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THE MODIFIED QUADRATURE METHOD FOR
LOGARITHMIC-KERNEL INTEGRAL EQUATIONS

ON CLOSED CURVES

JUKKA SARANEN

ABSTRACT. Here we discuss the convergence of the modi-
fied quadrature method in the approximate solution of bound-
ary integral equations of the first kind with logarithmic kernel.
The method consists of regularization of the kernel together
with trapezoidal approximation of the integral. We are able
to prove convergence of the order O(h3) for smooth solutions.
Numerical experiments confirm our theoretical results.

1. Introduction. Because of its importance in many areas of
mathematical physics, the numerical solution of the integral equation

(1.1) − 1
π

∫
Γ

v(y) ln |x − y| dsy = g(x), x ∈ Γ

on a closed curve Γ ⊂ R2 has attained considerable attention. Re-
maining with smooth curves we observe that the basic Galerkin- and
collocation methods (using splines or trigonometric functions as trial
functions) [3, 4, 5, 10, 13, 16, 17, 21] and various modifications of
these methods for (1.1) have been analyzed extensively [2, 7, 14, 15,
19, 23, 24]. In the above articles [5, 7], and in [12] in connection
with [14, 15], the effect of numerical integration is also taken into ac-
count, which means that fully discretized schemes are available. The
same is true also for the spline Galerkin- and collocation methods in
the works [9, 18, 25, 26] where sufficient conditions for accuracy of the
numerical integration are found to preserve the convergence properties
of the original method. However, the conventional easy-to-implement
quadrature methods for (1.1) have not yet been completely analyzed.

Let us briefly review what is known for quadrature methods applied
to (1.1). Assume that we simply use (after choosing a parametric rep-
resentation for the curve Γ) the composite trapezoidal rule for approx-
imating of the integral in (1.1) and set up the quadrature equations by
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requiring collocation at evenly spaced nonmesh points. If the colloca-
tion points are midpoints of the mesh, we obtain an unstable scheme.
For other collocation points, with one exception where the order is
O(h2), we obtain a stable method with the low order of convergence
O(h). These results were shown by Sloan and Burn in [22]. Moreover,
it was shown in [22] that the order of the convergence can be raised by
introducing some “nonconventional” quadrature methods. This study
was further developed by Saranen and Sloan in [20]. However, it should
be pointed out that since the collocation points differ from the mesh-
points, the above approaches destroy the symmetry included in the
logarithmic kernel and the coefficient matrix of the finite dimensional
system becomes nonsymmetric.

In this article we consider another, more conventional, approach
to improve the straightforward application of a composite quadrature
method. This method is well known in connection with integral equa-
tions involving operators with singular and weakly singular kernels; see,
e.g., Baker [6] and Kantorovich and Krylov [11]. In this method one
performs regularization of the kernel before applying the quadrature
rule. The modified quadrature method (based on the trapezoidal rule)
for the equation (1.1) was recommended by Christiansen in [8] and the
experimental O(h3) order of convergence was reported. Later, in the
case of a circle, Abou El-Seoud [1] was able to prove the existence of
solution and an O(h2) order of convergence.

Here we reinvestigate the order of convergence of the modified quadra-
ture method in the solution of (1.1). By applying very different, and
essentially simpler, argumentation than were used by Abou El-Seoud,
we are able to prove the order of convergence O(h3) if the solution
is smooth enough. Moreover, the results are valid for general smooth
closed curves (assuming that the capacity of the curve differs from one)
without any further restriction. It should be noted that the modified
quadrature method used here gives a symmetric coefficient matrix for
the finite dimensional system and consequently more efficient solvers
can be used than for the other quadrature methods described above.
One special feature of quadrature methods in general is the importance
of the “post-processing” since the method itself produces only numbers
which are approximations of the solution at the collocation points. Here
we apply interpolation by the trigonometric functions and use this par-
ticular embedding of the discrete solution into the space of continuous
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functions as the basis of the analysis. The advantage of such an ap-
proach, as compared with the conventional matrix methods [1], became
evident in the works [22, 20]. We have carried out some numerical ex-
periments. These tests confirm O(h3) order of convergence and show
a good accuracy for the method. We also compare the accuracy of
the solution with the simple quadrature method of the order O(h2)
mentioned above. Already for coarse meshes, the modified quadrature
method seems to be superior.

2. Modified quadrature method. We consider Symm’s integral
equation

(2.1) − 1
π

∫
Γ

v(y) ln |x − y| dsy = g(x), x ∈ Γ

on a closed smooth Jordan curve Γ in R2. Let t �→ x(t), R → Γ be a 1-
periodic parametric representation of the curve Γ such that |x′(t)| > 0
for all t. Substituting

u(t) :=v(x(t))|x′(t)|/(2π)
f(t) :=g(x(t))

equation (2.1) becomes

(2.2) (Su)(t) = f(t), t ∈ [0, 1]

where

(2.3) (Su)(t) =
∫ 1

0

K(t, τ )u(τ ) dτ

with the kernel K(t, τ ) = −2 ln |x(t) − x(τ )|.
For further discussion we assume that the capacity or conformal

mapping radius of Γ differs from one. By this condition equation (2.2) is
uniquely solvable. We study a natural quadrature method for numerical
approximation of the solution. This method which yields a completely
discretized system of equations is based on the regularization of the
integral operator as introduced by Kantorovich and Krylov in [11, p.
102]. In this regularization approach equation (2.2) is first written as
(2.4)

u(t)
∫ 1

0

K(t, τ ) dτ +
∫ 1

0

K(t, τ )(u(τ )− u(t)) dτ = f(t), t ∈ [0, 1].
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For some special curves, the first integral

(2.5) α(t) :=
∫ 1

0

K(t, τ ) dτ

can be determined exactly. For example, with the cases of a circle and
of an ellipse, the function α(t) is constant. However, for general curves,
we need a numerical counterpart of the function α(t).

Let tk = kh be a uniform mesh of [0, 1], with h = 1/N . If u is
continuous, the value (Su)(tk) becomes

(2.6) (Su)(tk) = u(tk)
∫ 1

0

K(tk, τ ) dτ +
∫ 1

0

K(tk, τ )(u(τ )− u(tk)) dτ.

Now the modified quadrature method is obtained by replacing the ex-
act integrations in (2.6) by suitable numerical integrations. Here we
apply the composite trapezoidal rule as follows. Since the integrand
K(tk, τ )(u(τ )− u(tk)) vanishes at the point τ = tk we use the approx-
imation
(2.7)∫ 1

0

K(tk, τ )(u(τ )−u(tk)) dτ � −2h

N−1∑
j=0
j �=k

ln |x(tk)−x(tj)|(u(tj)−u(tk)).

For the first integral in (2.6), we write

(2.8)
∫ 1

0

K(tk, τ ) dτ = −
∫ 1

0

2 ln |x(tk) − x(τ )| dτ

= −
∫ 1

0

2 ln |xρ(tk) − xρ(τ )| dτ −
∫ 1

0

2 ln
∣∣∣∣ x(tk) − x(τ )
xρ(tk) − xρ(τ )

∣∣∣∣ dτ.

Here we have used the notation xρ(t) = ρei2πt with ρ = e−1/2. Thus,
t �→ xρ(t) is the parametric representation of the circle with radius
ρ = e−1/2. Our motivation for applying the decomposition (2.8) is that
the first integral in the right side of (2.8) has the constant value

(2.9) −
∫ 1

0

2 ln |xρ(tk) − xρ(τ )| dτ = 1
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for all tk. Moreover, the kernel in the second integral is smooth. Thus,
using the trapezoidal rule, we obtain the approximation
(2.10)∫ 1

0

K(tk, τ ) dτ � α̃k = 1 − 2h ln
∣∣∣∣ x′(tk)
x′

ρ(tk)

∣∣∣∣ − 2h
N−1∑
j=0
j �=k

ln
∣∣∣∣ x(tk) − x(tj)
xρ(tk) − xρ(tj)

∣∣∣∣.

Replacing the values u(tj) with the unknown numbers uj and using
the above approximations (2.7) (2.10), we obtain the modified quadra-
ture method

(2.11) α̃kuk −2h

N−1∑
j=0
j �=k

ln |x(tk)−x(tj)|(uj −uk) = fk, 0 ≤ k ≤ N −1

where fk = f(tk). Written as a matrix equation (2.11) becomes

(2.12) LU = F

where U = (u0, . . . , uN−1)T , F = (f0, . . . , fN−1)T and where L =
(Lkj) is an N × N -matrix with entries

Lkk = α̃k + 2h

N−1∑
j=0
j �=k

ln |x(tk) − x(tj)|

= 1 − 2h ln
∣∣∣∣ x′(tk)
x′

ρ(tk)

∣∣∣∣ + 2h
N−1∑
j=0
j �=k

ln |xρ(tk) − xρ(tj)|

Lkj = −2h ln |x(tk) − x(tj)|, j �= k.

For the practical implementation, it is worthwhile to point out that the
sum which appears in the diagonal term Lkk is independent of k. In
fact, we have

Lkk = h

[
1 − 2 ln

( |x′(tk)|
2πe−

1
2

)]
+ 2h

N−1∑
j=1

ln(2| sin(πjh)|).
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Thus, in calculating the coefficient matrix, the work which is needed
for the diagonal terms is not significant.

It turns out that the matrix L is nonsingular if the discretization
parameter h is small enough. Moreover, we shall prove the error
estimate

(2.13) |u(tk) − uk| ≤ ch3, 0 ≤ k ≤ N − 1

if the solution u is smooth enough. Having found the values uk �
u(tk), they can be used, by interpolation, to define various global
approximations of the solution u. In fact, we perform our error analysis
by using trigonometric interpolation through the points (tk, uk), 0 ≤
k ≤ N − 1. Such an analysis has some advantages compared with the
conventional approach relying on matrix methods. For example, we
obtain optimal error estimates also with respect to a scale of Sobolev-
norms of negative order.

Since there are cases where the integral α(t) in (2.5) can be deter-
mined exactly, it is of some interest to study the difference between
using the approximation α̃k and the exact value αk = α(tk) in (2.11).
The latter method is given as follows: find the unknown numbers uj

such that

(2.14) αkuk −2h
N−1∑
j=0
j �=k

ln |x(tk)−x(tj)|(uj −uk) = fk, 0 ≤ k ≤ N −1

We are able to show that the effect of replacing αk by α̃k is asymp-
totically negligible: the equations (2.14) are uniquely solvable if h is
small and if u is smooth enough, and for any given q > 0 there exists
a constant c = c(q) > 0 such that

(2.15) |uk − uk| ≤ chq, 0 ≤ k ≤ N − 1.

Thus, for smooth solutions we obtain the order O(h3) also for the
method (2.14):

(2.16) |u(tk) − uk| ≤ ch3, 0 ≤ k ≤ N − 1.

Method (2.14) is exactly the method considered by Abou El-Seoud in
[1], where the convergence rate O(h2) for circles was shown.
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More precise statements are to be found in Section 4.

3. Preliminaries. Here we will introduce some notations and
theoretical results needed in the subsequent analysis of the modified
quadrature method. Let Hs, s ∈ R denote the usual Sobolev space
of 1-periodic functions (distributions) on the real line with the corre-
sponding norm || · ||s. For u ∈ Hs, we have the Fourier representation

u(t) =
∑
n∈Z

û(n)ein2πt

in Hs such that

û(n) = (u, ein2πt) =
∫ 1

0

u(t)e−in2πt dt

and

||u||2s = |û(0)|2 +
∑
n�=0

|n|2s|û(n)|2.

The operator S defines an isomorphism Hs → Hs+1 for all s ∈ R.
We use the familiar decomposition of S into the “main part” corre-
sponding to the circle with radius ρ = e−1/2 and into the remaining
“perturbation” as

(3.1) (Su)(t) = (S0u)(t) + (Bu)(t)

where

(3.2) (S0u)(t) = −
∫ 1

0

2 ln |xρ(t) − xρ(τ )|u(τ ) dτ

(3.3) (Bu) (t) = −
∫ 1

0

2 ln
∣∣∣∣ x(t) − x(τ )
xρ(t) − xρ(τ )

∣∣∣∣u(τ ) dτ.

The operator S0 also defines an isomorphism S0 : Hs → Hs+1 for all
s ∈ R and, furthermore, it has the explicit Fourier representation

(3.4) (S0u)(t) = û(0) +
∑
n�=0

û(n)
|n| ein2πt.
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The operator B, having a smooth kernel, defines a bounded mapping
B : Hs → Ht for all s, t ∈ R.

By using the relation

(3.5) −
∫ 1

0

2 ln |xρ(t) − xρ(τ )| dτ = 1

we write (S0u)(t) as

(3.6) (S0u)(t) = u(t) −
∫ 1

0

2 ln |xρ(t) − xρ(τ )|(u(τ )− u(t)) dτ.

Applying the trapezoidal rule, we define the corresponding discretized
operator S0h as

(3.7) (S0hu)(t) = u(t) − 2h
N−1∑
j=0

ln |xρ(t) − xρ(tj)|(u(tj) − u(t)).

If the function u is continuous at the meshpoints tk, then the function
(S0hu)(t) attains at these points the value

(3.8) (S0hu)(tk) = u(tk) − 2h

N−1∑
j=0
j �=k

ln |xρ(tk) − xρ(tj)|(u(tj) − u(tk)).

Corresponding to the operator B, we have the discretized operator Bh

given by

(3.9) (Bhu)(t) = −2h

N−1∑
j=0

ln
∣∣∣∣ x(t) − x(tj)
xρ(t) − xρ(tj)

∣∣∣∣u(tj)

which at the points tk has the value
(3.10)

(Bhu)(tk) = −2h ln
∣∣∣∣ x′(tk)
x′

ρ(tk)

∣∣∣∣u(tk) − 2h
N−1∑
j=0
j �=k

ln
∣∣∣∣ x(tk) − x(tj)
xρ(tk) − xρ(tj)

∣∣∣∣u(tj).

The discretized operator Sh corresponding to S is given by

(3.11) (Shu)(t) = (S0hu)(t) + (Bhu)(t).
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Now we can rewrite the quadrature equations (2.11) by means of
the discretized operator Sh. Namely, if ũ is any function which
is continuous in the neighborhood of the mesh points tk such that
ũ(tk) = uk, 0 ≤ k ≤ N − 1, then the problem (2.11) is equivalent to
the equations

(3.12) (Shũ)(tk) = fk, 0 ≤ k ≤ N − 1.

In our analysis we choose ũ to be the trigonometric interpolation
polynomial. For this, let

(3.13) Λh =
{

n ∈ Z : −N

2
< n ≤ N

2

}

and let Th be the N -dimensional space of the 1-periodic trigonometric
functions

(3.14) Th =
{

v =
∑

n∈Λh

anein2πt, an ∈ C
}

.

It is worth pointing out that the interpolation problem: find uh ∈ Th

such that

(3.15) uh(tk) = uk, 0 ≤ k ≤ N − 1

is uniquely solvable and that the solution is directly given by

(3.16) uh(t) = h
∑

n∈Λh

N−1∑
k=0

ukei2πn(t−kh).

Now the modified quadrature problem (2.11) is equivalent to: find
uh ∈ Th such that
(3.17)
(S0huh)(tk) + (Bhuh)(tk) = (S0u)(tk) + (Bu)(tk), 0 ≤ k ≤ N − 1.



584 J. SARANEN

Similarly, we describe the related method (2.14) by means of trigono-
metric functions. For any v ∈ Th, we have

α(tk)v(tk) − 2h

N−1∑
j=0
j �=k

ln |x(tk) − x(tj)|(v(tj) − v(tk))

= v(tk)
∫ 1

0

ln |xρ(tk) − xρ(τ )| dτ + v(tk)
∫ 1

0

ln
∣∣∣∣ x(tk) − x(τ )
xρ(tk) − xρ(τ )

∣∣∣∣ dτ

− 2h

N−1∑
j=0
j �=k

ln |xρ(tk) − xρ(tj)|(v(tj) − v(tk))

− 2h
N−1∑
j=0

ln
∣∣∣∣ x(tk) − x(tj)
xρ(tk) − xρ(tj)

∣∣∣∣(v(tj) − v(tk))

= (S0hv)(tk) + (Bhv)(tk) + ((B1)(tk) − (Bh1)(tk))v(tk).

Therefore, the method (2.14) is equivalent to: find uh ∈ Th such that
(3.18)

(S0huh)(tk) + (Bhuh)(tk) = (S0u)(tk) + (Bu)(tk), 0 ≤ k ≤ N − 1

where

(3.19) (Bhv)(t) = (Bhv)(t) + ((B1)(t) − (Bh1)(t))v(t), v ∈ Th.

In the next section we will consider the solvability of problems (3.17),
(3.18) and discuss convergence of these methods.

4. Error analysis. We discuss first the problem (3.17) and take for
the beginning the case of the circle with radius ρ = e−1/2. Then (3.17)
reduces to the problem: find uh ∈ Th such that

(4.1) (S0huh)(tk) = (S0u)(tk), 0 ≤ k ≤ N − 1.

In order to analyze (4.1), we need the Fourier expansion of the operator
S0h in the subspace Th. Let S0Δ be the operator given by the
trapezoidal rule such that

(4.2) (S0Δu)(t) = −2h
N−1∑
j=0

ln |xρ(t) − xρ(tj)|u(tj).
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A simple calculation shows that this operator has the Fourier expansion

(4.3)

{
( ̂S0Δu)(n) = |n|−1

∑
k∈Z û(n + kN), n �= 0

( ̂S0Δu)(0) =
∑

k∈Z û(kN).

For given n ∈ Z, there exists a unique integer nΛh
∈ Λh such that

n = nΛh
+ kN for some k ∈ Z. We write en(t) = ein2πt. Now, if

u =
∑

n∈Λh
û(n)en ∈ Th, then (4.3) implies that

(4.4)

{
( ̂S0Δu)(n) = |n|−1û(nΛh

), n �= 0

( ̂S0Δu)(0) = û(0).

The operator S0h which is defined by the regularization, together
with the trapezoidal rule, is connected to S0Δ as follows

(4.5)
(S0hu)(t) = u(t) − 2h

N−1∑
j=0

ln |xρ(t) − xρ(tj)|(u(tj) − u(t))

= (S0Δu)(t) + [1 − (S0Δ1)(t)]u(t).

By using the expansion

(4.6) (S0Δ1)(t) = 1 +
∑
k �=0

1
|kN |ekN (t)

and combining (4.4), (4.5) one obtains for functions u ∈ Th the
representation

(4.7)

⎧⎪⎪⎨⎪⎪⎩
(̂S0hu)(n) =

(
1
|n| − 1

|n−nΛh
|
)

û(nΛh
), n /∈ Λh

(̂S0hu)(n) = 1
|n| û(n), 0 �= n ∈ Λh

(̂S0hu)(0) = û(0).

Recalling the Fourier series characterization of the pointwise equations
(4.1) [4], we have

(4.8)
∑
l∈Z

(̂S0huh)(n + lN) =
∑
l∈Z

(Ŝ0u)(n + lN), n ∈ Λh.
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By using (4.7), we obtain

(4.9)

{
ûh(0) = û(0) +

∑
l �=0

û(lN)
|lN |

(1 + Dn)ûh(n) = û(n) + Rn, 0 �= n ∈ Λh.

where

Dn = |n|
∑
l �=0

(
1

|n + lN | −
1

|lN |
)

,(4.10)

Rn =
∑
l �=0

∣∣∣∣ n

n + lN

∣∣∣∣ û(n + lN).(4.11)

We use the following

Lemma 4.1. For the term Dn,

(4.12) |Dn| ≤ c|nh|3, 0 �= n ∈ Λh

and there exists a constant c0 > 0 such that

(4.13) 1 + Dn ≥ c0

for all 0 �= n ∈ Λh, h = 1/N .

Proof. From the representation (4.10) we find that

(4.14) Dn = 2|nh|3
∞∑

l=1

1
l(l2 − (nh)2)

.

For n ∈ Λh, we have |nh| ≤ 1/2. Then the assertions (4.12), (4.13)
follow from (4.14) since we have

(4.15) 0 < c1 ≤
∞∑

l=1

1
l(l2 − x2)

≤ c2, |x| ≤ 1/2.
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Now we are able to prove the solvability and error estimates for the
quadrature problem (4.1).

Proposition 4.1 (Circle). Assume that u ∈ Hs, s > −1/2. Then
there exists a unique solution uh ∈ Th of the equations (4.1) and we
have the asymptotic error estimate

(4.16) ||u − uh||t ≤ chs−t||u||s
−1 ≤ t ≤ s ≤ t + 3, s > −1/2.

Proof. By Lemma 4.1, the Fourier coefficients ûh(n), n ∈ Λh are
uniquely determined from (4.9). This shows the existence of a unique
solution uh ∈ Th of (4.1) for all values h = 1/N . Moreover, we have,
for 0 �= n ∈ Λh,

(4.17) ûh(n) − û(n) = − Dn

1 + Dn
û(n) +

Rn

1 + Dn
.

For the term Rn, we obtain
(4.18)

|Rn|2 ≤
( ∑

l �=0

∣∣∣∣ n

n + lN

∣∣∣∣2|n + lN |−2s

) ∑
l �=0

|n + lN |2s|û(n + lN)|2

= |n|2h2s+2

( ∑
l �=0

|l + nh|−2s−2

) ∑
l �=0

|n + lN |2s|û(n + lN)|2

≤ ch2s|nh|2
∑
l �=0

|n + lN |2s|û(n + lN)|2

if 2s + 2 > 1, i.e., s > −1/2. Since ûh(0) = û(0) +
∑

l �=0 û(lN)/|lN |,
we have
(4.19)

||u−uh||2t =
∣∣∣∣ ∑

l �=0

û(lN)
|lN |

∣∣∣∣2+ ∑
0�=n∈Λh

|n|2t|û(n)−ûh(n)|2+
∑

n/∈Λh

|n|2t|û(n)|2.

For the first and the last term, it easily holds that

(4.20)
∣∣∣∣ ∑

l �=0

û(lN)
|lN |

∣∣∣∣2 +
∑

n/∈Λh

|n|2t|û(n)|2 ≤ ch2(s−t)||u||2s
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for all t ≤ s, −1 ≤ t, s > −1/2. By Lemma 4.1, relation (4.17) and
estimates (4.12), (4.18), we have the upper bound

(4.21)
∑

0�=n∈Λh

|n|2t|û(n) − ûh(n)|2 ≤ c(T1 + T2)

where

(4.22) T1 =
∑

0�=n∈Λh

|n|2t|nh|6|û(n)|2,

(4.23) T2 = h2s+2
∑

0�=n∈Λh

|n|2t+2
∑
l �=0

|n + lN |2s|û(n + lN)|2.

Now, if 3 + t − s ≥ 0, i.e., s ≤ t + 3, we can use

(4.24) |n|2t|nh|6 = h2(s−t)|nh|6+2t−2s|n|2s ≤ h2(s−t)|n|2s,

which yields

(4.25) T1 ≤ h2(s−t)||u||2s.

Finally, if 2t + 2 ≥ 0, i.e., t ≥ −1, we obtain

(4.26)
T2 ≤ h2s+2N2t+2

∑
0�=n∈Λh

∑
l �=0

|n + lN |2s|û(n + lN)|2

≤ h2(s−t)||u||2s.

Combining (4.19), (4.20), (4.21), (4.25), (4.26), we get the desired
assertion (4.16).

Now we turn to the general case of equations
(4.27)
(S0huh)(tk) + (Bhuh)(tk) = (S0u)(tk) + (Bu)(tk), 0 ≤ k ≤ N − 1.

For the proof of the final result, the following approximation property of
the discretized operator Bh is crucial. This result was found by Saranen
and Sloan [20]; but for the convenience of the reader, we present a short
proof here.
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Lemma 4.2 ([20]). Let s, t ∈ R be given. Then, for any τ > 0, there
exists a positive constant c = c(s, t, τ) such that

(4.28) ||(B − Bh)v||t ≤ chτ ||v||s for all v ∈ Th.

Proof. If ϕ is any 1-periodic smooth function, one obtains by a
straightforward calculation that∫ 1

0

ϕ(τ )v(τ ) dτ =
∑

n∈Λh

v̂(n)ϕ̂(−n)

h

N−1∑
j=0

(ϕv)(tj) =
∑
k∈Z

(ϕ̂v)(kN) =
∑

n∈Λh

v̂(n)[ϕ̂(−n) +
∑
k �=0

ϕ̂(kN − n)]

for all v ∈ Th. If p > 1/2 and if n ∈ Λh, we have∣∣∣∣ ∑
k �=0

ϕ̂(kN − n)
∣∣∣∣ ≤ ( ∑

k �=0

|kN − n|−2p

)1/2

||ϕ||p ≤ chp||ϕ||p

where c = c(p). Thus, we further obtain

(a)
∣∣∣∣ ∫ 1

0

ϕ(τ )v(τ ) dτ − h

N−1∑
j=0

(ϕv)(tj)
∣∣∣∣

≤ chp||ϕ||p
∑

n∈Λh

|v̂(n)| ≤ chp− 1
2 ||ϕ||p||v||0.

The difference ((B − Bh)v)(t) is of the form

(b) ((B − Bh)v)(t) =
∫ 1

0

b(t, τ )v(τ ) dτ − h

N−1∑
j=0

b(t, tj)v(tj)

with a smooth kernel b(t, τ ). The assertion (4.28) now becomes as
follows. We first choose ϕ(τ ) = b(t, τ ) in (a) and thus estimate the
difference in (b). Then we obtain estimates for the derivatives by
differentiating (b) with respect to t and applying (a) again. Finally,
we observe that the L2-norm ||v||0 in (a) can be further estimated by
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using the inverse property ||v||s1 || ≤ chs2−s1 ||v||s2 , s1 > s2, v ∈ Th.

As our main result we have

Theorem 4.1. (General smooth curve) Assume that u ∈ Hs,
s > −1/2. Then for sufficiently small 0 < h ≤ h0, there exists a unique
solution uh ∈ Th of the equations (4.27) and we have the asymptotic
error estimate

(4.29) ||u − uh||t ≤ chs−t||u||s,−1 ≤ t ≤ s ≤ t + 3, s > −1/2.

Proof. We derive (4.29) first assuming the existence of a solution uh

of the problem (4.27). Then we have

(4.30) (S0huh)(tk) = (S0(u+S−1
0 (Bu−Bhuh)))(tk), 0 ≤ k ≤ N−1.

Now the operator S−1
0 S = I + S−1

0 B is an isomorphism Ht → Ht for
all t ∈ R. Therefore, we have

(4.31) ||u − uh||t ≤ c||u − uh + (S−1
0 B)(u − uh)||t

if u − uh ∈ Ht. We abbreviate

(4.32) v = u + S−1
0 (Bu − Bhuh)

and decompose v = v1 + v2, where

(4.33) v1 = u, v2 = S−1
0 (Bu − Bhuh).

Let v1
h, v2

h ∈ Th be the quadrature approximations of v1 and v2 such
that

(4.34) (S0hvj
h)(tk) = (S0v

j)(tk), 0 ≤ k ≤ N − 1.

By Proposition 4.1,

(4.35) ||v1 − v1
h||t ≤ chs−t||v1||s = chs−t||u||s.
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Function v2 = S−1
0 (Bu−Bhuh) is arbitrarily smooth which, by (4.16),

yields

(4.36)
||v2 − v2

h|t ≤ ch3||S−1
0 (Bu − Bhuh)||t+3

≤ ch3||Bu − Bhuh||t+4.

By using mapping properties of B and the approximation property of
Lemma 4.2 we estimate

(4.37)
||Bu − Bhuh||t+4 ≤ ||B(u − uh)||t+4 + ||(B − Bh)uh||t+4

≤ c(||u − uh||−1 + ||uh||−1)
≤ c(||u − uh||−1 + ||u||−1)

which yields

(4.38) ||v2 − v2
h||t ≤ ch3(||u − uh||−1 + ||u||−1).

Now from (4.30), it follows by definitions (4.33), (4.34) that uh = v1
h+v2

h

and accordingly is

(4.39) u − uh + S−1
0 (Bu − Bhuh) = v − uh = (v1 − v1

h) + (v2 − v2
h).

Thus, combining (4.35) (4.37), we find
(4.40)
||u−uh +S−1

0 (Bu−Bhuh)||t ≤ c(hs−t||u||s +h3||u−uh||−1+h3||u||−1).

Using (4.31), we have
(4.41)
||u − uh||t ≤ c||u − uh + S−1

0 (Bu − Bhuh)||t + c||S−1
0 (Bhuh − Buh)||t.

Now applying (4.40) and estimating the last term in (4.41) by means
of Lemma 4.2, as

||S−1
0 (Bhuh − Buh)||t ≤ c||(B − Bh)uh||t+1 ≤ ch3||uh||−1

≤ ch3(||u − uh||−1 + ||u||−1),

we further obtain

||u − uh||t ≤ c(hs−t||u||s + h3||u − uh||−1 + h3||u||−1).
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Since t ≥ −1 and s − t ≤ 3, we have for small h,

(4.42) ||u − uh||t ≤ c(hs−t||u||s + h3||u||−1) ≤ chs−t||u||s
which proves the assertion (4.29). Moreover, by choosing t = s in
(4.29), we obtain the stability estimate

(4.43) ||uh||s ≤ c||u||s, s > −1
2
.

Thus, for small h, we have proved the error estimate (4.29) and the
stability (4.23) assuming that uh ∈ Th is a solution of (4.27). But this
result already guarantees the existence of a unique solution for (4.27).
To see it, we first recall that the problem (4.27) is equivalent to solution
of the N × N -system (2.11) of equations. Here the solutions uh ∈ Th

of (4.27) and {uj}N−1
0 of (2.11) are related by the trigonometric inter-

polation (3.15), (3.16). If {u0
j}N−1

0 is a solution of the homogeneous
system (2.11), the corresponding trigonometric polynomial

u0
h(t) = h

∑
n∈λh

N−1∑
k=0

u0
kei2πn(t−kh)

is a solution of (4.27) with the function u(t) ≡ 0. But then we conclude
by (4.23) that u0

h(t) ≡ 0, which yields u0
j = 0, 0 ≤ j ≤ N − 1.

Now the problem (2.11) is uniquely solvable, and, by the equivalence,
the same holds for the problem (4.27) as well.

Corollary 4.1. Let | · |∞ be the maximum norm

(4.44) |u|∞ = max{|u(t)| : 0 ≤ t ≤ 1}.

By Sobolev’s embedding theorem, (4.29) implies

(4.45) |u − uh|∞ ≤ ch3||u||s
if s > 7/2. In particular, we have for the solution {uk}N−1

k=0 of the
equation (2.12)

(4.46) |u(tk) − uk| ≤ ch3
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if u ∈ Hs, s > 7/2.

Now (4.46) implies global convergence results also if we use, instead
of the trigonometric functions, other approximations interpolating the
data (tk, uk), 0 ≤ k ≤ N − 1. We consider in some detail the case of
using smooth splines as interpolating functions. If d is an odd integer,
we use the space Sd

h = Sd
h(Δ) of the smooth splines of degree d with

respect to the mesh Δ = {tk}, and if d is an even integer, we use the
corresponding space Sd

h = Sd
h(Δ̃) with respect to the removed mesh

Δ̃ = {(k + 1
2 )h}. It is known that the interpolation problem: find

vh ∈ Sd
h such that

(4.47) vh(tk) = uk = uh(tk), 0 ≤ k ≤ N − 1

is uniquely solvable (if h is small enough) and satisfies the error estimate
([4, 21])

(4.48) ||uh − vh||t ≤ chs−t||uh||s

for 0 ≤ t ≤ s ≤ d + 1, t < d + 1/2, s > 1/2. By Theorem 4.1,

(4.49) ||uh||s ≤ c||u||s.

Thus, we obtain by using (4.43), (4.48),

||u − vh||t ≤ ||u − uh||t + ||uh − vh||t ≤ chs−t||u||s

if 0 ≤ t ≤ s ≤ min{d + 1, t + 3}, t < d + 1/2, s > 1/2.

We formulate this result separately as follows:

Theorem 4.2. (General smooth curve) Assume that u ∈ Hs,
s > −1/2. Then, for sufficiently small 0 < h ≤ h0, there exists a unique
quadrature solution vh ∈ Sd

h such that vh(tk) = uk, 0 ≤ k ≤ N − 1,
where {uk}N−1

k=0 is a solution of (2.12). We have the asymptotic error
estimate

(4.50) ||u − vh||t ≤ chs−t||u||s

if 0 ≤ t ≤ s ≤ min{d + 1, t + 3}, s > 1/2.
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A more complete study shows that the range of indices in (4.50) can
be extended to cover negative indices as in (4.29). This extension will
be discussed later elsewhere.

Finally, we briefly discuss the variant (2.14), or equivalently (3.18),
of the modified quadrature method such that integral (2.5) is known
exactly. We first state

Lemma 4.3. For any s, t ∈ R and τ > 0, there exists a constant
c = c(s, t, τ) > 0 such that

(4.51) ||Bhv − Bhv||t ≤ chτ ||v||s, v ∈ Th.

Proof. By (3.19),

(4.52) (Bhv)(t) − (Bhv)(t) = ((B1)(t) − (Bh1)(t))v(t).

For (4.51), it suffices to assume that t is a positive integer, t = ν ∈ N.
We have by Sobolev’s embedding theorem and by Lemma 4.2 for any
given ρ > 0

(4.53)
|B1 − Bh1|ν;∞ :=

ν∑
t=0

max
l∈[0,1]

|
(

d

dt

)l

[(B1)(t) − (Bh1)(t)]|

≤ c||B1 − Bh1||ν+1 ≤ chρ.

But then we obtain

(4.54) ||Bhv − Bhv||ν ≤ c|B1 − Bh1|ν;∞||v||ν ≤ chρ||v||ν
and the inverse estimate yields the assertion.

The following result shows that (3.18) is solvable if there are suffi-
ciently many discretization points on the curve and that the approxi-
mation uh is asymptotically very close to the approximation uh.

Theorem 4.3. Assume that s > −1/2 and u ∈ Hs. Then the
problem (3.18) is uniquely solvable if 0 < h ≤ h0 is small enough. For
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any given t ≤ s and τ > 0, there exists a constant c = c(t, s, τ) > 0
such that

(4.55) ||uh − uh||t ≤ chτ ||u||s if 0 < h ≤ h0.

Proof. By (3.17), (3.18) follows
(4.56)
(Sh(uh − uh))(tk) = ((Bh1)(tk) − (B1)(tk))uh(tk), 0 ≤ k ≤ N − 1.

Denoting w = S−1(((Bh1) − (B1))uh), we write (4.56) as

(4.57) (Sh(uh − uh))(tk) = (Sw)(tk), 0 ≤ k ≤ N − 1.

Now, the function w is arbitrarily smooth, and, by Lemma 4.3, we have
for any r, p,

(4.58) ||w||r ≤ c||(Bh1 − B1)uh||r+1 ≤ chτ ||uh||p.
For (4.55), it is sufficient to consider the values −1 ≤ t ≤ s, s > −1/2.
Equation (4.57) implies by Theorem 4.1 and estimate (4.58),

(4.59) ||uh − uh − w||t ≤ ch3||w||t+3 ≤ chτ ||uh||t
which, using (4.58) again, yields

(4.60)
||uh − uh||t ≤ ||w||t + ||uh − uh − w||t ≤ chτ ||u

¯h||t
≤ chτ ||uh − uh||t + chτ ||uh||t.

For small 0 < h ≤ h0, we obtain, by Theorem 4.1,

(4.61) ||uh − uh||t ≤ chτ ||uh||t ≤ chτ ||u||s
which proves (4.55) assuming the existence of the solution uh. But,
again the existence is guaranteed since (4.55) implies the stability
||uh||s ≤ c||u||s, which, in turn, yields the uniqueness of uh.

Corollary 4.2. The convergence results in Theorem 4.1, Corollary
4.1 and Theorem 4.2 remain if the modified quadrature method (2.11)
is replaced by the method (2.14). In particular, we have

(4.62) |u(tk) − uk| ≤ ch3 if u ∈ H2, s >
7
2
.
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5. Examples. We have tested the order of the pointwise convergence
for the modified quadrature method. In all of these examples, the rate
O(h3) is seen very clearly. In the first example, we compare also the
accuracy of the modified quadrature method with the accuracy of the
simple quadrature solution {uj}N−1

j=0 determined by the equations

(5.1) −2h
N−1∑
j=0

ln |x(tk) − x(tj + εh)|uj = fk, 0 ≤ k ≤ N − 1

for a fixed number 0 < ε ≤ 1/2. The analysis of Sloan and Burn [22]
shows the stability if ε �= 1/2, with convergence of the order O(h) if
ε �= 1/6, and of the order O(h2) if ε = 1/6. Practical experiments
confirm these results. Moreover, our tests have indicated that the best
accuracy is obtained by the choice ε = 1/6. Therefore, we compare
the modified quadrature method with the simple quadrature method
by choosing ε = 1/6 in (5.1).

Example 1. Here we have chosen Γ to be the circle Γ = {x(t) =
rei2πt}, r = 2e−1/2. The functions u and f are: u(t) = 2r cos 2πt,
f(t) = (Su)(t) = 2r cos 2πt. The discretization parameter h attains
the values h = 1/8, 1/16, 1/32, 1/64, 1/128, 1/256. Table 1a shows the
approximate values uj at the point tj = 1/8, the absolute value of the
error and the experimental rate of convergence ecr determined by

(5.2) ecr =
ln(|u(tj) − u2h

j |/|u(tj) − uh
j |)

ln 2
.

Furthermore, for each h, we have calculated the maximum error

|u(tk) − uk|max = max{|u(tj) − uj : 0 ≤ j ≤ N − 1}.

In this example, we have determined also the corresponding simple
quadrature solution given by (5.1) with ε = 1/6. The numerical results
are presented in Table 1b. Our experiment confirms the convergence
rate O(h2). Moreover, the test indicates that the accuracy which is
obtained by using 256 discretization points with this method, is to be
expected already by using 64 points, if the modified quadrature method
is employed.
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TABLE 1a. Modified Quadrature Method. Circle. Approximate values.

Pointwise error. Maximum error. Experimental convergence rate. Point tj = 1/8.

h uj |u(tj) − uj | |u(tk) − uk|max ecr

1/8 1.70740088 0.8127 · 10−2 0.1149 · 10−1

1/16 1.71451804 0.1010 · 10−2 0.1428 · 10−2 3.00873
1/32 1.71540181 0.1260 · 10−3 0.1781 · 10−3 3.00291
1/64 1.71551203 0.1574 · 10−4 0.2225 · 10−4 3.00081
1/128 1.71552580 0.1967 · 10−5 0.2871 · 10−5 3.00021
1/256 1.71552752 0.2458 · 10−6 0.3477 · 10−6 3.00005
exact 1.71552777

TABLE 1b. Simple Quadrature Method, ε = 1/6. Circle. Approximate values.

Pointwise error. Maximum error. Experimental convergence rate. Point tj = 1/8.

h uj |u(tj) − uj | |u(tk) − uk|max ecr

1/8 1.65607290 0.5945 · 10−1 0.7772 · 10−1

1/16 1.70143735 0.1409 · 10−1 0.1929 · 10−1 2.07708
1/32 1.71207549 0.3452 · 10−2 0.4813 · 10−2 2.02909
1/64 1.71467174 0.8560 · 10−3 0.1202 · 10−2 2.01182
1/128 1.71531453 0.2132 · 10−3 0.3005 · 10−3 2.00519
1/256 1.71547454 0.5322 · 10−4 0.7514 · 10−4 2.00241
exact 1.71552777

Example 2. In this example Γ is an ellipse with half-axes a =
2/3e−1/2, b = 1/3e−1/2 such that Γ = {x(t) = (a cos 2πt, b sin 2πt)}.
The right hand side f(t) = 2a cos 2πt. Since the exact solution u(t)
is not known, we have calculated the experimental convergence rate
replacing the value u(tj) in (5.2) with its quadrature approximation
corresponding to the finest mesh with h = 1/256. Table 2 shows the
results at the point tj = 1/8.
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FIGURE 1.

Table 2. Ellipse. Approximate values. Absolute error.

Experimental convergence rate. Point tj = 1/8.

h uj |u(tj) − uj | ecr

1/8 0.4273368 0.155 · 10−2

1/16 0.42869259 0.189 · 10−3 3.032
1/32 0.42885832 0.236 · 10−4 3.006
1/64 0.42887899 0.290 · 10−5 3.021
1/128 0.42888157 0.323 · 10−6 3.170

“exact” 0.42888190

Example 3. Here we have the curve

Γ = {x(t) = (0.2 cos 2πt, 0.2(sin 2πt)(2 − 1.5 sin 2πt))}.
Observe that the equation Su = f is uniquely solvable since the
diameter of Γ is less than 1. The right hand side is given as

f(t) = 0.4(sin 2πt)(2 − 1.5 sin 2πt).

Again, as in Example 2, we have replaced the exact value of uj with
its quadrature approximation corresponding to the finest mesh. The
results with tj = 1/4 are given in Table 3. The shape of Γ is illustrated
in Figure 1.
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Table 3. Non-ellipse. Approximate values. Absolute error.

Experimental convergence rate. Point tj = 1/4.

h uj |u(tj) − uj | ecr

1/8 0.16283902 0.444 · 10−2

1/16 0.15964441 0.124 · 10−2 1.837
1/32 0.15856820 0.165 · 10−3 2.910
1/64 0.15842332 0.203 · 10−4 3.024
1/128 0.15840527 0.225 · 10−5 3.171

“exact” 0.15840301
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