JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 3, Number 3, Summer 1991

A KAC-FEYNMAN INTEGRAL EQUATION FOR
CONDITIONAL WIENER INTEGRALS

CHULL PARK AND DAVID SKOUG

ABSTRACT. Let F(z) = exp{f(;5 G(S,IOS h(u) dz(u)) ds},
for x an element of Wiener space C[0,T] and potential func-
tion 6(-,-) : [0,7] x R — C. In this paper we show that
the conditional Wiener integral, E(F|X), with conditioning
function X (z) = fot h(u) dz(u), satisfies the Kac-Feynman in-
tegral equation. We also consider vector-valued conditioning
functions X (x), as well as potentials 6(s, ) that are Fourier-
Stieltjes transforms of Borel measures on R.

1. Introduction. Let (C|[0,T],F,m,,) denote Wiener space where
C'[0,T] is the space of all continuous functions z on [0, 7] with z(0) =
0. Let F(z) be a Wiener integrable function on C[0,7], and let
X(z) be a Wiener measurable function on C(0,7]. In [10], Yeh
introduced the concept of the conditional Wiener integral of F' given
X, E(F|X), and for the case X(z) = z(T) obtained some very
useful results including a Kac-Feynman integral equation. Further
work involving conditional Wiener integrals include [3, 4, 8, and 11].
In [9], Park and Skoug extended the theory to include very general
conditioning functions, including conditioning functions of the form

T T
X(z) = (fo ay(s)dx(s),. .. 7f0 an(s) dz(s)).

A very important class of functions in quantum mechanics are func-
tions on C[0,T] of the form

Glz) = exp{/OTQ(s,x(s)) ds}

where 6 : [0,7] x R — C. These functions are clearly contained in the
class of functions of the form

(1.1)
F(z) = exp{/OTa (s, /0 h(w) dx(u)) ds}, he Ly]0,T], h#0 ae.
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412 C. PARK AND D. SKOUG

In Section 3 below, with a(t) = fg h?(u) du, and with appropriate
conditions on the potential function 6, we show that the function

(1.2) H(t, &) = (2ma(t)) "2 exp {— 25(15) }

-E (exp{/ote(s,/os h(u) dx(u)) ds}‘/oth(U) dx(u) —5)

satisfies the Kac-Feynman integral equation

2
H(t,€) = (2na(t) 2 exp {‘25@}

(1.3) n / 2 (a(t) — a(s))] /2 /R 6(s, n)H (s.7)

.exp{_%;g)‘i%} dnds

on (0,7) x R.

Using an inversion formula, Yeh [10] derived the Kac-Feynman inte-
gral equation for time-independent continuous potential functions 6(¢)
with conditioning function X (x) = z(t). We state his result at the
beginning of Section 3 below. In [4], Chung and Kang, using the
same inversion formula, obtained similar results for bounded poten-
tials 6(s, &) and with X (z) = z(t). In Section 2 of this paper we derive
a simple formula for expressing conditional Wiener integrals in terms
of ordinary (i.e., nonconditional) Wiener integrals; see equations (2.6)
and (2.7) below. We then use this formula, instead of the inversion
formula, to derive the Kac-Feynman integral equation. Even for very
general potential 0(s,§), our approach is much simpler than using the
inversion formula method. In addition, as we will see in Section 4,
this simplification allows us to evaluate conditional expectations with
vector-valued conditioning functions.

In Section 5 we consider the case where the potentials 0(s,-)’s are
Fourier-Stieltjes transforms of Borel measures on R. Finally, we state
the following well-known integration formula,
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b 1/2 b 2 2
(1.4) {%] /Rexp{—%—l-iuv} du—e}(p{—%}7 Reb >0

which we use in Section 5.

2. A simple formula for generalized conditional Wiener
integrals. Let h € L5[0,T] with h # 0 a.e. on [0,7]. Then, the
stochastic integral

(2.1) z(t) = /Ot h(s)dz(s), 0<t<T,

is a Gaussian process with mean zero and covariance

B(2(s)2(1)) = /O h2(u) du

where sAt is the minimum of s and t. For each partition 7 =
Tn = {t1,...,tn} of [0,T] with 0 =t < ¢ < -+ < t, = T, let
Z; : C[0,T] — R" be defined by

Z,(z) = (/Ot h(s) da(s), ... ,/Ot" h(s) da:(s)) = (2(t1), ..., 2(tn)).

Let a(t) = fot h?(s)ds, and define the function [2] on [0, 7] by

Similarly, for £ = (&1,...,&,) € R, define the function [¢] of £ on
[0,T] by

i) = ey 4 D=l o
[6](t) _gj—l + a(tj) _a(tjfl)(gj gj—l)a

tj—lStStj, j:1,...,n, andﬁO:O,

(2.3)
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Theorem 1. Let {z(t),0 <t < T} be the standard Wiener process,
and let z(t) and z(t) be related as above. Then the process {z(t) —
[2](#),0 <t < T} and Z-(z) = (2(t1),...,2(t,)) are (stochastically)
independent.

Proof. Let tj—1 < t < t;. Then E[(2(t) — [2](t))z(t;)] = 0 for
1,...,n. Thus, {z(t) — [2](t),t;—1 < t < t;} is independent of
). Since j was arbitrary, the proof is complete. o

i =
Z(x

Corollary 2. The process {z(t) —[2](t),0 <t < T} vanishes at each
partition point tj, j =1,... ,n, and the processes {z(t) — [2](t),t;—1 <
t<t;}, j=1,...,n are independent Gaussian processes.

We note that {z(t) — [2](t),tj—1 < t < t;} behaves very much like
Brownian bridge. Indeed, it becomes the Brownian bridge process if
h(t) =1 on [0,T]. Also note that the Gaussian process {z(t),0 < ¢t <
T} doesn’t have stationary increments unless h is constant.

The next theorem is crucial to the development of our simple formula
for conditional Wiener integrals.

Theorem 3. Let z(t) and x(t) be related as in Theorem 1. If

F(z(+) = F(f0 h(u) dz(u)) is Wiener integrable with respect to x on
C[0,T], then, for any Borel measurable set B in R"™,

peB)= [ P (do)
(2.4) 2z (B)
where Py_(B) = mw (Z-1(B)).

Proof. First assume that F' is the characteristic function of a Wiener
measurable set A, i.e., F(2) = X4(z). Then
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/ Xa(2)mw (dz) = mw (AN Z7H(B))

z-'(B)
z/BmW(z € A| Z.(x) =€) Py (dE)
=me@—wﬂﬂeAﬂxw=3&Jﬁl

But z — [z] and Z,(z) are independent by Theorem 1. Hence,

/71 Xa(z)mw (dz) =/ mw (2 — [2] + [§] € A) Pz, (d€)
Z7 (B)

— —

5me@—m+mmzwa

Therefore, the result holds for measurable characteristic functions. The
general case follows by the usual argument in integration theory. a

Let F(f, h(u)dz(u)) € Li(C[0,T],mw). Then the conditional
Wiener integral of F' given Z,, denoted by

E(F (/0 h(u) da;(u))

is a Lebesgue measurable function of 5, unique up to null sets in R",
satisfying the equation

(2.5) /Z o F( /0 ' h(u) dx(u))mw (dz)

- /BE<F</O h(u) dx(u))

for all Borel sets B in R".

From (2.4) and (2.5) we obtain a very simple formula for conditional
Wiener integrals, namely, that

zng,

Z-(z) = 5) Py (d€)

= —

(2.6) E(F(2)|Z:(x) = §) = E[F(z — [2] + [€])]
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for a.e. E in R™. In particular, if 7 consists of a single point 7', then
(2.6) becomes

(2.7) E<F </O h(u) d:c(u)) ‘ /OT h(w) dz(u) = g)

F(/O h(u) d(u) — ;‘(% /OT () dev(u) + ;(% g)

=F

Formulas (2.6) and (2.7) are very useful in application because they
allow us to evaluate conditional Wiener integrals by first expressing
them in terms of ordinary Wiener integrals and then evaluating these
Wiener integrals. We give two examples illustrating this technique.

Example 1. Let F(z fo fo u) dt, where h is as before.
Then

5( [ ' / 'h(u) de(u) de| Z, () = §)-5|[ -0 +HE) o

:/o tdt = Z/ <5“+5<?> e IGRL )

In particular, if h(t) = 1, then a(t) = t and, hence, the above equals
(1/2) 327_1(& + &-1)(tj — tj—1), which agrees with the computation
in [8].

Example 2. Let F(z) = exp{f0 fo u) dt}. Then

E (exp{ /OT /Ot h(w) dz(u) dt}

~fen] | ") — 10 + E) al

0

= exp { /OT[E}(t) dt}E {exp { /OT(z(t) —[2](®)) dtH .

Z:(x) = 5)
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Hence, for each fixed y € C[0,T], we have, as expected,

ll'}nioE(exp{/oT /Ot h(u) d(u) dt} Z.(z) = ZT(y))
_exp{/OT/Oth(u)dy(u)dt}.

3. The Kac-Feynman integral equation. Under the assump-
tion that V is a nonnegative continuous function on R satisfying the
condition

2
V(&) exp {—E—} d¢ < 0o for every t > 0,
. 21

Yeh [10] has shown that the function U defined on (0,00) x R by

(3.1)

Ut ) = E(exp{ - /Ot V(a(s) ds}

satisfies the Kac-Feynman integral equation
(3.2)

U(t:€) = (2mt) 1% exp {_g}

- [ert—a1 [ v e {520 das

whose solution is given by

oo

=Y (—DFUL(LE),  (t,€) € (0,00) x R,

k=0

where the sequence {Uy} is defined inductively by
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52
0n(t,6) = 2ry o { -5}

t N2
Uun(t.€) = [ a2 [ VUi exp{—(j(t e } dn ds

for k=0,1,....

The following theorem is a substantial improvement over the above
result.

Theorem 4. Let h € L3[0,T] with h # 0 a.e. on [0,T]. Let a(t) =

fot h2(u) du, and let O(t,€) be a compler-valued Lebesque measurable
function on [0,T] x R such that

(3.3) F(z) —exp{/otﬂ(s, /Osh(u) dx(u)) ds} € Li(C[0,T], mw),

for each t € [0,T], and

(3.0 / |e<s,£>|exp{—2§§t)} dé < o

for all (s,t) € (0,T)>. Then the function H defined on (0,T] x R by
(1.2) satisfies the Kac-Feynman integral equation (1.3) whose solution
s given by

(3.5) H(t,§) =Y Hi(t,€), (1,€) € (0,T] xR,
k=0

where the sequence {Hy} is given inductively by

1) = o] e { 55 .

(3.6) Hior(t,€) = / 2r(a(t) — a(s))] V2

: /ReXp {—2(;{1)_7%} 0(s,m)Hy(s,m) dnds.
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Proof. For (t,£) € (0,T] x R let

(3.7)

=1 =F| ex 0 h(u)d d d =£).
=5 (ew{ [ o(s [nwastw)) as}] [t astu) =)

By differentiating the function exp{ [y 6(u, [; h( )) du} with re-

spect to s and then integrating the derivative on [0 t} we obtain
(3.8)

exp{/oto(s,ghdx)sds} -
=1+/O 9(5,/0 hda:) exp{/o 9<u,/0 hdx) du}ds.

Next, taking conditional expectations and then using (3.7), (2.7) and
the Fubini theorem, we obtain

(3.9) I(t,{)—1+/;E[9<s,/oshdx—%/othdx+% >
p{ / 9( / hd—% / hdm+% >d}] ds.
Also we note that
(3.10) /OSG(u,/uhdx—M/thdx+Mf) du
Jole v [
[ rae- i [ res S5

But, for 0 < u < s < t, the Gaussian random variables

/Oshdz—%/othdxwv((),a?:a(s) [1—%})

/Ouhdz—%/oshdsz<O,a(u) {1-%})
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are independent, and so we may use (3.10) in (3.9) to obtain
(3.11)

I(t6) =1+ /Ot(zmﬁ)w /Rexp {— (1= £als)/a(t))” } 0(s,1)

202
~E(exp{/089<u,/0uhdx—%/Oshdx
<o) ) s
—1+/0t(27T(72)1/2/Rexp{ (n = ’5“2(02/“( ))2}0( )
-E(exp{/()S@(u,/ouhdx)du} /O hdx_n)dnds.
Also, it is not hard to verify that

(3.12)
(2ma(t))” 1/26p{ 3 }(zm) 1/2exp{ (n — faz(ag/a(t))Q}
7l

- (2ma(s))Y%e ){
— [2r(a(t) - a(s)))~ 1/2exp{ rLty

Thus, multiplying equation (3.11) by (27a(t))~/2 exp{—¢2/2a(t)}, and
then, using (3.12), (3.7) and (1.2), we obtain the integral equation (1.3).

To prove (3.5), first assume that 6(s, &) is bounded, say
0(s, &) <M on[0,T] xR.
Then, by induction, one can easily verify that

(M)
k!

\Hi(t,6)] < Ho(t,€) fork=0,1,2,....

Thus,
Z |Hk (t7 6)‘ < HO(t7 5) eXp{Mt}7

k=0
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and so, in view of (3.6), Y, Hi(t, &) satisfies the integral equation.
Thus, the proof is complete when 6 is bounded. If § is unbounded, we
can use the truncation method to get the same result. o

We also have that
E(exp{/ot9<s,/osh(u) da:(u)) ds}) :/RH(t,g) de.

4. Vector-valued conditional expectations. In this section we
consider the vector-valued conditional expectation

(4.1) J:E(exp{/OTﬂ(s,/Osh(u)dx(u)> ds}

:£]7 -j_17"')n)

/Otj h(u) dz(u)

where 0 =tg < t1 < ---<t, =T and 6 is as in Theorem 4. We first
note that, by (2.6), Corollary 2 and (2.2),

'/tj h(u) dz(u) = §; —§j1>~

tj,1

Proceeding as in Section 3, it is easy to show that the function
H*(t,&;t;—1,&j-1), as a function of (¢,£) defined on [t;_1,¢;] X R by
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(4.3)

t s
H*(t,&t;-1,§j-1) = E(exp{/t‘ 9(3, /t hda;—i—fj_l) ds}

J

~/t_t1hd:c—s—£j-1>

. [27r(a(t) — Cl(tjfl))}_l/2 exXp {_ Q(Q(é)_—gi_(tlj)_ﬁ) } ’

satisfies the Kac-Feynman integral equation

H*(t,&t;-1,&-1)
= [2m(a(t) — a(t;—1))] " ? exp {_ 2(a((£7j)_—§;_(;]‘)1)) }

+/tt [QW(a(t)—a(S))]1/2/ReXp{_2(a((Z)_——£c)l2(8))}

j—1

. 0(5777)H*(57777 tj—17£j—1) d77 ds

whose solution is readily given by

[ee]
H*(t,&t5-1,85-1) = Y Hyi(t,&5t51,&1),
k=0

where the sequence {H;'} is given inductively by

Hy (& tjo1,65-1) =[2m(a(t) — alt;—1))] "/
e =&
p{ 2(a(t) — alt;—1)) } ’

Hiy (L6t 1,6 1) = / 2r(a(t) — a(s))] />

j—1

S st )

“O(s,m)Hi(s,m:tj-1,&-1) dnds.
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Using (4.1), (4.2), and (4.3), we finally have the formula

E(exp{/oT9<s,/Osh(u)dx(u)) ds}’/otj h(u) dx(u) = &,
j 1n>

T lalt) — alt 2 ex (& —&-1)?
jljl[z (alt;) — alt;1))] p{Q( }

a(t;) —a(tj-1))
CH*(t, &3 t-1,€5-1).

We note that the functions H and H* are related by H(t,&) =
H*(t,£;0,0).

5. Potentials which are Fourier-Stieltjes transforms. In this
section we consider a class G of potentials (s, &) which has played an
important role in Feynman integration theory [7]. Also see [1, 2, 5,
and 6].

Let G be the set of all C-valued functions 6 on [0,7] x R of the form

(5.1) 9(s,§)z/ﬁeigvd05(v),

where {os; : 0 < s < T} is a family from M(R), the space of C-
valued countably additive (and hence bounded) Borel measures on R,
satisfying

(i) For every B € B(R), 04(B) is Borel measurable in s,
(i) [los|l € L1[0,T].

Theorem 5. Let h be as in Theorem 4, and let 8 € G be given by
(5.1). Let F: C[0,T] — C be given by

F(z) = exp{/ot9<s,/osh(u) dx(u)) ds}.

Then H(t, &) given by (1.2) satisfies the integral equation (1.3).
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Proof. Since |0(s,&)| < ||los|| € L1]0,T] for all (s,§) € [0,T] x R
it follows that conditions (3.3) and (3.4) hold. Thus the hypotheses
of Theorem 4 are satisfied, and so H(¢,&) satisfies the Kac-Feynman
integral equation (1.3). o

Theorem 6. Let h and 6 be as in Theorem 5. Then the conditional

Wiener integral
t
/ h(u) dz(u) = f)
0

I(t¢) = E(exp { /Ot e(s, /0 h(u) dx(u)) ds}

has the series erpansion

a3 her S
(5.2) _%n+1<[ (o0) — (o 1“; jzi;aa((?)
)

~dog, (v1) -+ -dos, (v,) dS

)

where Ap(t) = {§=(s1,...,8,) €[0,t]" : 0 =80 < 81 < -+ < 8, <
SnJrl:t}.

Proof. We first note that

I(t,€) = E<§: %{ /Ote<s,/os h(u) dx(u)) ds}n

n=0
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Next, using (2.7) and then the Fubini theorem, we obtain

I(t’g)_Hi/An(t)E{ﬁe(Sj’/osj . alss)

U a(t)
| /Othm%)]dg
(s5)

a3 [ e[ [ -

i/ . )

We then use a well-known Wiener integration formula, equation (5.1)

and the Fubini theorem to obtain

1n+1
t,§) —1—|— / / i exp{—— uz}
1 A (t) JR+1 22 !

j=1
n

{11 (%Z R T Y

a(sk)—a(sk—_1)]" 2uy
k:l

) ) } duy - - dupy1 ds
1 n+1

=1+ / / / (2m)~ > exp{—— u2}
Z n(t) JRPTLJR™ Z

24
'GXP{ Z: (; —a(Sk—1)]1/2Uk
S o) —atsn )1+ 28
a(t) & ' a(t)

~dog, (v1) -+ do, (vn)duy - - - dun 41 dS

_ e . n a(Sj) } 7%
1+n2=:1/An(t) An P {Zgjz_:l Cl(t) Uj (271')
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./n+1 exp{ - %%u? +iivj(i[a(sk) — a(sp_1)]" ?up,

ofor) = alsu-1)] ) |

~duy - - dug g1 dog, (v1) - - - dos, (vy,) dS.

Finally, we use equation (1.4) to carry out the integrations with respect
t0 Uy, Us, . .. , Upy1, respectively, which yields equation (5.2) as desired.
O

Remark . Note that, in view of (5.2) and the fact that

2
H(t.9) = 1(0.9)era() Ao { -5 ]

we have, for potentials € in G, obtained a series expansion for the
solution of the integral equation (1.3).

REFERENCES

1. R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman
integrable functionals, Springer Lecture Notes in Mathematics 798, 1980, 18-67.

2. , Analytic Feynman solutions of an integral equation related to the
Schroedinger equation, J. D’Analyse Math. 38 (1980), 34—66.

3. K.S. Chang and J.S. Chang, Evaluation of some conditional Wiener integrals,
Bull. Korean Math. Soc. 21 (1984), 99-106.

4. D.M. Chung and S.J. Kang, Conditional Wiener integrals and an integral
equation, J. Korean Math. Soc. 25 (1988), 37-52.

5. G.W. Johnson and D.L. Skoug, Notes on the Feynman integral, 1, Pacific J.
Math. 93 (1981), 313-324.

6. , Notes on the Feynman integral, 11, J. Funct. Anal. 41 (1981), 277-289.

7. , Notes on the Feynman integral, I1I: The Schroedinger equation, Pacific
J. Math. 105 (1983), 321-358.

8. C. Park and D.L. Skoug, A simple formula for conditional Wiener integrals
with applications, Pacific J. Math. 135 (1988), 381-394.

9. , Conditional Wiener integrals, II, submitted.

10. J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math. 52 (1974),
631-640.




A KAC-FEYNMAN INTEGRAL EQUATION 427

11. , Transformation of conditional Wiener integrals under translation
and the Cameron-Martin translation theorem, Téhoku Math. J. 30 (1978), 505-515.

DEPARTMENT OF MATHEMATICS & STATISTICS, MIAMI UNIVERSITY, OXFORD, OH
45056

DEPARTMENT OF MATHEMATICS & STATISTICS, UNIVERSITY OF NEBRASKA, LIN-
COLN, NE 68588



