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REGULARIZED SOLUTIONS OF A CAUCHY
PROBLEM FOR THE LAPLACE EQUATION

IN AN IRREGULAR STRIP

D.D. ANG, D.N. THANH AND V.V. THANH

ABSTRACT. The problem of finding a harmonic function
in a plane strip bounded by a straight line and a curve
C : y = φ(x) with Cauchy data specified on C is formulated
as an integral equation of first kind. The latter is converted
into an equivalent convolution equation, which is regularized
via the Tikhonov method, with error estimates given.

Introduction. As first pointed out by Hadamard, the Cauchy
problem for the Laplace equation is an ill-posed problem. While the
Dirichlet problem for the Laplace equation is a classical well-posed
problem, the needs of science and technology make it necessary in
many important cases to consider, instead, the Cauchy problem for that
equation. For example, one may need to determine the gravity potential
in a portion of the Earth bounded by an outer surface S1, which lies
on the surface of the Earth, and an inner surface S2 lying inside the
Earth. Clearly, it is impractical, if not impossible, to measure the
potential on S2. Therefore, one should be content with measurements
performed on S1 (of the potential and of the flux). It is the case that
these measurements are sufficient to determine the potential inside;
this follows from uniqueness theorems for the Cauchy problem for the
Laplace equation (see, e.g., [5]). However, as pointed out above, the
problem is ill-posed, i.e., solutions do not always exist and, whenever
they do exist, there is no continuous dependence on the given data.
The reader is referred to [1, 2, 3, 5, 6, 8, 9] for the earlier literature
on the Cauchy problem for the Laplace equation.

For numerical computations, ill-posed problems need to be regular-
ized. A regularized solution is a stable approximate solution. An im-
portant question arises as to how close a regularized solution is to
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an exact solution, especially when the measured data is affected with
noise. The question of error estimates is of importance, and in order
to have specific estimates, one usually has to consider specific cases. In
this paper, we are concerned with the problem of finding a function u,
harmonic in the plane domain D defined by

D = {(x, y) : −∞ < x <∞, 0 < y < φ(x)}
and continuous onD, given u, ux and uy on the portion of the boundary
represented by the curve y = φ(x). Here φ is of class C1. The problem
of regularizing the Cauchy problem for the Laplace equation in a rather
general context was considered, e.g., in [4]; using the method of quasi-
reversibility, the authors (loc. cit.) stabilized the problem, but no error
estimates are given. In the present paper we shall use the Tikhonov
method of regularization. Taking the boundary value v(x) = u(x, 0) as
our unknown, we shall show that if the discrepancy between the given
values of u, ux, uy on the curve y = φ(x) and their exact values is of
the order ε (with respect to some appropriate metric), then, assuming
the exact solution v0(x) to be smooth (in H1(R)), the discrepancy
between the regularized solution and the exact solution v0(x) is of the
order (ln 1/ε)−1 as ε→ 0.

Integral equation formulation and regularization. We first set
some notations:

(1)
ux(x, φ(x)) = f(x),
uy(x, φ(x)) = g(x),
u(x, φ(x)) = u1(x).

These functions, we recall, are given. Let us put

(2)
Γ(x, y; ξ, η) = − 1

2π
ln((x− ξ)2 + (y − η)2)1/2

G(x, y; ξ, η) = Γ(x, y; ξ, η) − Γ(x, y; ξ,−η)
where Γ is a fundamental solution of the Laplace equation and G is
the Green’s function for the Laplacian corresponding to a Dirichlet
condition at the boundary y = 0.

It is sufficient to determine u(x, 0) = v(x). Once this is done, u(x, y)
is known. We shall derive an integral equation in v. In order to do
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this, we integrate Green’s identity on Dε, ε > 0, where Dε = D\B′
ε

and B′
ε: closed ball in D of radius ε centered at (x, y), and let ε → 0

(see Figure 1).

We then have, after some rearrangements

(1/π)
∫ ∞

−∞

yv(ξ)
(x− ξ)2 + y2

dξ = −u(x, y) −
∫ ∞

−∞
G(x, y; ξ, φ(ξ))f1(ξ) dξ

+
∫ ∞

−∞
G1(x, y; ξ, φ(ξ))u1(ξ) dξ,(3)

−∞ < x <∞, 0 < y < φ(x),

where f1(ξ) = g(ξ) − f(ξ)φ′(ξ) and

(4)

G1(x, y; ξ, φ(ξ)) = Gη(x, y; ξ, φ(ξ))−Gξ(x, y; ξ, φ(ξ))φ′(ξ)

= (1/2π)
y − φ(ξ) − (x− ξ)φ′(ξ)
(x− ξ)2 + (y − φ(ξ))2

+ (1/2π)
y + φ(ξ) + (x− ξ)φ′(ξ)
(x− ξ)2 + (y + φ(ξ))2

.

The foregoing calculations are purely formal. In order for them to be
valid, we have to make some assumptions on the given data and on the
properties of the solution to be sought. We shall, accordingly, make
the following standing
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Assumptions. (i) The curve y = φ(x) is eventually straight, which
means that φ′(x) = 0 for large |x|.

(ii) f(x), g(x) and u1(x) tend to 0 sufficiently fast, say as 1/|x| as
|x| → ∞.

(iii) (1 + x2)1/2v(x) is in L2(R).

Letting y → φ(x) in (3), we have (see [7, pp. 144 145])

(5)
1
π

∫ ∞

−∞

φ(x)v(ξ) dξ
(x−ξ)2+φ2(x)

= −(3/2)u1(x)

−
∫ ∞

−∞
G(x, φ(x); ξ, φ(ξ))·f1(ξ) dξ+

∫ ∞

−∞
G1(x, φ(x) : ξ, φ(ξ))u1(ξ) dξ,

which is an integral equation in v(x). We shall convert (5) into a
convolution equation.

We note that the function

H(x, y) =
1
π

∫ ∞

−∞

yv(ξ)
(x− ξ)2 + y2

dξ

is harmonic in the upper right half plane y > 0. The value H(x, φ(x))
is then the right hand side of (5). As shown in the Appendix, we can
calculate (∂H/∂n)(x, φ(x)) as the limit from below of the directional
derivative of the right hand side of (3) when (x, y) → (x, φ(x)), �n being
the inner unit normal to the curve y = φ(x) (Figure 2). Let

λ(x) = H(x, φ(x)), μ(x) =
∂H

∂n
− (x, φ(x)).

Then H(x, y) can be represented as a potential with densities λ, μ on
the domain y > φ(x).
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We now write explicit expressions for λ(x) and μ(x). We have

λ(x) = −(3/2)u1(x) −
∫ ∞

−∞
G(x, φ(x); ξ, φ(ξ))f1(ξ) dξ

+
∫ ∞

−∞
G1(x, φ(x); ξ, φ(ξ))u1(ξ) dξ,

μ(x) =(3/2)f1(x)−α(x)−1

∫ ∞

−∞
G2(x, φ(x); ξ, φ(ξ)), f1(ξ) dξ

(6)

+ α(x)−1(2π)−1

∫ ∞

−∞

(φ(x) + φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (φ(x) + φ(ξ))2
u′1(ξ) dξ

+ (α(x)2π)−1

∫ ∞

−∞

(φ(x) − φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (φ(x) − φ(ξ))2
u′1(ξ) dξ,

in which

G2(x, φ(x); ξ, φ(ξ)) = Gx(x, φ(x); ξ, φ(ξ)) · φ′(x)
−Gy(x, φ(x); ξ, φ(ξ)),

α(x) = (1 + φ′(x)2)1/2.

By (6), the functions λ(x) and μ(x) are defined on R and depend
continuously on φ(x), φ′(x), u1(x), u′1(x), f(x) and g(x) in the L2(R)-
sense.

Now, integrating Green’s identity in the domain

DR = {(x, y) : |x| < R, φ(x) < y < R}
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and letting R→ ∞, we get

(7)
H(x, y) =

∫ ∞

−∞
Γ(x, y; ξ, φ(ξ))μ(ξ) dξ

−
∫ ∞

−∞
Γ1(x, y; ξ, φ(ξ))λ(ξ) dξ

for −∞ < x <∞, y > φ(x), where

G1(x, y; ξ, φ(ξ)) = Γξ(x, y; ξ, φ(ξ))φ′(ξ) − Γη(x, y; ξ, φ(ξ))

= (2π)−1 (x− ξ)φ′(ξ) − (y − φ(ξ))
(x− ξ)2 + (y − φ(ξ))2

.

Note that as R→ ∞, the integral on

CR ={(R, y) : φ(R) < y < R} ∪ {(−R, y) : φ(−R) < y < R}
∪ {(x,R) : −R < x < R}

tends to 0 as a consequence of our assumption on v (i.e., (1+x2)1/2v(x)
in L2(R)).

Evaluating H(x, y) at (x, k) where k is a fixed number greater than
φ(x) for all x in R, we have by (7)

1
π

∫ ∞

−∞

kv(ξ)
(x− ξ)2 + k2

dξ =
∫ ∞

−∞
Γ(x, k; ξ, φ(ξ))μ(ξ) dξ

−
∫ ∞

−∞
Γ1(x, k; ξ, φ(ξ))λ(ξ) dξ.

Let
F (x) = π

∫ ∞

−∞
Γ(x, k; ξ, φ(ξ))μ(ξ) dξ

− π

∫ ∞

−∞
Γ1(x, k; ξ, φ(ξ))λ(ξ) dξ.

Then we have a convolution integral equation in v(ξ)

(8)
∫ ∞

−∞
kv(ξ)((x− ξ)2 + k2)−1 dξ = F (x), ∀x ∈ R,
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which is an integral equation of first kind, and we know that this
problem is ill-posed. We shall construct a family (vβ), β > 0, of
regularized solutions (see [10]), and we pick a regularized solution that
is “close” to the exact solution. We recall that, by regularized solution,
we mean a function that is stable with respect to variations in the right
hand side of (8).

We now state and prove our main result.

Theorem. Suppose the exact solution v0 of (8) corresponding to F0

in the right hand side is in H1(R) and let

|F0 − F |2 < ε, | · |2 = L2(R) − norm.

Then there exists a regularized solution vε of (8) such that

|vε − v0|2 ≤ K(ln(1/ε))−1 for ε→ 0

where K is a constant depending only on the H1-norm of v0.

Proof. Letting G(x) = k/(x2 + k2), we have

Ĝ(t) = (π/2)1/2e−k|t|

where

Ĝ(t) = (2π)−1/2

∫ ∞

−∞
G(x)e−ixt dx.

For v in L2(R), we then have from (8)

Ĝ(t)v̂(t) = F̂ (t).

Now let v0 ∈ H1(R) be the exact solution of the equation

(9) Ĝ(t)v̂0(t) = F̂0(t), ∀ t ∈ R

with F and F0 in L2(R) such that

(10) |F − F0|2 < ε.
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For every β > 0, the function

(11) ψ(t) = Ĝ(t)(β + Ĝ2(t))−1F̂ (t)

is in L2(R). Let

vβ(x) = (2π)−1/2

∫ ∞

−∞
ψ(t)eixt dt.

Then vβ ∈ L2(R) and, by (11), vβ satisfies the equation

(12) βv̂β(t) + Ĝ2(t)v̂β(t) = Ĝ(t)F̂ (t) ∀ t ∈ R

and depends continuously on F (t).

We now derive error estimates. From (9) and (12), we have

(13) β(v̂β(t) − v̂0(t)) + Ĝ2(t)(v̂β(t) − v̂0(t))

= −βv̂0(t) + Ĝ(t)(F̂ (t) − F̂0(t)) ∀ t ∈ R.

We multiply both sides of (13) by (¯̂vβ(t)− ¯̂v(t)) and then integrate on
R. We have

β|v̂β − v̂0|22 + |Ĝ(v̂β − v̂0)|22 = −
∫ ∞

−∞
βv̂0(t)(¯̂v(t) − ¯̂v0(t)) dt

+
∫ ∞

−∞
Ĝ(t)(F̂ (t) − F̂0(t))(¯̂vβ − ¯̂v0(t)) dt(14)

≤ β|v̂0|2|v̂β − v̂0|2
+ (π/2)1/2 · |F̂ − F̂0|2|v̂β − v̂0|2.

Let β = ε and note that |F̂ − F̂0|2 = |F − F0|2 < ε, we have

(15) ε|v̂ε − v̂0|22 + |Ĝ(v̂ε − v̂0)|22 ≤ ε(|v̂0|2 + (π/2)1/2)|v̂ε − v̂0|2.

In particular

(16) |v̂ε − v̂0|2 ≤ |v̂0|2 + (π/2)1/2.
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Similarly, we multiply both sides of (13) by t2(¯̂v(t)−¯̂v0(t)) and integrate
over R. We have

(17) ε|t(v̂ε − v̂0)|22 + |Ĝt(v̂ε − v̂0)|22
=

∫ ∞

−∞
−εv̂0(t)t2(¯̂vε(t) − ¯̂v0(t)) dt

+
∫ ∞

−∞
tĜ(t)(F̂ (t) − F̂0(t))t(¯̂vε(t) − ¯̂v0(t)) dt

≤ ε|v̂′0|2|t(v̂ε − v̂0)|2
+ e−1(π/2)1/2|F̂ − F̂0|2|t(v̂ε − v̂0|2

≤ ε(|v̂′0|2 + e−1(π/2)1/2|t(v̂ε − v̂0|2.
In particular,

(18) |t(v̂ε − v̂0)|2 ≤ |v̂′0|2 + e−1(π/2)1/2.

Since

|vε − v0|2 = |v̂ε − v̂0|2,(19)

and

|v′ε − v′0|2 = |t(v̂ε − v̂0)|2,
from (16) and (18) we have

(20) ||vε − v0||H1 = |vε − v0|2 + |v′ε − v′0|2 ≤ K1

where K1 = max(|v̂0|2 + (π/2)1/2, |v̂′0|2 + e−1(π/2)1/2).

We have, for any tε > 0,
∫
|t|≤tε

|v̂ε(t) − v̂0(t)|2 dt ≤
∫
|t|≤tε

e−2k|t|e2ktε|v̂ε(t) − v̂0(t)|2 dt

≤ 2π−1e2ktε

∫ ∞

−∞
Ĝ2(t)|v̂ε(t) − v̂0(t)|2 dt

= 2π−1e2ktε |Ĝ(v̂ε − v̂0)|22(21)

≤ 2π−1e2ktεK1ε(|v̂0|2 + (π/2)1/2)
≡ K2εe

2ktε
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(22)

∫
|t|>tε

|v̂ε(t) − v̂0(t)|2 dt ≤
∫ ∞

−∞
|t|2t−2

ε |v̂ε(t) − v̂0(t)|2 dt

= t−2
ε

∫ ∞

−∞
|t(v̂ε(t) − v0(t)|2 dt

≤ K1t
−2
ε ≤ K2t

−2
ε

where K2 = 2π−1(|v̂0|2 + (π/2)1/2).

Now consider the equation

(23) y2e2ky = 1/ε.

The function h(y) = y2e2ky is strictly increasing for y > 0 and
h(R+) = R+. Then the equation (23) has a unique solution tε and
tε → ∞ as ε→ 0. Hence, we have

2(1 + k)tε ≥ 2 ln tε + 2ktε = ln(1/ε).

Letting ε < 1, we have

(24) t−1
ε ≤ 2(1 + k)((ln(1/ε))−1.

By (21), (22) and (24), we have

|vε − v0|22 ≤ 2K2t
−2
ε ≤ K(ln(1/ε))−2

where K = 8(1 + k)2K2 as desired. This completes the proof of the
theorem.

Remark. So far, the discussion has been about the boundary value
v(x) = u(x, 0). Now, from (3), we have for v = v0

(25) u0(x, y) = −(1/π)
∫ ∞

−∞
yv0(ξ)/(x− ξ)2 + y2) dξ +A(x, y)

where A(x, y) is the sum of the last two integrals in (3). If we let

uε(x, y) = −(1/π)
∫ ∞

−∞
yvε(ξ)/((x− ξ)2 + y2) dξ +A(x, y),



LAPLACE EQUATIONS IN AN IRREGULAR STRIP 439

then it can be shown that, as ε→ 0,

sup |uε(·; y) − u0(·; y)|2 ≤ K3(ln(1/ε))−1

where K3 is a constant depending only on the H1-norm of v0, and the
sup is over 0 < y < φ(x), −∞ < x <∞. Details are omitted.

Appendix

Here we calculate the behavior of (∂H/∂n)(x, φ(x)) in which �n =
{−φ′(x)/α,−1/α}, α = [1 + φ′(x)2]1/2 is the inner unit normal to the
curve y = φ(x) with respect to the domain D.

By (3), it suffices to consider the behavior of (∂V/∂n)(x, φ(x)) with

(26)

V (x, y) =
∫ ∞

−∞
G1(x, y, ξ, φ(ξ))u1(ξ) dξ

=
1
2π

∫ ∞

−∞

y + φ(ξ) + (x− ξ)φ′(ξ)
(x− ξ)2 + (y + φ(ξ))2

u1(ξ) dξ

+
1
2π

∫ ∞

−∞

y − φ(ξ) − (x− ξ)φ′(ξ)
(x− ξ)2 + (y − φ(ξ))2

u1(ξ) dξ.

Note that

d

dξ

(
arctan

x− ξ

y + φ(ξ)

)
= −y + φ(ξ) + (x− ξ)φ′(ξ)

(x− ξ)2 + (y + φ(ξ))2
,

d

dξ

(
arctan

x− ξ

y − φ(ξ)

)
= −y − φ(ξ) − (x− ξ)φ′(ξ)

(x− ξ)2 + (y − φ(ξ))2
.

Hence if u1 is of class C1 with lim|ξ|→∞ u1(ξ) = 0, then integrating by
parts, we have

V (x, y) =
1
2π

∫ ∞

−∞
arctan

x− ξ

y + φ(ξ)
u′1(ξ) dξ

+
1
2π

∫ ∞

−∞
arctan

x− ξ

y − φ(ξ)
u′1(ξ) dξ.
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Therefore

(27)

α
∂V

∂n
(x, y) =

∂V

∂x
(x, y)φ′(x) − ∂V

∂y
(x, y)

=
1
2π

∫ ∞

−∞

(y + φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (y + φ(ξ))2
u′1(ξ) dξ

+
1
2π

∫ ∞

−∞

(y − φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (y − φ(ξ))2
u′1(ξ) dξ.

It is easy to see that

lim
1
2π

∫ ∞

−∞

(y + φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (y + φ(ξ))2
u′1(ξ) dξ

=
1
2π

∫ ∞

−∞

(φ(x) + φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (φ(x) + φ(ξ))2
u′1(ξ) dξ

as (x, y) → (x, φ(x)) from below.

The second integral in (27) has a singularity when (x, y) → (x, φ(x)).
We let h > 0 and note

lim
1
2π

∫
|ξ−x|≥h

(y − φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (y − φ(ξ))2
u′1(ξ) dξ

=
1
2π

∫
|ξ−x|≥h

(φ(x) − φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (φ(x) − φ(ξ))2
u′1(ξ) dξ.

If we choose h small so φ′(ξ)− φ′(x) and u′1(ξ)− u′1(x) are sufficiently
small, then we have

1
2π

∫ x+h

x−h

(y − φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (y − φ(ξ))2
u′1(ξ) dξ


 1
2π

∫ x+h

x−h

(y − φ(ξ))φ′(ξ) + x− ξ

(x− ξ)2 + (y − φ(ξ))2
u′1(x) dξ

=
1
2π
u′1(x)

[
− 1

2
ln((x− ξ)2 + (y − φ(ξ))2)

]x+h

x−h

=
1
4π
u′1(x) ln

h2 + (y − φ(x− h))2

h2 + (y − φ(x+ h))2

→ 1
4π
u′1(x) ln

1 + (1/h)2(φ(x) − φ(x− h))2

1 + (1/h2)(φ(x) − φ(x+ h))2
≡ ε(h).
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Since limh→0 ε(h) = 0, we have

lim
1
2π

∫ ∞

−∞

(y − φ(ξ))φ′(x) + x− ξ

(x− ξ)2 + (y − φ(ξ))2
u′1(ξ) dξ

=
1
2π

∫ ∞

−∞

(φ(x) − φ(ξ))φ′(ξ) + x− ξ

(x− ξ)2 + (φ(x) − φ(ξ))2
u′1(ξ) dξ

as (x, y) → (x, φ(x)).
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