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AN APPLICATION OF FINITE HILBERT
TRANSFORMS IN THE DERIVATION OF A STATE
SPACE MODEL FOR AN AEROELASTIC SYSTEM

TERRY L. HERDMAN1 AND JANOS TURI2

ABSTRACT. Dynamic modeling of various aeroelastic con-
trol systems requires, at some point in the derivation of the
model, an application of Söhngen’s inversion formula for fi-
nite Hilbert transforms to obtain a desired representation for
the solution of the airfoil equation. Conditions on initial data
to guarantee well-posedness of the resulting model equations
must be matched with those needed to justify the validity of
the inversion formula. We show that this compatibility can be
achieved by assuming that the circulation history belongs to a
weighted L2 space. The resulting state space formulation pro-
vides a suitable setting for control design for the aeroelastic
system.

1. Introduction. In recent years the feasibility and advantages
of active control surfaces to reduce maneuver, gust and fatigue loads
and dampen vibration that contributes to flutter have been extensively
studied [1, 2, 21, 25]. A systematic procedure for control design
requires the development of a “realistic” mathematical model that pre-
dicts the dynamic behavior of the physical system. The development
of state space models for aeroelastic systems, including unsteady aero-
dynamics, is potentially important for the design and development of
highly maneuverable aircraft.

In [8] a complete dynamic model was formulated in terms of a
functional differential equation of neutral-type for the elastic motions
of a three-degree-of-freedom “typical” airfoil section, with flap, in
a two-dimensional, incompressible flow (Theodorsen’s problem). In
subsequent papers [10, 11, 12, 13, 24] the well-posedness of the
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modeling neutral equation was studied in a product space framework.
The analysis showed that the dynamic model extends to a well-posed
state-space model on the product spaces R8 × Lp, p ≥ 1, if and only
if p < 2. It is well known that the product space framework can
be very useful in investigating control and identification problems for
hereditary systems [5, 6, 19, 20]. Since the ultimate goal of the
modeling process is to generate a framework for the design of active
control schemes for flutter suppression, the above results would suggest
considering histories belonging to Lp, p < 2. On the other hand, in the
derivation of the evolution equation for the circulation on the airfoil,
one has to assume that the circulation history belongs to Lp for p > 2
in order to guarantee the applicability of Söhngen’s inversion formula
for obtaining a representation for the solution of the airfoil equation [7,
9, 23]. In view of the above observations it is natural to ask whether it
is possible to find a state-space such that Söhngen’s inversion formula
is applicable and, at the same time, the resulting neutral equation is
well-posed.

In this note we study the derivation of the model equations assuming
that the circulation history belongs to a weighted L2-space. The
motivation for this is that, recently [14, 18], the well-posedness of
the finite delay version of the model equations was established on the
product space R7×L2,g (g denotes the weight-function). Here we show
that L2,g is appropriate (see Theorem 3.9 below) for the derivation of
the model (i.e., representation for the solution of the airfoil equation
can be obtained by using Söhngen’s formula). One consequence of
this result is that it provides a candidate for the state-space for the
infinite delay neutral equation [8] which can then be used to study
the flutter-suppression problem. Well-posedness of the infinite delay
neutral equation on a weighted product space will be studied elsewhere.

2. Problem formulation. For a detailed discussion of the mathe-
matical model we refer the interested reader to [8] and the references
therein. However, for the sake of completeness, we recall the essential
features of the derivation of the model. The “typical airfoil” is pictured
below.
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The downwash function

wa(t, x) =

⎧⎨
⎩

−ḣ(t)−(x− a)θ̇(t) − Uθ(t), −1 < x < c

−ḣ(t)−(x− a)θ̇(t) − Uθ(t)
−(x− c)β̇(t) − Uβ(t), c < x < 1

represents the vertical velocity component that the fluid must have in
order not to penetrate the airfoil. The functions h(t), θ(t), β(t) denote
the plunge, pitch angle and flap angle respectively. The constant U
denotes the undisturbed stream velocity and c is the x coordinate of
the joint point between the airfoil and the flap.

The disturbance velocity is given by the gradient of the potential
function ϕ(t, x, y) which satisfies Laplace’s equation

∂2

∂x2
ϕ(t, x, y) +

∂2

∂y2
ϕ(t, x, y) = 0, t > 0,

together with the following boundary conditions:
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(Flow Tangency Condition)
∂

∂y
ϕ(t, x, 0+) = wa(t, x), −1 < x < 1, t ≥ 0,

(Zero Pressure Discontinuity)
∂

∂t
ϕ(t, x, 0+) + U

∂

∂x
ϕ(t, x, 0+) = 0, |x| ≥ 1, t ≥ 0,

(Kutta Condition)
∂

∂t
ϕ(t, 1−, 0+) + U

∂

∂x
ϕ(t, 1−, 0+) = 0, t > 0.

The goal is to derive the relationship between the motion of the airfoil
given by wa(t, x) (input) and the resulting forces on the airfoil (output).
These forces are given by known integrals of the pressure which can be
computed from ϕ. We wish to find a solution of Laplace’s equation
which satisfies the above boundary conditions and has the form

ϕ(t, x, y) = − 1
2π

∫ ∞

−1

γ(t, α) tan−1
( y

x− α

)
dα,

where the integral is taken in the Cauchy sense [7]. The function
γ(t, x), t > 0,−1 < x <∞, represents the circulation per unit distance
(angular velocity of the fluid) and is decomposed into the circulation
per unit distance on the airfoil,γa(t, x) for −1 < x < 1, and in the
wake, γw(t, x) for 1 ≤ x <∞. Thus, the solution ϕ has the form

(2.1)

ϕ(t, x, y) = − 1
2π

[∫ 1

−1

γa(t, α) tan−1
( y

x− α

)
dα

+
∫ ∞

1

γw(t, α) tan−1
( y

x− α

)
dα

]
.

The Flow Tangency Condition and (2.1) yield
(2.2)
∂

∂y
ϕ(t, x, 0+) = − 1

2π

[∫ 1

−1

γa(t, α)
x− α

dα +
∫ ∞

1

γw(t, α)
x− α

dα

]
= wa(t, x)

for −1 < x < 1. Taking the partial derivative of ϕ in (2.1) with respect
to x, first for −1 < x < 1 and then for 1 < x <∞, leads to the identity

(2.3)
∂

∂x
ϕ(t, x, 0+) =

{
−1

2γa(t, x), −1 < x < 1
−1

2γw(t, x), 1 < x <∞.
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For each ψ ∈ L1(−∞, 0) and η ∈ R define the extended (takes into
account t < 0) total airfoil circulation function Γ(−∞,∞) → R by

(2.4) Γ(t) =

{∫ t

−∞ ψ(s) ds, t < 0

η +
∫ t

0
∂
ds

∫ 1

−1
γa(s, α) dα ds, t ≥ 0.

Here it is assumed that the function t → ∫ 1

−1
γa(t, α) dα is absolutely

continuous. This assumption and (2.4) imply that Γ is absolutely
continuous on [0,+∞),Γ(0+) = η, Γ̇(s) = ψ(s) for s < 0, Γ̇(·) ∈
L1(−∞, T ] for all T ≥ 0 and limt→−∞ |Γ(t)| = 0.

The Zero Pressure Discontinuity Condition, (2.3) and (2.4) yield the
equality

(2.5) 0 = Γ̇(t) +
∂

∂t

[∫ x

1

γw(t, α) dα

]
= Uγw(t, x)

for 1 < x <∞, t > 0, and it follows from (2.5) that

(2.6) γw(t, x) = − 1
U

Γ̇

[
t+

(1 − x)
U

]
.

Substituting (2.6) into (2.2) we obtain the evolution equation

(2.7) − 1
π

∫ 1

−1

γa(t, α)
x− α

dα = 2wa(t, x) − 1
π

∫ ∞

0

Γ̇(t− σ)
x− 1 − σU

dσ.

The Kutta Condition and (2.3) lead to the finiteness condition

(2.8) γa(t, 1−) =
−Γ̇(t)
U

.

In order to obtain the desired input-output relation between wa and the
resulting forces on the airfoil, a key step is to find an inversion formula
for equation (2.7), that is, solve for γa. The inversion for equation (2.7),
often called the airfoil equation, will be discussed in the next section.
Here we remark that, under certain conditions, we get the following
equation for the circulation on the airfoil:
(2.9)∫ 0

−∞
K(s)Γ̇(t+ s) ds = 2

∫ 1

−1

(1 + s

1 − s

)1/2

wa(t, s) ds+
∫ 0

−∞
ψ(s) ds− η,
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where K(s) ≡ ((Us− 2)/Us))1/2.

In [8] the evolution equation (2.9) was coupled to the rigid-body dy-
namics of the airfoil in order to obtain a complete set of functional
differential equations that describes the composite system. The result-
ing model for the aeroelastic system has the form

(2.10)
d

dt

[
Ax(t)+

∫ 0

−∞
A(s)x(t+s) ds

]
= Bx(t)+

∫ 0

−∞
B(s)x(t+s) ds

for t > 0, where x(t) = col (h(t), θ(t), β(t), ḣ(t), θ̇(t), β̇(t),Γ(t), Γ̇(t)).
The 8 × 8 matrix A is singular (each entry of the last row is zero),
while the 8 × 8 matrix function A(s) is weakly singular (A88(s) =
((Us− 2)/Us)1/2) at s = 0. The finite delay version of (2.10),

(2.11)
d

dt

[
Ax(t)+

∫ 0

−r

A(s)x(t+s) ds

]
= Bx(t)+

∫ 0

−r

B(s)x(t+s) ds,

has been studied in [10 13], in the state spaces R8×Lp(−r, 0). It is to
be noted that an appropriate initial condition for (2.11) must contain
the “past history” of ψ. If one defines the operators D and L by

Dϕ = Aϕ(0) +
∫ 0

−r

A(s)ϕ(s) ds

and

Lϕ = Bϕ(0) +
∫ 0

−r

B(s)ϕ(s) ds,

then the initial value problem associated with (2.10) becomes

(2.12)
d

dt
Dxt = Lxt, t > 0,

with initial data

(2.13) Dx0(·) = η, x0(s) = ϕ(s), for − r ≤ s ≤ 0.

System (2.12) (2.13) belongs to a general class of neutral functional
differential equations (NFDE ’s) which have “nonatomic” D operators.



FINITE HILBERT TRANSFORM 277

Burns, Herdman and Turi [10, 11] have obtained sufficient conditions
to assure the well-posedness for this general class of NFDE ’s. In partic-
ular, they have shown that the NFDE (2.12) (2.13), which represents
the finite delay approximation for the aeroelastic system, is well-posed
on R8 × Lp(−r, 0) if and only if p < 2.

3. Inversion of the evolution equation (2.7). An evolution
equation of the general form of (2.7) occurs often in the model deriva-
tion of a lifting surface in an incompressible flow and is referred to
as the airfoil equation. The airfoil equation has been studied exten-
sively by several authors (see [2 4, 7 9, 15 17, 22 23 and references
therein]). A brief history of the airfoil equation, including references
to earlier work, can be found in Cheng and Rott [6]. H. Söhngen used
the theory of the finite Hilbert transformation to establish the validity
of an inversion formula for the airfoil equation in the Lp-space where
p > 1. Generalizations for this inversion formula, which were moti-
vated by actual requirements for the solution of problems that arise in
the study of linearized conical supersonic flow, can be found in [16].
Our goal here is to find sufficient conditions for the function Γ̇t, which
appears in (2.7), that will allow us to use Söhngen’s inversion formula.
In particular, we wish to establish the validity of the inversion formula
when Γ̇t belongs to a weighted L2-space. The recent well-posedness
results for the system (2.12) (2.13) on weighted product spaces (see
[14, 18]) is the motivation for studying the inversion formula in this
setting. We wish to solve

Problem A. Find the solution γa(t, x) of (2.7) for −1 < x < 1, t > 0
which satisfies (2.8) for t > 0.

The right-hand side of (2.7), for each t > 0, is the finite Hilbert
transformation of γa(t, ·) which we denote by F x[γa(t, α)], that is

(3.1) F x[γa(t, α)] ≡ 1
π

∫ 1

−1

γa(t, α)
α− x

dα.

The problem of finding the solution γa now becomes the problem of
finding an inversion formula (in an appropriate Lp space) for the finite
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Hilbert transformation

(3.2) F x[γa(t, α)] = 2wa(t, x) − 1
π

∫ ∞

0

Γ̇(t− σ)
x− 1 − σU

dσ ≡ F (t, x).

In order to find an Lp solution to (3.2), p > 1, it must be assumed
that the function F (t, ·) itself belongs to the class Lp [23]. Clearly,
wa(t, ·) ∈ Lp(−1, 1) for all p > 1. Consequently, the values of p > 1
for which F (t, ·) ∈ Lp are determined by the integral term (viewed as a
function of x) that appears in (3.2). The change of variables s = 1+σU ,
together with (2.4), yield

(3.3)
− 1
π

∫ ∞

0

Γ̇(t− σ)
x− 1 − σU

dσ = − 1
π

∫ ∞

1

Γ̇(t+ (1 − s)/U)
x− s

ds

= − 1
π

∫ ∞

1

Γ̇t ◦ β(s)
s− x

ds,

where Γ̇t : (−∞, 0] → R, β : [−1,∞) → (−∞, 0] are defined by
Γ̇t(u) = Γ̇(t + u) and β(s) = (1 − s)/U , respectively. Extend Γ̇t to
(−∞,∞) by defining Γ̇t(u) = 0 outside the interval (−∞, 0]. This
extension allows the integral term on the right-hand side of (3.3) to be
viewed as the (infinite) Hilbert transformation

(3.4) H x[Γ̇t ◦ β(s)] ≡ 1
π

∫ ∞

−∞

Γ̇t ◦ β(s)
s− x

ds.

It follows from known Lp-properties of Hilbert transforms (see [23]),
together with (3.2) (3.3), that F (t, ·) ∈ Lp(−1, 1) if and only if

Γ̇t ◦ β(·) ∈ Lp(−∞,∞). The latter condition holds if and only if
Γ̇t ∈ Lp(−∞, 0). This observation yields the following result.

Lemma 3.1. If Γ̇t ∈ Lp(−∞, 0) for p > 1 then F (t, ·), defined by
(3.2), belongs to Lp(−1, 1).

In order to obtain an inversion formula for (3.2) we employ the
following result [23].
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Theorem 3.2. Equation (3.2) with F (t, ·) ∈ Lp(−1, 1) for some
p ≥ 4/3 has the solution

(3.5) γa(t, x) = − 1
π

∫ 1

−1

(
1 − s2

1 − x2

)1/2
F (t, s)
s− x

ds+ C(t)(1 − x2)−1/2,

for −1 < x < 1, where C(t) is dependent only on t. Moreover, the term
C(t)(1 − x2)−1/2 represents the general solution of the homogeneous
equation corresponding to (3.5).

Although equation (3.5) provides an inversion formula for γa(t, x),
this representation has shown little promise to produce the desired
evolution equation (2.9) for the circulation on the airfoil. The following
result, which follows from Theorem 3.2, is often employed to obtain this
evolution equation [3, 4, 7, 8, 15].

Corollary 3.3. If Γ̇t ∈ Lp(−∞, 0), for some p > 2, then equation
(3.2) has the solution

(3.6)

γa(t, x) = − 1
π

(
1 − x

1 + x

)
1/2

∫ 1

−1

(
1 + s

1 − s

)
1/2F (t, s)

s− x
ds+K(t)(1−x2)−1/2,

for −1 < x < 1, where K(t) is dependent only on t.

Proof. We combine (3.5) with the identity

( 1 − s2

1 − x2

)1/2

=
(1 − x

1 + x

)1/2(1 + s

1 − s

)1/2(
1 − s− x

1 − x

)
to obtain

(3.7) γa(t, x) = − 1
π

(1 − x

1 + x

)1/2
[∫ 1

−1

(1 + s

1 − s

)1/2F (t, s)
s− x

ds

+
∫ 1

−1

(1 + s

1 − s

)1/2 F (t, x)
(1 − x)

ds

]
+ C(t)(1 − x2)−1/2.
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The assumption that Γ̇t ∈ Lp(−∞, 0), p > 2, and Lemma 3.1 imply
that F (t, ·) ∈ Lp(−1, 1) for p > 2. Therefore, F (t, s)/(1− s)1/2 belongs
to L1(−1, 1), and we have that

− 1
π

(1 − x

1 + x

)1/2
∫ 1

−1

(1 + s

1 − s

)1/2 F (t, s)
(1 − x)

ds

=
−1

π(1 − x2)1/2

∫ 1

−1

(1 + s)1/2 F (t, s)
(1 − s)1/2

ds =
−Ĉ(t)

π(1 − x2)1/2
,

where Ĉ(t) =
∫ 1

−1
(1 + s)1/2(F (t, s)/(1 − s)1/2) ds. Equation (3.6)

follows by letting K(t) = C(t) − Ĉ(t)/π.

Theorem 3.4. If Γ̂t ∈ Lp(−∞, 0), for some p > 2, then Problem
A has the solution (3.6), where K(·) = 0.

Proof. Corollary 3.3 implies that γa(t, x) has representation (3.6).
Now we show that γa(t, x), given by (3.6), satisfies (2.8) (the “finite-
ness” condition) if and only if K(·) in (3.6) is zero (a.e.). Recalling
that [4] ∫ 1

−1

(1 + s

1 − s

)1/2 1
s− x

dx = −π,

we have
(3.8)

γa(t, x) =
(1 − x

1 + x

)1/2
[

1
π

∫ 1

−1

(1 + s

1 − s

)1/2F (t, s) − F (t, x)
s− x

ds+F (t, x)

]
.

Using (3.2), the expression for the downwash function wa(t, x), and
assuming that x > c, we can write the integral term on the right-hand
side of (3.8) as

(3.9)

− 1
π2

∫ 1

−1

(1 + s

1 − s

)1/2
∫ ε

0

Γ̇(t− σ)
(1 − s+ σU)(1 − x+ σU)

dσ ds

− 1
π2

∫ 1

−1

(1 + s

1 − s

)1/2
∫ ∞

ε

Γ̇(t− σ)
(1 − s+ σU)(1 − x+ σU)

dσ ds

− 2
π

∫ c

−1

(1 + s

1 − s

)1/2

(−θ̇(t) +
(x− c)β̇(t) + Uβ(t)

s− x
) ds

− 2
π

∫ 1

c

(1 + s

1 − s

)1/2

(−θ̇(t) − β̇(t)) ds ≡ I + II + III + IV,
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where ε > 0. Changing the order of integration in I yields

(3.10) I = − 1
π2

∫ ε

0

Γ̇(t− σ)
1 − x+ σU

∫ 1

−1

(1 + s

1 − s

)1/2 1
1 + σU − s

ds dσ,

where

(3.11)
∫ 1

−1

(1+s
1−s

)1/2 1
1 + σU− s

ds

=
1

(σU)1/2

[
2(2 + σU)1/2

{
tan−1

( σU

2 + σU

)1/2

− tan−1
(
− 2 + σU

σU

)1/2}
− π(σU)1/2

]

≡ 1
(σU)1/2

R(σ).

Substituting (3.11) into (3.10) and noting that

lim
σ→0+

R(σ) = 2
√

2 · π
2

=
√

2π

and, assuming the continuity of Γ̇ at t,

lim
σ→0+

Γ̇(t− σ)R(σ) =
√

2πΓ̇(t),

we have that

I = − 1
π2

[∫ ε

0

√
2πΓ̇(t)

(σU)1/2
· 1
(1 − x) + σU

dσ

+
∫ ε

0

Γ̇(t− σ)R(σ) −√
2πΓ̇(t)

(σU)1/2(1 − x+ σU)
dσ

]

= − 1
π2

2
√

2πΓ̇(t)
U(1 − x)1/2

tan
(εu)1/2

(1 − x)1/2

+ o(1)
2

(1 − x)1/2
tan

(εU)1/2

(1 − x)1/2
.(3.12)
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Concerning terms II, III, and IV in (3.9), we have the estimates

(3.13) |II| ≤ 1
π2
π · 1

ε2U2
· ||Γ̇||L1(−∞,t),

(3.14) |III| ≤ 2
π
π
[
|θ̇(t)| + (1 − c)|β̇(t)| + U |β(t)|

|c− x|
]

and

(3.15) |IV | ≤ 2
π
π(|θ̇(t)| + |β̇(t)|),

respectively. Finally, observing that

(3.16) lim
x→1−

(1 − x

1 + x

)1/2

F (t, x) = 0,

expressions (3.8) (3.16) imply that

(3.17) − Γ̇(t)
U

= lim
x→1−

(1 − x

1 + x

)1/2(−1
π2

) 2
√

2πΓ̇(t)
U(1 − x)1/2

tan
(εU)1/2

(1 − x)1/2
,

and the statement of the theorem follows.

The circulation on the airfoil, Γ(t), is obtained by integrating the
circulation per unit distance, γa(t, x), over the interval −1 < x < 1,
that is,

(3.18) Γ(t) =
∫ 1

−1

γa(t, x) dx, t > 0.

If Γ̇t ∈ Lp(−∞, 0), p > 2, then Theorem 3.4, (3.2) and (3.6) yield the
evolution equation (2.9) for the circulation on the airfoil.

At this point, we wish to note that the inversion formula (3.6) in
Corollary 3.3 and the conclusion for Theorem 3.4 are valid if the
condition Γ̇t ∈ Lp(−∞, 0), for some p > 2, is replaced by the condition
F (t, ·) ∈ Lp(−1, 1), for some p > 2. Also, the equation for the
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circulation on the airfoil (3.9) is valid when F (t, ·) ∈ Lp(−1, 1), for
some p > 2.

Corollary 3.5. If F (t, ·) ∈ Lp(−1, 1), for some p > 2, then equation
(3.2) has the solution γa(t, x), −1 < x < 1, given by (3.6).

Theorem 3.6. If F (t, ·) ∈ Lp(−1, 1), for some p > 2, then Problem
A has the solution γa(t, x), −1 < x < 1, given by (3.6) with K(·) = 0.

The importance of Theorem 3.6 compared to Theorem 3.4 can be
seen in the following remark.

Remark 3.7. If one uses Theorem 3.4 to derive the evolution
equation (2.9) and couple this to the rigid-body dynamics of the
airfoil, then the resulting composite system (finite delay) would be
described by (2.12) (2.13). The results found in [10 13] establish
that (2.12) (2.13) is well-posed on R8 × Lp(−r, 0), for p > 1, if and
only if x0(·) = ϕ(·) ∈ Lp(−r, 0), for p < 2. Since x0 = ϕ(·) =
(h(·), θ(·), β(·), ḣ(·), θ̇(·), β̇(·),Γ(·), Γ̇(·)), it follows that ϕ ∈ Lp(−r, 0)
requires that Γ̇0 = ψ must belong to Lp(−r, 0). To assure the validity
of the inversion formula (3.6) and the desired solution for Problem A,
we must have ψ ∈ Lp(−∞, 0), for some p > 2. On the other hand,
such an assumption would imply ψ ∈ Lp(−r, 0), for some p > 2, and
the system (2.12) (2.13) would not be well-posed on the corresponding
product space R8 × Lp(−r, 0).

To address the problem of finding a space on which the derivation
of (3.6) is valid and a compatible product space on which the cor-
responding system (2.12) (2.13) is well-posed, we consider the space
R7 × L2,g(−r, 0). The motivation to consider this space was supplied
by the recent results in [14] and [18] which yield the well-posedness of
(2.12) (2.13) on R7 × L2,g(−r, 0). Here the weight function is defined
by g(σ) = (−σ)−1/2, for σ < 0. It is to be noted that the follow-
ing lemma holds for a general class of weight functions. However, for
simplicity we choose g as given above.
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Lemma 3.8. If Γ̇t ∈ L2,g(−r, 0) then F (t, x) defined by (3.2) belongs
to Lp(−1, 1) for some p > 2.

Proof. Equation (3.2) together with c(x) ≡ (1 − x)/U yield

(3.19) F (t, x) =
1
πU

∫ r

0

Γ̇(t− σ)
c(x) + σ

dσ +
1
πU

∫ ∞

r

Γ̇(t− σ)
c(x) + σ

dσ.

For the second term on the right-hand side of (3.19) we have the
estimate

(3.20)

∣∣∣∣∣ 1
πU

∫ ∞

r

Γ̇(t− σ)
c(x) + σ

dσ

∣∣∣∣∣ ≤ 1
πUr

∫ ∞

r

|Γ̇(t− σ)| dσ =
1

πUr
N(t),

where N(t) is defined by

N(t) = ||Γ̇||L1(−∞,t).

For the first term on the right-hand side of (3.19), we have the estimate
(3.21)∣∣∣∣∣ 1
πU

∫ r

0

Γ̇(t− σ)
c(x) + σ

dσ

∣∣∣∣∣
≤ 1
πU

∫ r

0

∣∣∣∣∣ (g(−σ))−1/2Γ̇(g(−σ))1/2(t− σ)
c(x) + σ

∣∣∣∣∣ dσ
≤ 1
πU

[∫ r

0

(g(−σ)−1/2

c(x) + σ

)2

dσ

]1/2[∫ r

0

g(−σ)(Γ̇(t− σ))2 ds

]1/2

≤ 1
πU

B(x)M(t),

where B(x) and M(t) are defined by

(3.22) B(x) =

[∫ r

0

1
g(−σ)(c(x) + σ)2

dσ

]1/2

and
M(t) = ||Γ̇t||L2,g(−r,0).
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The estimates (3.20), (3.21), together with equation (3.19), yield

|F (t, x)| ≤ 1
πU

[B(x)M(t) +N(t)],

for t > 0,−1 < x < 1. Consequently, F (t, ·) ∈ Lp(−1, 1), for some
p > 2, if B(·) ∈ Lp(−1, 1) for some p > 2.

In order to show that B, given by (3.22) with g(σ) = (−σ)−1/2,
belongs to Lp for some p > 2, we first find an estimate for B2(x),−1 <
x < 1. A change of variables together with integration by parts yields

B2(x) =
∫ r

0

√
σ

(c(x) + σ)2
dσ = 2

∫ √
r

0

v2

(c(x) + v2)2
dv

=
−√

r

c(x) + r2
+

1√
c(x)

tan−1
( √

r√
c(x)

)
.

The desired estimate is given by

B2(x) ≤ π

2
(c(x))−1/2.

For 0 < ε < 1, it follows that

∫ 1

−1

B2(1+ε)(x) dx ≤
∫ 1

−1

[
π

2

( U

1 − x

)1/2
]1+ε

dx

=
(π

2
U1/2

)1+ε

2

[
− (1 − x)((1−ε)/2)

1 − ε

]1

−1

that is, B(·) ∈ Lp(−1, 1), for 2 ≤ p < 4. The following result is an
immediate consequence of Lemma 3.8 and Theorem 3.6.

Theorem 3.9. If Γ̇t ∈ L2,g(−r, 0) then Problem A has the solution
γa(t, x),−1 < x < 1, given by (3.6) with K(·) = 0.

The circulation on the airfoil defined by (3.18), together with The-
orem 3.9, yield the evolution equation (2.9) for the circulation on the
airfoil (see [8]).
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4. Conclusion. The assumption that Γ̇t ∈ L2,g(−r, 0) was shown to
be sufficient to assure the validity of the (Söhngen) inversion formula
(3.6) for the solution γa(t, x) of the evolution equation (2.7). Therefore,
this assumption is sufficient to obtain (2.12) (2.13) as the dynamic
model that describes the aeroelastic system. The results presented
here, together with the results given in [14] and [18], provide a
suitable setting for control design. We also note that these results
give insight concerning the selection of an appropriate state space for
the corresponding infinite delay problem.
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