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THE NUMERICAL SOLUTION OF THE
GENERALIZED AIRFOIL EQUATION

D. BERTHOLD, W. HOPPE AND B. SILBERMANN

1. Introduction. Singular integral equations on an interval and
their numerical solution have been studied by many authors [3, 5, 6,
7, 11, 12, 13, 14, 16, 18, 19, 23, 25, 32] in the recent two decades.
There the case when the integral operator contains an additional term
with a weakly singular kernel of the type log |y − x| possesses special
importance for applications in aerodynamics as well as in the diffraction
theory and in the two-dimensional elasticity theory [9, 11, 12, 14, 33].

In the present paper we will study a quadrature method for the
equation
(1.1)
1
π

∫ 1

−1

− v(y) dy

y − x
− ν

π

∫ 1

−1

ln |y − x|v(y) dy +
1
π

∫ 1

−1

k(x, y)v(y) dy = f(x),

x ∈ (−1, 1). Here f and k are given Hölder-continuous functions, ν
is a complex number, and v is the sought function. The paper [12]
elaborates a collocation method, the collocation points of which are
just the zeros of certain orthogonal polynomials (Jacobi polynomials).
Furthermore, the approximate solutions are sought in the form of
linear combinations of other Jacobi polynomials, multiplied by the
corresponding weight. The analytical treatment of [16, 25] for the
operator

(1.2) cI + dSo, Sov(x) =
1
π

∫ 1

−1

− v(y)
y − x

dy, x ∈ (−1, 1),

with Hölder-continuous coefficients c and d, where the action of the
operator cI+dSo is described by an invariance relation between certain
orthogonal polynomials, suggests that Golberg and Fromme’s method
[12] is a very natural one and gives cause to expect reliable results.
Nevertheless, a disadvantage of this method consists of the fact that
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integrals of the type
∫ 1

−1
ln |y − x|u(y) σ(y) dy, where u are certain

polynomials and σ(y) = (1 + y)
1
2 (1 − y)−

1
2 , have to be evaluated

numerically. At least, no procedure is given on how to do it exactly.
But, on using some mapping properties of the weakly singular integral
operator

(1.3) W0v(x) = − 1
π

∫ 1

−1

ln |y − x|v(y) dy, x ∈ (−1, 1),

(cf. [8, 11, 27, 31]), we are able to establish a quadrature method for
solving the equation (1.1), which is, contrary to that one of [12], fully
discretized. Moreover, we are in a position to treat So + νWo (instead
of merely So) as the dominant part of the operator in (1.1) and the
discretization of this part is quite simple and can be done without
any integration. This approach seems to be very natural and finally
leads to iterative two-grid and multiple grid methods for determining
an approximation solution of (1.1) with a computational complexity of
O(n2).

2. Action of the Cauchy-type singular integral operator on
special orthogonal polynomials. Denote by J the interval [−1, 1],
by ρ any nonnegative integrable function on J , and by L2

ρ, as usual,
the Hilbert space of complex-valued functions on J for which the norm
||f ||ρ is finite, where

||f ||ρ :=
√

(f, f)ρ, (f, g)ρ :=
1
π

∫
J

f(x)g(x)ρ(x) dx.

Now we are looking for appropriate spaces in which equation (1.1) is
to be considered. Following [4, 12, 16] we choose two weight functions
σ(x) = (1 − x)−

1
2 (1 + x)

1
2 and μ(x) = [σ(x)]−1 in accordance with

the underlying physical problem. The weight σ can be interpreted as
a function, describing the behavior of the solution v of (1.1) near the
endpoints of the interval J .

Further, let {pn}∞n=0 and {qn}∞n=0 be systems of orthogonal polyno-
mials with respect to the scalar products (., .)σ and (., .)μ, respectively.
In particular, if we have

(2.1)
pn(x) = cos[(n + (1/2))s][cos(s/2)]−1,

qn(x) = sin[(n + (1/2))s][sin(s/2)]−1,
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n = 0, 1, . . . , s ∈ (0, π), cos s = x, then the following useful relations
will be valid (cf. [4, 16, 25]).

Lemma 2.1. If n = 0, 1, . . . , then Soσpn = qn and S0μqn = −pn.

Corollary 2.2. The operator SoσI : L2
σ → L2

μ is continuously
invertible, both S0σI and its inverse are isometrical isomorphisms, and
(SoσI)−1 = −SoμI.

Therefore, following a standard idea, we substitute v = σu in (1.1)
and consider in the sequel the equation

(2.2) Au := (S + νW + K)u = f

instead of (1.1), where S = SoσI, W = WoσI, and

Ku(x) =
1
π

∫ 1

−1

k(x, y)u(y)σ(y) dy, x ∈ [−1, 1].

Note that A is a Fredholm operator with index zero (cf. Theorem 3.6
below).

3. Analytical properties of the weakly singular operator Wo.
The aim of this section is to summarize some mapping properties of the
operator W . In this connection, we also refer to [11]. Results about
the compactness of W and the invertibility of S + νW are given.

Let τ (x) = (1− x2)−1/2 and tn(x) = cos(n arccosx), n = 0, 1, . . . , be
the Chebyshev weight and the Chebyshev polynomials, respectively.

Lemma 3.1. [8, 27] For all x, y ∈ (−1, 1) with x �= y we have

ln |y − x| = − ln 2 −
∞∑

i=1

(2/i)ti(x)ti(y).

Theorem 3.2. The polynomials tn fulfill the relations

W0τt0 = t0 ln 2 and W0τtn = tn/n for n = 1, 2, . . . .
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Proof. Denote by sn(x, y) the partial sum

sn(x, y) = − ln 2 −
n∑

i=1

(2/i)ti(x)ti(y).

Now we have for any x ∈ J and n, m ∈ N with n < m

||sn(x, ·) − sm(x, ·)||2τ =
1
π

∫
J

{ m∑
i=n+1

(2/i)ti(x)ti(y)
}2

τ (y) dy.

Since (ti, tj)τ = δij/2, j �= 0, we conclude that

||sn(x, .) − sm(x, .)||2τ =
m∑

i=n+1

2
i2

t2i (x)

≤
∞∑

i=n+1

2
i2

→ 0,

as n → ∞. Hence {sn(x, .)} is a fundamental sequence in L2
τ for each

x ∈ J . So we conclude by the completeness of this space that

1
π

∫
J

[ln |y − x| − sn(x, y)]2τ (y) dy →
n→∞ 0, x ∈ J,

because we know from Lemma 3.1 the limit of sn(x, .) in the sense
of convergence almost everywhere. Now, Cauchy-Schwarz’s inequality
gives for k = 0, 1, . . .

1
π

∣∣∣∣
∫

J

[ln |y − x| − sn(x, y)]tk(y)τ (y) dy

∣∣∣∣ →
n→∞ 0,

and consequently

W0τtk(x) = − 1
π

lim
n→∞

∫
J

sn(x, y)tk(y)τ (y) dy, x ∈ J.

In virtue of the orthogonality of the Chebyshev polynomials tk, the
assertion follows.
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Corollary 3.3. The operator W acts on polynomials according to
the rule: Wpo = q1/2 + (ln 2 − (1/2))qo and

Wpn =
1
2

[
qn+1

n + 1
+

qn

n(n + 1)
− qn−1

n

]
, n = 1, 2, . . . .

Proof. Use the relations pn(x)(1 + x) = tn(x) + tn+1(x), qn+1(x) −
qn(x) = 2tn+1(x), which can be verified by a straightforward compu-
tation based upon the trigonometric representations (2.1), and σ(x) =
(1 + x)τ (x).

For t ∈ J and δ > 0 we denote by Jδ(t) the interval (t− δ, t + δ)∩ J .
Further, let

h(t, x, δ) =
∫

Jδ(t)

ln2

∣∣∣∣y − x

y − t

∣∣∣∣ σ(y) dy.

Lemma 3.4. We have the relation χ(δ) := suph(t, x, δ) → 0 as
δ → 0, where the supremum is taken over all points (x, t) ∈ J × J .

Proof. By suitable estimates of the integrand, one can verify that
the function h depends continuously on each of the variables t, x ∈ J ,
δ ≥ 0. Hence, h is uniformly continuous on J×J× [0, δ0] for some fixed
positive δ0. Therefore, the assertion follows from the obvious relation
h(t, x, δ) → 0 as δ → 0, t, x ∈ J .

In the sequel, C denotes the Banach space of all continuous functions
f : J → C, endowed with the norm ||f ||∞ = max{|f(x)| : x ∈ J}.

Theorem 3.5. The operator W : L2
σ → C is compact.

Proof. Let ε > 0 be arbitrary. According to Lemma 3.4 we can choose
δ > 0 so that χ(δ) < ε2π/4. Now let u ∈ L2

σ with ||u||σ ≤ 1. Using
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Cauchy-Schwarz’s inequality, we obtain

|(Wu(x) − Wu(t)| ≤
{

1
π

∫
ln2

∣∣∣∣y − x

y − t

∣∣∣∣ σ(y) dy

}1/2

+
{

1
π

∫
ln2

∣∣∣∣y − x

y − t

∣∣∣∣ σ(y) dy

}1/2

,

where the first integral is taken over Jδ(t) and the second one over
J\Jδ(t). Thus, the first term is less than ε/2. To make the second one
less than ε/2, too, we take into account the uniform (with respect to
y ∈ J\Jδ(t)) convergence |(y−x)(y−t)−1| → 1 as x → t. Consequently,
there exists δ′ > 0 such that |Wu(x) − Wu(t)| < ε if only |x − t| < δ′,
i.e., {Wu : ||u||σ ≤ 1} ⊂ C is equicontinuous.

Suppose that u ∈ L2
σ and define ui := (u, pi)σ. Attending to Corollary

3.3 (and its proof) and |tn(x)| ≤ 1, x ∈ J , we obtain

|Wu(x)| ≤ (1 + ln 2)|uo| + 2
∞∑

i=1

|ui|
i

≤ C||u||σ

for all x ∈ J , where C2 = (1 + ln 2)2 + 4
∑∞

i=1 1/i2 is finite. Now it
remains to apply the Arzela-Ascoli Theorem.

In the following, we will always assume that the condition

(K) dim kerA = 0 and dim ker B = 0 in L2
σ

is fulfilled, where A := S + νW + K and B := S + νW .

Theorem 3.6. The operators A, B : L2
σ → L2

μ are continuously
invertible if (K) and the condition

(3.1)
∫

J

∫
J

|k(x, y)|2σ(y) dyμ(x) dx < ∞

are satisfied.

Proof. Condition (3.1) implies the compactness of K (cf. [22]).
Further, from Theorem 3.5 we easily derive the compactness of W :
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L2
σ → L2

μ. Since S is invertible, both A and B are Fredholm operators
with index zero. This yields, together with (K), the assertion.

Of course, it is useful to know a sufficient and necessary condition for
ker B = {0}. Therefore, we introduce the following function

m(ν) := Io(ν) + ν(Io(ν) + I1(ν)) ln 2, ν ∈ C,

where Ik denotes the modified Bessel function of the first kind of order
k, and formulate the following criterion.

Theorem 3.7. The set kerB is trivial in L2
σ if and only if m(ν) �= 0.

Proof. Consider the equation

(3.2) Bu = (S + νW )u = 0.

Following [29], we shall substitute u = −Soμw, w ∈ L2
μ. Then, by

Corollary 2.2, we have w − νWSoμw = 0, i.e.,

(3.3) w(x) +
ν

π2

∫
J

w(z)μ(z)
{∫

J

ln |y − x|σ(y)
z − y

dy

}
dz = 0,

x ∈ J . By the aid of [26, formula 5.4.15.3] or [29, formula (9)] we find
that

μ(z)
π

∫
J

ln |y − x|σ(y)
z − y

dy = arcsin z + μ(z) ln 2
{− 1

2π, z > x

+1
2π, z < x.

Hence, (3.3) is equivalent to

(3.4) Mw := w + νwo = 0,

where
wo(x) :=

1
π

∫
J

w(y)[arcsin y + μ(y) ln 2 − π/2] dy

+
∫ x

−1

w(y) dy,
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x ∈ J . Since w′
o(x) = w(x), we can transform equation (3.4) into an

equivalent ordinary differential equation

(3.5) w′
o + νwo = 0,

with the additional condition

(3.6)
∫

J

wo(x)τ (x) dx− ln 2
∫

J

w′
o(x)μ(x) dx = 0,

which is obtained from the definition of wo. Its general solution is given
by wo(x) = Coe

−νx; thus w(x) = w′
o(x) = −νCoe

−νx. Inserting this in
(3.6), we get

(3.7) Co

∫
J

e−νxτ (x)[1 + ν(1 − x) ln 2] dx = 0.

We conclude from this equality that (3.2) possesses a unique solution
u (≡ 0) if and only if (3.7) has a unique solution Co (= 0), i.e., if

(3.8)
∫

J

e−νxτ (x)[1 + ν(1 − x) ln 2] dx �= 0.

Formula (49.3.8) from [30] yields by a straightforward computation
that

(3.9)
1
π

∫
J

(−1)kxke−νxτ (x) dx = Ik(ν), k = 0, 1, ν ∈ C.

Combining (3.8) and (3.9) the assertion follows.

Corollary 3.8. If ν ∈ R, then kerB = {0}.

Proof. If ν ≥ 0, then obviously m(ν) > 0. For ν < 0 we shall
apply asymptotic formulas for the Bessel functions. We know from
[21, Section 6] that, for x ∈ R, x > 1,

I0(x) = ex(1 + 1/(8x) + r0(x)/x2)/
√

2πx,

I1(x) = ex(1 − 3/(8x) + r1(x)/x2)/
√

2πx,
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where r0, r1 satisfy the estimates

(3.10) |r0(x)| ≤ √
π(63/128), |r1(x)| ≤ √

π(165/256), x > 1.

Since I0 is even and I1 is odd, we have for ν = −x, x > 1

m(ν) = I0(x) − x(I0(x) − I1(x)) ln 2 = m0(x)exx−2/
√

2πx,

where

m0(x) = (1 − 1
2

ln 2)x2 + (
1
8
− (r0 − r1) ln 2)x + r0.

After some calculation one concludes that both zeros x1, x2 of the
quadratic polynomial m0 do not belong to the set {x ∈ R, x ≥ 4},
whenever the parameters r0 and r1 satisfy (3.10). Hence, m(ν) �= 0 for
all ν ≤ −4.

Unfortunately, the asymptotic formulas for Ik(x) for small values
of x are difficult to be exploited for our purpose. Therefore, in case
−4 < ν < 0, we use the following method, which, in turn, fails for
ν ≤ −4. Let ui := (u, pi)σ. Comparing the Fourier coefficients with
respect to the orthonormal basis {qi}∞i=0 ⊂ L2

μ in equation (3.2), we get
in view of Lemma 2.1 and Corollary 3.3 that u1 = (2/ν − 1 + 2 ln 2)u0

and

ui+1 = (1 + 1/i)ui−1 + [(2i + 2)/ν + 1/i]ui, i = 1, 2, . . . .

Assuming that u0 �= 0 one easily verifies that the signs of ui alternate
and |ui+1| > |ui−1|, i = 1, 2, . . . , holds. Thus, the sequence {ui} is
not square summable, which contradicts Parseval’s equation. Conse-
quently, the assumption u0 �= 0 is false. But u0 = 0 obviously means
that ui = 0 for all i, i.e., u = 0.

4. Description of the quadrature method. In accordance with
the considerations in Sections 2 and 3, we shall seek an approximate
solution un of equation (2.2) in the class Πn of all polynomials of degree
less than n with complex coefficients. In the following, let

(4.1) ynk = cos((2k − 1)π/(2n + 1)), k = 1, . . . , n,
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be the zeros of the n-th orthogonal polynomial pn and

(4.2) lσnk(y) =
n∏

i=1
i �=k

y − yni

ynk − yni
=

pn(y)
(y − ynk)p′n(ynk)

the corresponding Lagrangian fundamental polynomials. For an arbi-
trary function u : [−1, 1] → C the Lagrangian interpolation operator
Lσ

n is defined by

(4.3) Lσ
nu(y) =

n∑
k=1

lσnk(y)u(ynk),

and by

(4.4) σnk =
1
π

∫
J

lσnk(y)σ(y) dy =
qn(ynk)
p′n(ynk)

we denote the Christoffel numbers of the polynomial pn. A straightfor-
ward calculation yields that

(4.5) σnk = (2/(2n + 1))(1 + ynk).

Let Rσ be the linear space of all bounded functions on J being
Riemann-integrable with respect to the weight σ. Then for u ∈ Rσ

the Gaussian quadrature rule

(4.6)
1
π

∫
J

u(y)σ(y) dy ∼
n∑

k=1

u(ynk)σnk

holds, which is exact for polynomials of degree less than 2n. We denote
the zeros of the orthogonal polynomials qn by

(4.7) xnj = cos(2jπ/(2n + 1)), j = 1, . . . , n,

and we define the Lagrangian fundamental polynomials lμnj , the Chris-
toffel numbers μnj , j = 1, . . . , n, and the interpolation operators Lμ

n in
the same way as above. Then an analogous Gaussian quadrature rule
with the degree of accuracy 2n − 1 is valid.
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In order to approximate the solution of equation (2.2) we consider
the following equations

(4.8) (S + νLμ
nW + Knn)un = Lμ

nf, un ∈ Πn,

where the operators Kmn are defined on L2
σ by (cf. [ 2])

Kmnu(x) =
1
π

∫
J

kmn(x, y)u(y)σ(y) dy,

kmn(x, y) = Lμ
mxLσ

nyk(x, y).

(The second subscripts x and y of the interpolation operators mark the
variable according to which the interpolation is done.)

Remark 4.1. Usually, in the case of quadrature method, we approxi-
mate the operator K by Lμ

nK̃n, where

K̃nun(x) =
1
π

∫
J

Lσ
ny[k(x, y)un(y)]σ(y) dy, un ∈ Πn.

These operators are defined only on a subset of L2
σ. But using the

(exact) Gaussian quadrature rule (4.6), we observe that Knn is the
extension of Lμ

nK̃n to all of L2
σ. This fact is very important in further

investigations.

For the remaining part of the paper, let the kernel k(x, y) fulfill the
following conditions:

(a)
∫

J
[k(x, y)]2σ(y) dy ∈ Rμ,

(b)
∫

J
k(x, y)π(y)σ(y) dy ∈ Rμ,

for each polynomial π of arbitrary degree,

(c) k(x, ·) ∈ Rσ uniformly with respect to x ∈ J .

Let Cl,γ (l ≥ 0 integer, 0 ≤ γ ≤ 1) denote the subspace of C containing
all l-times continuously differentiable functions whose l-th derivative
satisfies a Hölder condition with exponent γ. If we introduce the norm

||u||l,γ :=
l∑

i=0

||Diu||∞ + Cl,γ(u),

Cl,γ(u) := sup |Dlu(x) − Dlu(y)| |x − y|−γ ,
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where the supremum is taken over all x, y ∈ J , x �= y and D denotes
the operator of differentiation, Cl,γ becomes a Banach space.

Lemma 4.2. Let ρ be one of the weights σ or μ. Then the following
assertions are valid:

(i) ||f − Lρ
nf ||ρ →

n→∞ 0 for each f ∈ Rρ.

(ii) If f ∈ Cl,γ , then ||f − Lρ
nf ||ρ ≤ Cn−l−γ, where C does not

depend on n.

Proof. For (i) see [10], for (ii) see [16, 25].

Definition 4.3. The kernel k is said to satisfy the assumption (∗),
if

k(·, y) ∈ Cl,γ uniformly with respect to y ∈ J and
k(x, ·) ∈ Cr,δ uniformly with respect to x ∈ J.

Lemma 4.4. We have

||Kmn − K||σ→μ =: εmn →
m,n→∞ 0,

where || · ||σ→μ means the norm in the space L(L2
σ,L2

μ). Moreover, if
assumption (∗) is fulfilled, then

εmn ≤ C(m−l−γ + n−r−δ).

Proof. Let u ∈ L2
σ. For each x ∈ J , we have

Kmnu(x) − Ku(x) = g(x) + h(x),

where

g(x) :=
1
π

Lμ
mx

∫
J

[Lσ
nyk(x, y) − k(x, y)]u(y)σ(y) dy

and
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h(x) :=
1
π

∫
J

[Lμ
mxk(x, y) − k(x, y)]u(y)σ(y) dy.

Now, ||Kmnu−Ku||μ ≤ ||g||μ + ||h||μ. The first norm can be estimated
as follows:

||g||μ ≤ C sup
x∈J

∣∣∣∣
∫

J

[Lσ
nyk(x, y) − k(x, y)]u(y)σ(y) dy

∣∣∣∣
≤ C sup

x∈J

{∫
J

[Lσ
nyk(x, y) − k(x, y)]2σ(y) dy

} 1
2

||u||σ.

By Lemma 4.2, the expression in the braces tends to zero as n → ∞. If
assumption (∗) is satisfied, then the same expression can be estimated
by Cn−r−δ||u||σ.

Consider the function h(x). Since

|h(x)|2 ≤ 1
π

∫
J

[Lμ
mxk(x, y) − k(x, y)]2σ(y) dy||u||2σ,

we obtain

||h||μ ≤ 1
π

{∫
J

∫
J

[Lμ
mxk(x, y) − k(x, y)]2σ(y) dyμ(x) dx

}1/2

||u||σ.

Now from [16] Theorem 3.2, it follows that the integral expression
converges to zero as m → ∞. Changing the order of integration, using
the relation ||v||σ ≤ c sup{|v(y)| : y ∈ J}, and applying Lemma 4.2
again, we get ||h||μ ≤ Cm−l−γ ||u||σ, if assumption (∗) is valid. Thus,
the assertions are proved.

Remark 4.5. We conclude from this lemma that Kmn is uniformly
bounded. We even are able to give a concrete bound. It is well-known
that

||Kmn||2σ→μ ≤ 1
π2

∫
J

∫
J

[kmn(x, y)]2σ(y) dyμ(x) dx.

Since k2
mn is a polynomial of degree 2m − 2 and 2n− 2 in the variable

x and y, respectively, we get, using the (exact) Gaussian quadrature
rules,

(4.9) ||Kmn||2σ→μ ≤ CσCμ sup |k(x, y)|2,
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where the supremum is taken over all pairs (x, y) ∈ J × J and Cρ is
defined by Cρ := π−1

∫
J

ρ(y) dy.

Lemma 4.6. We have

||Lμ
nW − W ||σ→μ →

n→∞ 0.

Proof. Recall that W is compact from L2
σ into C (Theorem 3.5). Since

Lμ
n converges strongly on C with respect to the L2

μ-norm to the identical
operator I (Lemma 4.2), the convergence Lμ

nW → W is uniform.

Now we are able to show

Lemma 4.7. If condition (K) is satisfied, then for sufficiently large
n the operators An := S + νLμ

nW + Knn and Bn := S + νLμ
nW are

invertible in the pair of spaces (L2
σ,L2

μ) and

sup
n

||A−1
n ||μ→σ < ∞, sup

n
||B−1

n ||μ→σ < ∞.

Proof. From the Lemmata 4.4 and 4.6 we get

||B − Bn||σ→μ →
n→∞ 0, ||A − An||σ→μ →

n→∞ 0,

where B and A are invertible operators (cf. Theorem 3.6). The
assertions follow immediately.

Thus, we can conclude that for large n equation (4.8) possesses a
unique solution un ∈ L2

σ. Moreover, since un = S−1(Lμ
nf − νLμ

nWun −
Knnun), we get from Lemma 2.1 that the solution is an element of Πn.
If we seek un of the form

un(y) =
n∑

k=1

(ξn)klσnk(y),



GENERALIZED AIRFOIL EQUATION 323

the vector ξn ∈ Cn is given by the solution of the system of equations
(Sn + νWn + Kn)ξn = fn. The matrices Sn, Wn and Kn are obtained
from (4.8) by choosing the collocation points xnj , j = 1, . . . , n and
using quadrature rules. It is well known that ([16, 5])

(Sn)j,k = σnk(ynk − xnj)−1, j, k = 1, . . . , n,

(Kn)j,k = σnkk(xnj , ynk), j, k = 1, . . . , n,

(fn)j = f(xnj), j = 1, . . . , n.

Considering S +νW and S +νLμ
nW as dominant parts of the operators

A and An, respectively, our aim is now to find a simple representation of
the entries of the matrix Wn. Moreover, we want to get a representation
of the inverse of Sn + νWn.

Since {lσnk}n
k=1 and {lμnj}n

j=1 are bases in Πn, the matrix Sn + νWn is
easily seen to be the matrix representation of the operator S + νLμ

nW
in this pair of bases. On the other hand, the matrix representation Hn

of this operator in the pair of bases {pi}n−1
i=0 and {qi}n−1

i=0 is very simple.
Using Lemma 2.1, Corollary 3.3, and Lμ

nqn = 0, we get Hn = In +νGn,
where In denotes the unit matrix of order n and

Gn =

⎛
⎜⎜⎜⎜⎝

−1/2 + ln 2 −1/2 O

1/2 1/4
. . .

. . . . . . −1
2(n−1)

O 1
2(n−1)

1
2n(n−1)

⎞
⎟⎟⎟⎟⎠ .

By P σ
n and Qμ

n, we denote the matrices with the entries

(P σ
n )i,k = pi−1(ynk), (Qμ

n)i,j = qi−1(xnj), i, j, k = 1, . . . , n.

From (4.3) we deduce that P σ
n is the transformation matrix from the

basis {pi} to the basis {lσnk}. Analogously, the matrix Qμ
n transforms

from {qi} to {lμnj}.

Lemma 4.8. The matrices P σ
n and Qμ

n are invertible, its inverses are
(P σ

n )−1 = (P σ
n Dσ

n)T and (Qμ
n)−1 = (Qμ

nDμ
n)T , where Dσ

n and Dμ
n are

diagonal matrices with the diagonal entries σnk and μnk, k = 1, . . . , n,
respectively.
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Proof. We carry out the proof for P σ
n . Consider the matrix product

P σ
n Dσ

n(P σ
n )T . Its entry in the i-th row and j-th column is

n∑
k=1

pi−1(tnk)pj−1(tnk)σnk.

Using the (accurate) Gaussian quadrature rule (4.6) and the orthonor-
mality of the system {pi}, we get P σ

n Dσ
n(P σ

n )T = In, whence the first
assertion follows immediately. The second one can be shown analo-
gously.

Now, with a little algebra, we derive

(4.10) Sn + νWn = (Qμ
n)T [In + νGn]P σ

n Dσ
n.

Consequently, applying the shorted Gaussian algorithm to the tridiag-
onal matrix In + νGn, we are able to solve equations of the form

(4.11) (Sn + νWn)ξn = gn, gn ∈ Cn,

effectively.

5. Convergence theorems. In this section we shall prove two
theorems about the convergence of the quadrature method for the
equation Au = f . In the first one we show that on very weak conditions
the approximate solution un converges to the exact solution u. But
it is often necessary to know the rates of convergence, especially in
the solution of the approximate equation by the help of multiple grid
methods (see Section 6). Thus, we formulate a second convergence
theorem, in which on certain assumptions about the smoothness of the
kernel k and the right-hand side f we get estimates of the convergence
rate.

Theorem 5.1. If, in addition to the assumptions made up to now,
f ∈ Rμ is satisfied, then the equations (4.8) are uniquely solvable for
all sufficiently large n, and for the unique solutions u and un of (2.2)
and (4.8), resepectively, one has ||u − un||σ → 0 as n → ∞.
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Proof. The existence of unique solutions u and un (for large n) of
the equations Au = f and Anun = Lμ

nf , respectively, follows from
Theorem 3.6 and Lemma 4.7. Using

||u − un||σ ≤ ||A−1
n ||μ→σ[||An − A||σ→μ||u||σ + ||f − Lμ

nf ||μ],

Lemma 4.7 (together with its proof) and Lemma 4.2 we get the
assertion.

Now we proceed to estimates of the convergence rates. To do this,
we need the following lemma.

Lemma 5.2. If u is the solution of Bu = (S + νW )u = g, g ∈ Cl,γ ,
then Wu ∈ Cl+1,γ. In case 1/2 < γ < 1, the solution u is an element
of Cl,γ− 1

2 .

Proof. Consider the ordinary differential equation w′ + νw = g. A
little thought shows that its general solution belongs to Cl+1,γ . Using
Lemma 2.1, Corollary 3.3, and the trigonometric representations of the
polynomials pn and qn we get (Wv)′ = Sv for each polynomial v of
arbitrary degree. This relation can be extended by continuity to the
whole space L2

σ in the sense of a generalized derivative, i.e., (Wv)′ = Sv,
v ∈ L2

σ. Now let u ∈ L2
σ be the unique solution of (S + νW )u = g (cf.

Theorem 3.6). The considerations above show that w = Wu satisfies
the ordinary differential equation and hence Wu ∈ Cl+1,γ . Therefore,
u = S−1(g−νWu) with g−νWu ∈ Cl,γ . With the regularity statements
for the operator S in [15, 18] we obtain u ∈ Cl,γ−1/2.

Theorem 5.3. If, in addition to the assumptions made up to now,
the kernel k satisfies (∗) and f ∈ Cl,γ , then the equations (4.8) are
uniquely solvable for all sufficiently large n, and for the unique solutions
u and un of (2.2) and (4.8), respectively, we have

(5.1) ||u − un||σ ≤ Cn−α,

where α = min{l + γ, r + δ}. If 1/2 < γ < 1, then u is an element of
Cl,γ−1/2. Finally, if α > 3/2, then

(5.2) ||u − un||∞ ≤ Cn−α+3/2.
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Proof. Let u be the unique solution of Au = f . Then Bu =
f − Ku ∈ Cl,γ . From Lemma 5.2, we conclude that Wu ∈ Cl+1,γ .
Applying the Lemmata 4.2 and 4.4 we can estimate ||u − un||σ

≤ ||A−1
n ||μ→σ[||ν(Lμ

n − I)Wu||μ + ||Knn −K||σ→μ||u||σ + ||f −Lμ
nf ||μ]

≤ C(n−l−γ + n−r−δ).

The relation u ∈ Cl,γ−1/2 follows from Lemma 5.2. Using (5.1) and
[17, Lemma 4.11] we get (5.2).

6. Effective numerical solution of the approximating equa-
tions. In generalization of [17, 2] we are going to present an iteration
process for solving (4.8). This iterative process seems to be a very
natural one, since it exactly reflects the subdivision of the operators
A and An into the dominant parts B and Bn, respectively, and the
perturbation. Set m � n. After choosing un,0 ∈ Πn we construct a
sequence {un,i}∞i=0 ⊂ Πn by a so-called two-grid method:

Bnun,i+1/2 = Lμ
nf − Knnun,i,(6.1)

Amem,n,i = Kmn(un,i − un,i+1/2), em,n,i ∈ Πm,(6.2)
un,i+1 = un,i+1/2 + em,n,i,(6.3)

where the second and the third equations are motivated by

An(un−un,i+1/2) = Lμ
nf − (Bn +Knn)un,i+1/2 = Knn(un,i−un,i+1/2).

With respect to the effective solution of the first equation we refer to
the remarks at the end of Section 4. The relations (6.1) (6.3) can be
written as iterative equations for a fixpoint equation in the following
form:

(6.4) un,i+1 = TmnLμ
nf + (I − TmnAn)un,i,

where Tmn := (I − A−1
m Kmn)B−1

n . It is easy to see that the solution
un of (4.8) is a fixpoint of (6.4). Whence, for the convergence of un,i

to un (i → ∞) it is sufficient that ||I − TmnAn||σ→σ < 1 for large m
and n. In order to verify this, we have to do some further preparations.
The proof of the following lemma is due to D. Jackson [24, Chapter
VI, Section 2].
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Lemma 6.1. Let u ∈ Cl,γ and n > l + 1. Then there exists a
polynomial un ∈ Πn such that u∗

n = u − un satisfies

||u∗
n||∞ ≤ Cn−l−γ||u||l,γ ,

where the constant C depends only on l and γ.

Lemma 6.2. We have

||W − Lμ
nW ||Cl,γ→L2

μ
≤ Cn−l−γ

with a constant C not depending on n.

Proof. Let u ∈ Cl,γ . By Lemma 6.1, u has a representation of the form
u = un−1 + u∗

n−1 with un−1 ∈ Πn−1 and ||u∗
n−1||∞ ≤ Cn−l−γ ||u||l,γ .

From Corollary 3.3, we derive that Wun−1 ∈ Πn and, consequently,

||Wu−Lμ
nWu||μ = ||(W −Lμ

nW )u∗
n−1||μ ≤ ||W −Lμ

nW ||σ→μ||u∗
n−1||σ.

The uniform boundedness of the first norm follows from Lemma 4.6.
Using ||u∗

n−1||σ ≤ C||u∗
n−1||∞ we get the assertion.

Lemma 6.3. The following assertions are valid:

(i) ||B−1
n − B−1||μ→σ →

n→∞ 0,

(ii) ||B−1
n − B−1||Cl,γ→L2

σ
≤ Cn−l−γ+1/2, if 1/2 < γ < 1.

Proof. The first assertion follows from Lemma 4.7 (together with its
proof) and

||B−1
n − B−1||μ→σ ≤ ||B−1

n ||μ→σ||B − Bn||σ→μ||B−1||μ→σ.

Now let f ∈ Cl,γ , 1/2 < γ < 1. We derive the existence of a constant C
such that ||B−1

n f − B−lf ||σ ≤ Cn−l−γ+1/2. According to Lemma 5.2,
the relation B−1f ∈ Cl,γ−1/2 is valid. Applying Lemma 6.2, we can
estimate

||B−1
n f − B−1f ||σ
≤ ||B−1

n ||μ→σ||νW − νLμ
nW ||Cl,γ−1/2→L2

μ
· ||B−1f ||l,γ−1/2

≤ Cn−l−γ+1/2,
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where C does not depend on n. Consider now the operators Cn ∈
L(Cl,γ ,L2

σ), Cn := nl+γ−1/2(B−1
n − B−1). From the principle of

uniform boundedness [20, Chapter VII] we conclude that ||Cn||Cl,γ→L2
σ

is uniformly bounded. Therefore, the second assertion is proved.

Lemma 6.4. One has

||B−1
m Kmn − B−1K||σ→σ =: δmn →

m,n→∞ 0.

Moreover, if the kernel k satisfies assumption (∗) with 1/2 < γ < 1,
then

δmn ≤ C(m−l−γ+1/2 + n−r−δ).

Proof. We write B−1
m Kmn−B−1K = B−1

m (Kmn−K)+(B−1
m −B−1)K.

Now the first assertion follows from K ∈ L(L2
σ,L2

μ) and the Lemmata
4.4, 4.7, and 6.3. In order to prove the second assertion, we remark
that in this case K ∈ L(L2

σ, Cl,γ). Consequently, with Lemma 6.3, we
get

||B−1
m − B−1||Cl,γ→L2

σ
||K||L2

σ→Cl,γ ≤ Cm−l−γ+1/2.

The Lemmata 4.4 and 4.7 yield

||B−1
m ||μ→σ||Kmn − K||σ→μ ≤ C(m−l−γ + n−r−δ).

Thus, the lemma is proved.

Now we can show the validity of the following theorem.

Theorem 6.5. We have

||I − TmnAn||σ→σ =: ζmn →
m,n→∞ 0.

Moreover, if assumption (∗) with 1/2 < γ < 1 is satisfied, we can esti-
mate (β = min{l + γ − 1/2, r + δ})

ζmn ≤ C(n−β + m−β).
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Proof. The operator I − TmnAn admits the representation

A−1
m [(Kmn − Kmm)B−1

n Knn + Kmm(B−1
n Knn − B−1

m Kmn)]
+ (B−1

m Kmn − B−1
n Knn).

From the Lemmata 4.4, 4.7 and 6.4, we obtain ζmn → 0 as m, n → ∞.
Furthermore, if (∗) with 1/2 < γ < 1 holds true, then the same lemmata
yield the sought estimate.

Now, the iteration error ||uni − un|| of the two-grid method can be
estimated, using (6.4) and the fixpoint property of the solution un of
(4.8), by

(6.5) ||uni − un||σ ≤ ζi
mn||un0 − un||σ.

Choosing, for example, un0 = 0, we get

(6.6) ||uni − un||σ ≤ Cζi
mn,

and if there exists a constant c so that n ≤ cm, we obtain

(6.7) ||uni − un||σ ≤ Cn−iβ.

The total error after i iteration steps, that means ||uni − u||σ, can be
estimated by (use Theorem 5.3)

(6.8) ||uni − u||σ ≤ Cn−min{l+γ,i(l+γ−1/2),r+δ}.

We see that, for example, if l+γ ≥ 1, then after two iteration steps the
order of the total error has reached the order of the approximation error
(see Theorem 5.3). Considering the computational complexity of this
two-grid method we find out that it is of the order O(n3) since n ≤ cm
is required. But this disadvantage does not occur if we use multiple grid
methods. The idea consists in using again a two-grid method to solve
(6.2), etc. We define such a method by the help of an iteration process
analogously to (6.4). First, we choose two positive integers N ≥ 2 and
n0 and define {np}∞p=0 by np = Nnp−1, p = 1, 2, . . . . The subscript
p is called the level. For simplicity, in the following we will denote
by Ap, Bp, Kp−1,p, Lμ

p , Tp, up, ζp the operators Anp
, Bnp

, Knp−1,np
,
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Lμ
np

, Tnp−1,np
, the function unp

, and the number ζnp−1,np
, respectively.

From Theorem 6.5, we conclude that

(6.9) ζp ≤ vp := Cn−β
p .

Following [28], we define an operator Mp ∈ L(L2
μ,L2

σ) for each p
recurrently as follows

Mo = A−1
0 ,

Mp = (I − Qp−1Kp−1,p)B−1
p , p = 1, 2, . . . ,

Qp−1 = (2I − Mp−1Ap−1)Mp−1, p = 1, 2, . . . .

Let us consider the iteration process

(6.10) up,i+1 = MpL
μ
pf + (I − MpAp)up,i.

It can be shown that (6.10) realizes the idea described above. Define
ξp := ||I − MpAp||σ→σ. Based on the convergence of the two-grid
method on level 1 (i.e., n := n1, m := n0) the convergence of the
multiple grid method can be proved in the following way.

Theorem 6.6. If the kernel k satisfies assumption (∗) with 1/2 <
γ < 1 and v1 (from (6.9)) is less than

b := min{1, (1/2d)[
√

C2
K + 4d(

√
d − d) − CK ]},

where d := N−β and CK := sup{||B−1
p Kpp||σ→σ : p = 0, 1, . . . }, then

ξp ≤ √
vp, p = 1, 2, . . . .

Proof. (cf. also [28]). We only give the idea of the proof. The operator
I − MpAp admits the representation

(I − TpAp) − [I − Mp−1Ap−1]2[(I − TpAp) + B−1
p Kpp].

Thus, we conclude that

ξp ≤ ζp + ξ2
p−1(ζp + ||B−1

p Kpp||σ→σ).
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Defining recurrently w1 := v1, wp := vp + w2
p−1(vp + CK), p = 2, 3, . . .

we get from [1, Lemma 17], w2
p < vp, p = 1, 2, . . . , if only v1 < b is

fulfilled. It is easy to see that M1 = T1, consequently, ξ1 = ζ1. By
induction, we obtain ξp ≤ wp, p = 2, 3, . . . . This proves the assertion.

Returning to (6.10), we deduce

(6.11) ||upi − up||σ ≤ ξi
p||upo − up||σ,

where up is the solution of Apup = Lμ
pf . Choosing, for example, upo = 0

we get

(6.12) ||upi − up||σ ≤ Cξi
p ≤ Cn−ib/2

p ,

and for the total error (with α from Theorem 5.3)

(6.13) ||upi − u||σ ≤ Cn−min{α,iβ/2}
p .

A little thought shows us that the computational complexity of this
multiple grid method is O(n2

p) + O(n3
o), which is of the order O(n2

p).

Remark 6.7. If we modify the condition on v1 in Theorem 6.6
to v1 < b := (1/2d)[

√
C2

K + d2 − CK ], which is a stronger one in
case d < 16/25, then we can improve the error estimate (6.12) to
||upi − up|| ≤ Cn−iβ

p . For the proof, see [28, Chapter 2], where it was
remarked, however, that in practice this stronger condition is often not
realizable without loss of efficiency.

7. Quadrature method for a more general integral equation.
The treatment of the operator S + νW + K gives rise to the following
more comprehensive generalization of the Cauchy type singular integral
operator, namely the equation

(7.1) (S(l) + K)u = f,
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where

S(l) =
l∑

j=0

cjZjσI, cj ∈ C, c0 �= 0,

Zjv(x) =
1
π

∫
J

zj(y − x)v(y) dy, j = 0, 1, . . . ,

z0(x) = x−1,

zj(x) =
(−x)j−1

(j − 1)!

[
− ln |x| +

j−1∑
i=1

1
i

]
, j = 1, 2, . . . .

With these notations, we have Z0 = S0, Z1 = W0, and zj(x) =
−z′j+1(x), x �= 0, j = 0, 1, . . . . The investigation of the operators Zj

and the construction of the approximating equations proceeds on the
basis of Sections 3 and 4. We shall enlighten this strategy by applying
it to the case j = 2. First find out the series expansion of zj(y − x) in
terms of the Chebyshev polynomials of the first kind:

z2(y − x) = (y − x)(ln |y − x| − 1)

= (y − x)
[
− ln 2 −

∞∑
k=1

2
k

tk(x)tk(y) − 1
]

= (ln 2)t1(x)t0(y) + [(− ln 2)t0(x) + (1/2)t2(x)]t1(y)

+
∞∑

k=2

[
− tk−1(x)

(k − 1)k
+

tk+1(x)
(k + 1)k

]
tk(y).

Here we took into consideration Lemma 3.1 and the recurrence formula
tk+1(x) = 2xtk(x) − tk−1(x).

The second step consists of determining Zjσpk, k = 0, 1, . . . , which
proceeds in a similar manner to the proofs of Theorem 3.2 and Corollary
3.3; for example, we get

Z2σp0 = −q0 ln 2 + ((ln 2)/2 − 1/8)q1 + (1/8)q2,

Z2σp1 =
(

1
8
− ln 2

2

)
q0 − 1

4
q1 +

1
12

q2 +
1
24

q3,

Z2σpk =
1
4

{
qk−2

(k − 1)k
− 2qk−1

(k − 1)k(k + 1)
− 2qk

k(k + 1)
+

2qk+1

k(k + 1)(k + 2)

+
qk+2

(k + 1)(k + 2)

}
, k = 2, 3, . . . .
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In the third step, we establish the approximating equations. The
quadrature method developed here replaces the operator S(l) by the
approximating ones

S(l)
n = c0S +

l∑
j=1

cjL
μ
nZjσI, n = 1, 2, . . . ,

acting on Πn. Consider as in Section 4 the matrix representation H(l)

of S(l) with respect to the bases {pi}∞i=0 and {qi}∞i=0. It will be a
band matrix the band width of which exactly equals 2l − 1. When
switching over to the representation H

(1)
n of S

(1)
n , the band structure is

disturbed by nonzero entries in the last l−1 columns which come from
the decomposition of Lμ

nqn+1, . . . , Lμ
nqn+l−1 with respect to the basis

{q0, . . . , qn−1} of Πn.

Taking into account the basis transformations {pi}n−1
i=0 �→ {lσnk}n

k=1

and {qi}n−1
i=0 �→ {lμnj}n

j=1, we get the approximating system

(7.2) [(Qμ
n)T H(1)

n P σ
n Dσ

n + Kn]ξn = fn,

where (fn)j = f(xnj), j = 1, . . . , n, and un(x) =
∑n

k=1(ξn)klσnk(x).
The proofs of the convergence Theorems 5.1 and 5.3 are applicable to
this general case in a slightly adapted way, too. Note that [Zjσu]′ =
Zj−1σu, j = 1, 2, . . . , such that we can conclude the smoothness of
Zjσu from the smoothness of Ku and f . Furthermore, the compactness
of Zjσu (j ≥ 2) follows from the continuity of zj .

Finally, we can establish an analogous iteration process and verify its
convergence to the exact solution of (7.2) under the same conditions as
in Theorems 5.1 and 5.3 when substituting the assumption dim kerB =
0 by dim ker S(l) = 0.

Remark 7.1. Although we have not found any treatment in the
literature where the equation (7.1) with l ≥ 2 arises from some physical
or technological problem, we believe that the present generalization is
not only of purely theoretical interest. Suppose that the functions k
and f in equation (2.2) are such that f possesses Hölder continuous
derivatives of higher order than k and that one can find appropriate
coefficients cj such that

k̃(x, y) := k(x, y) −
l∑

j=2

cjzj(y − x)
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is smoother than k. In this situation, it is recommendable to solve the
equivalent equation (7.1) (where K is defined by the kernel k̃ instead
of k) by the quadrature method described here. The advantage will
consist of an increasing convergence rate (cf. Theorem 5.3).

8. Numerical results.

We applied our method to the equation (2.2) with ν = 1, k(x, y) =
|x| + |y|, and f(x) = x + |x| + 1 + ln 2 + 2/π. Then (2.2) possesses the
exact solution u(x) ≡ 1. In order to solve the approximate equations
(4.8) we used the two-grid method (6.1) (6.3) with the start polynomial
un,0 ≡ 0 and m = n/3.

Notice that in this case (f, k(., y), k(x, .) ∈ C0,1) we can expect from
the error estimate (6.8) that

||un1 − u||σ ≤ Cn−1/2, ||uni − u||σ ≤ Cn−1, i = 2, 3, . . . .

In the following table we present the total error ||uni − u||σ for various
values of n and i.

n 1 2 3 4
6 3.21E-1 6.65E-3 1.28E-3 1.12E-3
12 5.79E-2 3.07E-4 2.40E-4 2.40E-4
18 3.17E-2 1.16E-4 9.98E-5 9.98E-5
24 2.04E-2 5.94E-5 5.41E-5 5.41E-5

We remark that the error was computed exactly by using the Gaus-
sian quadrature rule (4.6).
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sian), Nauka, Moscow, 1981.

27. J.B. Reade, Asymptotic behaviour of eigen-values of certain integral equa-
tions, Proc. Edinburgh Math. Soc. 22 (1979), 137 144.

28. H. Schippers, Multiple grid methods for equations of the second kind with
applications in fluid mechanics, Math. Centre Tracts 163, Amsterdam, 1983.
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