32−δ) or λ = 1/(6−√
32−δ) with δ ≥ 0.

The parameters δ ∈ [0, 32] give the two intervals

3/2 −
√

2 ≤ λ ≤ 1/6 and 1/6 ≤ λ ≤ 3/2 +
√

2,

while δ = 32 + γ2, γ ≥ 0, gives λ = 1/(6± iγ), which is readily seen to
be a parametrization of the circle |λ − 1/12| = 1/12.
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