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EXISTENCE FOR ONE-DIMENSIONAL
NONLINEAR PARABOLIC VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS

YANPING LIN AND HONG-MING YIN

ABSTRACT. In this note we consider the global solvability
of the nonlinear integrodifferential equation:

ut = a(x, t, u, ux)uxx + b(x, t, u, ux)

+

∫ t

0

c(x, t, τ, u, ux, uxx) dτ

subject to appropriate initial and boundary conditions, under
suitable assumptions concerning the data and the functions
a, b and c.

1. Introduction. Recently, the author of [7] considered the
following initial-boundary value problem:

ut = a(x, t, u, ux)uxx+b(x, t, u, ux)+
∫ t

0

c(x, τ, u, ux) dτ, in QT ,

(1.1)

u(0, t) = f1(t), u(1, t) = f2(t), t ∈ [0, T ],(1.2)
u(x, 0) = u0(x), x ∈ [0, 1],(1.3)

where T > 0 is arbitrary and QT = (0, 1) × (0, T ].

The global solution was obtained under certain growth assumptions
on the functions a, b and c. However, a wider class of physical models
(cf. [1, 2, 3, 6]) requires that the second order derivative of the solution
uxx should appear in the integral term. Namely, the function c should
be of the form

(1.4) c = c(x, t, τ, u, ux, uxx).
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In this paper we shall illustrate how the argument of [7] can actually
be extended to this situation in a nontrivial way. The assumptions are
more or less the same as those of the previous paper [7]. In particular,
no assumption on the growth of the derivatives of c(x, t, τ, u, ux, uxx)
is required except for ct. The above type of equation has been studied
extensively. However, there is not much progress in dealing with the
global solvability of equations with nonlinear principal parts. The
reader may consult the recent survey paper [3] and the references
therein for motivation and the physical background.

In what follows, the problem (1.1) (1.3) always means that the
function c takes the form (1.4). Without loss of generality, we may
assume that f1(t) = f2(t) = 0. The main assumptions are:

Hypotheses. (1) The functions a(x, t, u, p) and b(x, t, u, p) are twice
differentiable while c(x, t, u, p, r) is differentiable with respect to all of
their arguments.

(2) There exist positive constants A1, A2 and A3 such that

a(x, t, u, p) ≥ A1 > 0, |b(x, t, u, p)| ≤ A2[1 + |u| + |p|];
|c(x, t, τ, u, p, r)|+ |ct(x, t, τ, u, p, r)| ≤ A3[1 + |u| + |p| + |r|].

(3) u0(x) ∈ C4[0, 1] and the following compatibility conditions hold:

u0(0) = 0, u0(1) = 0;
a(0, 0, 0, u′

0(0))u′′
0(0) + b(0, 0, 0, u′

0(0)) = 0,
a(1, 0, 0, u′

0(1))u′′
0(1) + b(1, 0, 0, u′

0(0)) = 0.

Theorem. Under the above assumptions, the problem (1.1) (1.3)
admits a unique classical solution for arbitrary T > 0.

Remark 1. The growth condition on b can be relaxed in the following
sense: |b(x, t, u, p)|

a(x, t, u, p)
≤ A2[1 + |u| + |p|].
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Remark 2. With some modification in the proof, the result is still
true for the equation (1.1) with the homogeneous Neumann conditions:

ux(0, t) = ux(1, t) = 0.

However, it is not known whether the result holds for the Cauchy
problem.

2. Proof. As seen in [7], the key to obtaining the global existence is
to derive an a priori estimate in the Banach space C2+α,1+α/2(Q̄T ). We
shall prove a number of lemmas to achieve this goal. In what follows,
various constants which depend only on the known data and the upper
bound of T will be denoted by C1, C2, . . . .

Lemma 2.1. There exists a constant C1 such that∫ ∫
QT

u2
xx dx dt + sup

0≤t≤T

∫ 1

0

u2
x dx ≤ C1.

This can be proved by the same way as in [7].

Lemma 2.2. There exists a constant C2 such that

||ux(·, t)||L∞(0,1) ≤ C2.

Proof. This is the crucial step in [7]. However, the method still works
for the present situation. To see this, we perform the same calculation
as in [7] and then note from page 255 in [7] that the quantity I is now
equal to

I =
∫ T

0

∫ 1

0

up−2
x

[ ∫ t

0

(1 + |u| + |ux| + |uxx|) dτ

]2

dx dt.

Using Lemma 2.1, we have

I ≤ C

∫ T

0

{
||u(·, t)||p−2

L∞(0,1)

[ ∫ 1

0

∫ t

0

(1 + u2 + u2
x + u2

xx) dx dτ

]}
dt

≤ C

∫ T

0

||u(·, t)||p−2
L∞(0,1) dt.
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The rest of the proof can then be carried over.

Since the second order derivative is involved in the function c, we
need more a priori estimates.

Lemma 2.3. There exists a constant C3 such that

sup
0≤t≤T

∫ 1

0

ut(x, t)2 dx +
∫ T

0

∫ 1

0

u2
xt dx dt ≤ C3.

Proof. We rewrite the equation (1.1) into the following divergence
form:

ut =
( ∫ ux

0

a(x, t, u, s) ds

)
x

−
∫ ux

0

[ax(x, t, u, s) + au(x, t, u, s)] ds

+ b(x, t, u, ux) +
∫ t

0

c(x, t, τ, u, ux, uxx) dτ.

Let v(x, t) = ut(x, t), (x, t) ∈ Q̄T . We differentiate the above equation
with respect to t to obtain

(2.1) vt − [a(x, t, u, ux)vx]x = g(x, t) + c(x, t, t, u, ux, uxx) +
∫ t

0

ct dτ,

where

g(x, t) =
∫ ux

0

[at+auv] ds

+
d

dt

{
−

∫ ux

0

[ax(x, t, u, s) + au(x, t, u, s)] ds + b(x, t, u, ux)
}

.

By Lemma 2.1 2.2, u(x, t) and ux(x, t) are uniformly bounded, g(x, t)
can be written as

g(x, t) = d1(x, t)vx + d2(x, t)v + d3(x, t),

where d1(x, t), d2(x, t) and d3(x, t) are bounded functions, whose bounds
depend only on the known data.
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Now we multiply the equation (2.1) by v(x, t) and then integrate
over QT ; we can easily obtain, after using the growth conditions and
applying Gronwall’s inequality, that

∫ 1

0

v2 dx +
∫ ∫

QT

v2
x dx dt ≤ C3.

Corollary 2.4. There exists a constant C4 such that for each fixed
t ∈ [0, T ], ∫ 1

0

u2
xx dx ≤ C4.

Proof. We rewrite the equation (1.1) into the following form:

ut − auxx = b +
∫ t

0

c(x, t, τ, u, ux, uxx) dτ.

Taking the square of both sides of the above equation and performing
the integration over [0, 1], we have

∫ 1

0

[u2
t + a2u2

xx] dx −
∫ 1

0

autuxx dx =
∫ 1

0

(
b +

∫ t

0

c dτ

)2

dx.

By Lemma 2.1, Lemma 2.2 and the growth conditions on b and c, we
know the right-hand side in the above equality is bounded. Moreover,
Cauchy’s inequality implies

∫ 1

0

autuxx dx ≤ C(ε)
∫ 1

0

u2
t dx + ε

∫ 1

0

u2
xx dx.

Therefore, the desired estimate follows from Lemma 2.3.

Lemma 2.5. There exists a constant C5 such that

||u||C1+1/2,3/4(Q̄T ) ≤ C5.
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Proof. Since uxx(x, t) ∈ L2[0, 1], by Sobolev’s imbedding theorem,
for each t,

||u(·, t)||C1+1/2[0,1] ≤ C.

By Lemma 2.3, u(x, t) is Hölder continuous with respect to t and the
Hölder norm depends only on C3. Thus, the desired result follows from
Lemma 3.1 of Chapter 2 in [5].

Now we apply the W 2,1
p (QT )-estimate (cf. [8]) to have

Corollary 2.6. There exists a constant C6 such that for any p > 1,

||u||W 2,1
p (QT ) ≤ C6,

where C6 depends only on known data, T and p.

The above estimate is still not enough to establish global existence
because of the appearance of a fully nonlinear term in the equation.
We need to obtain a priori estimates for the higher order derivatives of
solutions. To this end, we differentiate the equation (1.1) with respect
to t and define v(x, t) = ut(x, t); then v(x, t) satisfies

vt = avxx + [ax+auv+apvx]uxx + [bx+buv+bpvx] + c +
∫ t

0

ct dτ ;

v(0, t) = v(1, t) = 0,

v(x, 0) = a(x, 0, u0(x), u′
0(x))u′′

0 + b(x, 0, u0, u
′
0).

Since uxx ∈ Lp(QT ) for any p > 1, one uses the W 2,1
p (QT )-estimate for

v(x, t) to obtain

||v||W 2,1
p (QT ) ≤ C

[
1 +

∫ ∫
QT

[vp + vp
x] dx dt

]
,

where Hölder’s and Young’s inequalities have been used. Now we need
the following interpolation inequality (cf. [4]):

∫
Ω

vp
x ≤ ε

∫
Ω

vp
xx dx + C(ε)

∫
Ω

vp dx.
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Hence,

||v||W 2,1
p (QT ) ≤ C

[
1 +

∫ ∫
QT

vp dx dt

]
.

Consequently, noting that v = ut ∈ Lp(QT ), one has

Lemma 2.7. There exists a constant C7 such that for any p > 1,

||v||W 2,1
p (QT ) ≤ C7.

Next we apply the imbedding theorem to obtain

Corollary 2.8. There exist two constants C8 and β ∈ (0, 1) arbitrary
such that

||ut||C1+β,(1+β)/2(Q̄T ) ≤ C8.

Finally, we shall show

Lemma 2.9. There exists a constant C9 such that

||u||C2+α,1+α/2(Q̄T ) ≤ C9.

Proof. We first show

(2.2) ||uxx(·, t)||L∞(0,1) ≤ C.

Indeed, by the equation (1.1) and Corollary 2.8,

||uxx(·, t)||L∞(0,1) ≤ C + C

∫ t

0

||uxx||L∞(0,1) dτ.

Therefore, the estimate (2.2) follows from Gronwall’s inequality. Sim-
ilarly, we estimate the Hölder norm of uxx with respect to x: for any
t ∈ [0, T ] and two arbitrary points x1, x2 ∈ [0, 1] as uxx is bounded by
(2.2),

|uxx(x1, t) − uxx(x2, t)|
|x1 − x2|α ≤ C + C

∫ t

0

|uxx(x1, τ ) − uxx(x2, τ )|
|x1 − x2|α dτ.
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Hence, Gronwall’s inequality implies

|uxx(x1, t) − uxx(x2, t)|
|x1 − x2|α ≤ C.

Again, by applying Lemma 3.1 of Chapter 2 in [5], we complete our
proof.

With the above a priori estimate, we can prove global existence via
the method of continuity (cf. [7]). We do not repeat the process.
The uniqueness follows from the linear theory of integrodifferential
equations (cf. [8]).
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