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ON A BOUNDARY VALUE PROBLEM
IN SUBSONIC AEROELASTICITY
AND THE COFINITE HILBERT TRANSFORM

PETER L. POLYAKOV

ABSTRACT. We study a boundary value problem in sub-
sonic aeroelasticity and introduce the cofinite Hilbert trans-
form as a tool for solving an auxiliary linear integral equation
on the complement of a finite interval on the real line R.

1. Introduction. We consider the linearized subsonic inviscid

compressible flow equation in two dimensions [2, 3]
0% 0% 0% 0%

1 2(1-M?*) = 4+ a® ~— = — +2M
M) @ ) T 9 = MG,
where a is the speed of sound, M is the Mach number (M =U/a < 1,
where U is the free stream velocity), and ¢(z, 2, t) is a small disturbance
velocity potential, considered on

Ri><R_+:{(az:,z,t):—oo<a:<oo7 0<z<o0, 0<t<o0}.

This velocity potential is assumed to satisfy the boundary conditions:

e flow tangency condition

(2) % (2,0,t) =w(z,t), |z| <D,

where b is the “half-chord,” and w is the given normal velocity of the
wing, without loss of generality we will assume in what follows that
b=1,

o “strong Kutta-Joukowski condition” for the acceleration potential

0 0
U(x, z,t) = a—(f +U8_i’

P(x,0,t) =0 for 1<|z|]< A forsome A>1,

(3)
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o far field condition
¢(x,z,t) — 0, as |z|—o00, or z— oo.

Boundary condition (3), though being motivated by one of the “auxil-
iary boundary conditions” from [3, p. 319], is weaker because it requires
that ¢ (x,0,t) = 0 not on the entire complement R\ [—1, 1], but only on
finite intervals adjacent to the interval [—1,1]. On the other hand, this
change in the boundary condition allows application of some new math-
ematical tools different from tools in [2, 3]. We do not present here
any physical motivation for the conditions above, referring instead to
the book [3], where these conditions are given physical interpretations.

In order to formulate our main result we introduce the following
notations. We denote by @ the Laplace transform of the function w
with respect to time variable

w(z, z, )\):/ e Mw(z, z,t) dt
0

for Re A > o9 > 0. We also denote

M
"= A

AM?
I = ga—apy

In Sections 5 and 6 we construct a function Dy (\), which is the
Fredholm determinant, defined in (35), of the operator Ay, defined in
(25). This function is analytic in the half-plane Re A > o¢ > 0, and,
as the function R(x,\) defined in (15), depends basically only on the
function Ky—the modified Bessel function of the third kind.

The following theorem represents the main result of the paper.

Theorem 1. Let the function Dy (\) from equation (42), mentioned
above, have no zeros in the strip {Re\ € [o1,02]}, where o1 > 0¢. Let
I(1) = [-1,1], and let w(-,t) € L*(I(1)) be such that for some € > 0

(4)
(0 + i) sy < exp { =" - L+ D>} for o € o, 0.
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Then equation (1) has a solution of the form

1
o1 = M2

0 S 2 1/2
d(o’+in)x / K ( ’ s ((15—3/) 2) )
X e ol 7o'+ +z
/_Oo [ o ( ) 1—M?

x h(y, o’ +in) dy] (@Mt gy

¢(I7 Z’ t) =

This solution is independent of o' € [01,02], satisfies boundary condi-
tions above, and the function h satisfies the estimate

= p—2 T 0,/ i p T C(m)
| QR b il de <

for arbitrary m > 0, p < 4/3, and C(m) > 0 independent of 7.

In the course of the proof of Theorem 1 we deal with the question
of invertibility or “almost invertibility” of a singular integral operator
of the form: “Hilbert transform + integral operator with logarithmic
kernel” on a finite interval. Almost invertibility of the pure Hilbert
transform on a finite interval or of the so called finite Hilbert transform
[23] in spaces L? was investigated in [19, 23]. From the computational
standpoint invertibility of singular integral operators mentioned above
on weighted Lebesgue spaces on a finite interval was analyzed for
example in [15, 16], where further references can be found. In the
present paper we, among other things, give a rigorous discussion of
invertibility of such operators on Lebesgue spaces on a finite interval.
In a forthcoming paper we combine the technique developed here with
the Possio construction to prove a criterion of solvability of the so-called
Possio integral equation [3]. The cofinite Hilbert transform, considered
in the paper, is just the Hilbert transform taken over the complement
to a finite interval, and it is a special case of the Hilbert transform
or of the Cauchy integral on a curve in C = R2. Properties of this
general transform are discussed in many papers and monographs, see
for example, [6, 8, 10, 14, 17, 20] and the references therein.
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2. “General” solution. We are seeking a solution of equation (1)
of the form

(6) o= [ T a2 N gy

where A = o +in, o > 09 and £(x, z,\) € L'(R,;). Then, substituting
the expression above into equation (1), we find that the following
auxiliary equation for &

2 2 2 2 _

is sufficient to ensure that ¢ satisfies (1).

To describe the general solution of equation (7) satisfying the far field
condition we consider, following [2]

A\ A
D(w,\) = M? (—) +2i = MPw+ (1 - M?) o,
U U
and prove two lemmas below.

Lemma 2.1. There exists a function \/D(w, \), analytic with respect
to complex variable A\/U + iw((A\/U) € C, w € R) in the half-plane
Re X > 09, and such that Re\/D(w, \) > 0.

Proof. Representing D(w, \) as

2
D(w,\) = M? (%) +2i % M?w+ (1 - M?)w?

2 A ? 2
=M E—i—@w + w*,

we obtain that the image of the half-plane Re A > oy under the map
D(w, A) is contained in the domain C\ R™. Then the branch of the
function va considered on the complex plane with the cut along the
negative part of the real axis is well defined and analytic on the image
of D, and its real part satisfies the condition of the lemma. Therefore,
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the composition v/ D is also analytic and satisfies the same condition.
]

Lemma 2.2. The following equality holds

edN)z 22 ) 1/2 =V D(w,A)
—— Kol N[ ———= + 2 =F| —],
1 M2 0< ( )<1—M2 > > {2 D(w,A)]

where F denotes the Fourier transform, that is,

edNa 22 ) 1/2
N Ko(r()\)<71 e +z ) )

1/2

o e—z((l—MQ)(w+id()\))2+r2(/\))
— / 1rWw dw.
o 2¢/(1 = M2)(w +id(N))2 + r2(X)
Proof. First, we represent D (w, \) as
2 2, o0 A o 2 (A
D(w,A) = (1= M?)w?+2i — M’w+ M?*( =
U U
AM2 2 AM2 2 A\’
= (wV1-M2+i + +M2<—)
<w ZU\/l—M2) <U 1—M2) U

= (1= M?)(w+id(N\)* +72(N).

Changing variables in equality [9]

() 7z(u2+r2
K (r(az2 + z2)1/2) = / A du,
we obtain

K (r(x2 + 22)1/2)
e—z((l—MQ)w2+T2)l/2

2\/(1—M2)w2—|—7‘2d( 1—M2w)a

oS
_ / eim\/l—M%J
)
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and then

1 ,’E2 ) 1/2
1—M2K°<T(I—M2+Z) )

/oo ) efz((lsz)werrz)

1/2

1TW

e dw
—o0 2¢/(1 — M?)w? + 12

We transform the equality above by integrating the function

e—z((l—Mz)w2+r2)l/2

VA = M2)w? 2’

g(z,w) = ™™ w e C,

which is analytic with respect to w, over the closed rectangular contour

[-C,C,C+id,—C+id] € C, with CeR, C>0,
de C, Red>D0.

Then we obtain

® f " gew)dw + / T ) dw + / T g du

—-C C C+id

-c
+ / g(z,w) dw = 0.
—C+id

For C large enough we have the following estimates for w = u + v €
[—C,—C +id], and w € [C,C + id]

’eix(“+i”)| < elelRed ’ \/(1 — M?)w? + r?

>/1— M? %,

‘e—z((l—MQ)w2+r2)1/2’ < o~ 2VI=M2(C/2)

and therefore for z > 0

C+id
‘ / g(z,w) dw
c

)

—C+id
/ g(x,w)dw‘—ﬂ) as C — oc.
-c
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Using the last estimate in (8) we obtain the equation

1/2
1w

L e

/oo ' e—z((l—M2)w2+r2(z\))

1/2

4 4 e—z((1—Mz)(w+id(A))2+r2(A))
— / ezx(w+zd()\)) - . - - d(w —l—id()\)),
—o0 V(1= M2)(w+id(N))2 +r2(N)
and finally
edN 22 1/2
O =W (5E =) )
o e—z((l—Mz)(w+id()\))2+r2()\))1/2
— / elibw D
—oo 2¢/(1 = M2)(w +id(N))2 +r2(N)

Using Lemmas 2.1 and 2.2, we now consider a special representation
of the general solution of (7). Namely, using notations of Lemma 2.2,
and denoting

d(\)z 2 1/2
S(z,z,\) = —642 K0<1"()\)<1 _xMz —|-22> ),

we consider

(10) &(z, 2, A

( )
= /_ S(m—y,z,)\)v(y,)\) dy

(dNa oo z—y)? i

where v is an arbitrary function such that
e~ ¥N¥y(y, \) € LP(R)

for some p > 1 and A, with Re A > 09 in order for the expression above
to be well defined.
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Proposition 2.3.  Function & defined by formula (10) satisfies
equation (7). If

0%¢ 0%¢
5(1},27)\), @ (ﬂ?,Z,A), ﬁ (1'7257)\)7
0&(x, z, A
ez, I 282N pm,)

where X\ = o + in, then the inverse Laplace transform of &, defined by
the formula [5]

1 [ .
) ety [ s i dy

satisfies equation (1).

Proof. To prove that £ defined above satisfies equation (7), it suffices
to prove that the function S satisfies the same equation. For S we have

0? S 5 028 08
2 o0 42 o4
a® (1-M?) el + a? 952 A4S —2MMAa o
9?8 A A0S
2 2 2
[ (1-M?) el -M <U) S —2M U 92
Using formula (9), we then obtain
%S 0?8 A A0S
—— + (1-M? — M? S—aM* = 2=
oz T 1-M0) 5 (U) U oz
0o ) efz((lfM("))(u}Jrid){’er'r‘{’z)l/2
=— e (1-M?)(w +id dw
/_oo ( ) ) 2¢/(1—=M2?)(w +id)? + 12
0o e—z((l—MQ)(w+id)2+r2)1/2
—|—/ e (1 — M2) w? dw
—0 2¢/(1—=M2?)(w +id)? + 12
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i /
n /OO eiszz (i)z e_z((l_M2)(w+7,d)2+T2)1 5

dw
—o0 U) 2/(1-M?)(w + id)% + r2
o A\ e—z((l—M2)(w+id)2+r2)1/2
—|—/ eTUINM? 2w dw=0
—o0 U " 2y/(1-M2)(w+id)? + 12

To prove that the function ¢ defined by formula (11) satisfies equation
(1), we apply the inverse Laplace transform to equality

9%¢ 9%¢ 03

201 _ a2y 9°S 2076 o, o5
a (1 M) 5 ta 2 A€ —2MAa =0
and obtain equation (1) for ¢. O

3. Boundary conditions. In this section we reformulate the
boundary conditions of Section 1 in terms of the function v(y, \) from
formula (10).

To check the flow tangency condition (2), we use formulas (10) and
(9) and obtain

0]
% g(xa 2, >‘)

a oo
o | sa@-venew N

8 o0
——5/ v(y, A) dy

— 00

z=0

1/2

/oo o efz((lfM2)(w+id()\))2+r2()\))
X ez rT—Y)w

dw
o0 2¢/(1—=M2)(w+id(N)2+r2(\)  l==0
1 oo o0 .
=3 / erre dw/ e~ u(y,\) dy = 7 - v(z, \),

which, after comparison with equality (2) leads to a unique choice

(13) v(z,\) =

3|

w(z,\) for |z|]<1.

To satisfy the Kutta-Joukowski boundary condition (3) we should

have 96 96
(E v %)

=0 for 1<|z|<A,
0

z=
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or equality

0
)\f(x,O,)\)—l—Ué(x,O,)\):O for 1<|z|]< A

for the function &.

Substituting & from formula (10) into the equality above, we obtain
the following condition for 1 < |z| < A:

0
0= <>\ + U%>§(az, 0,\)

U 9 ed()\)m
(14) ——( + %>4*1—M2

X /_Z ) <r()\) ( (f__]\?j + 22> 1/2) v(y, \) dy

To reformulate the last condition as an integral equation, we use
condition (13) and define

2=0

ed(N)z 1
o) = [ OGN N dy for 1< o] < A
m —1

with kernel R(z, A) defined by the formula
(15)

R(z,\) = {(A + Ud()\))Ko<%) + Ua% KO<%)] '

Then condition (14) will be satisfied if v satisfies the following integral
equation

ed(A)m/ e YRz —y, Nu(y, \) dy = —g(2,)) for 1< |z|< A.
ly|>1

Further simplifying the equation above, we consider h(y,\) :=
e~ Ny . y(y, \) as an unknown function and rewrite it as

(16) R(x —y,Nh(y,\) dy = f(z,\) for 1< |z|] <A,

ly|>1
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where f(z,\) = —e~ 4N . x4 (x)g(x, \) is defined for
{(z,\) e Rx C:|z| >1, ReA € [o1,02]}
by the formula

Xa(®)

(17) f(.’l?, /\) =

1
/ e MRz — y, N @y, \) dy
1

with

1 ifzel-A A\ [-1,1],
0 otherwise.

Xa(z) = {

4. Cofinite Hilbert transform. As a first step in the analysis
of solvability of (16), we prove solvability for the operator, closely
related to operator R from (16), and which in analogy with Tricomi’s
definition of the finite Hilbert transform [23] we call the cofinite Hilbert
transform.

We define the cofinite Hilbert transform on the set of functions on
I°(1) =R\ I(1) = R\ [-1,1]

by the formula

(18) P[h](x)zl/ MY gy for Ja > 1,

TJy>1 Yy =&

for LI

is understood in the sense of Cauchy’s principal value.

where the integral

In the proposition below we prove solvability for the nonhomogeneous
integral equation with operator P in weighted spaces

o) = {1 /| o2 ()] de < oo
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with

1/p
flesan = ([ lap=2 1@ as)
|z|>1

Proposition 4.1. For any function f € L£9(1°(1)) with ¢ > 4/3,
there exists a solution h of equation

(19) Plh] = f,

such that h € LP (I°(1)) for any p < 4/3.

Proof. We consider the following diagram of transformations

LP (I(1)) —F— L7 (I(1))

(20) Je Je
LP(19(1)) —F— L7 (I°(1)),

where 7 is the finite Hilbert transform, P is the cofinite Hilbert
transform, and
©: LP(I(1)) — LP (I°(1))

is defined by the formula
1 1
(21) ol = 1 (3.

To prove that the maps in diagram (20) are well defined, we use
equality

1eL/1Iz = /| o 22 10 [fl(@)[" dx
_/|>1 |I|p72 |f(1/f£)| dx

[P

-1
_ _/1 £ @O dt = [|f],
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and notice that, for
©": LP(I°(1)) — L” (I(1))

defined by the same formula

o1/l =1 £(3 )
we have
@) 000w =01 ()] =1 s = fa)

Diagram (20) is commutative, as can be seen from equality

PO = [ S

1t /(@)
w/f«wwmw“

1t re
“ ) T

=O[-T[/].

To “invert” operator P, we use commutativity of diagram (20),
relation (22), and operator [19, 23]

T-1:LP(I(1) — LY(I(1)) with p>4/3 and ¢<4/3

defined by the formula
- 1t 1-¢? g(y)
71 =—= AR AL 2
lg)(=) W[le_ﬁy_x ,

ToT '] = .

and satisfying

Namely, we define the operator

PP (I6(1)) — £9(1¢(1)) with p>4/3 and ¢ < 4/3,
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by the formula
P Hfl=-00T  o0™[f].

Then

PoP ' f]==-PoOoT 'o0*[f]=00T 0T 'oO*f]
=000%fl=/,

and we obtain the statement of the proposition for

h =P f].

To find an explicit formula for P~!, we use explicit formulas for ©
and 7! and obtain

23) P = / \f 11—_1/332 i/ly/x
'?r'/_lm 0 ae

Remark. Following [23] we notice that the solution of equation (19)
is unique in £2 (I°(1)) but is not unique in larger spaces. Namely, the
function

1
x2 -1
is a solution, and the only one up to the linear dependence in £P (1°(1)),
1 < p < 2, of the homogeneous equation

Plhl=0. o

h(z) =

5. Solvability of equation (16). From the asymptotic expansions
of Ko((), see [9, 11], we obtain the following representations of the
function R(z, ) for A such that Re A € [01, 02] with o1 > o¢:

R(z,X) = = =+ Aog (Nial) a(Mal) + A3 () + 7 (A

(24) for |A\z| < B,
e—(o+in)|z]

R(z,\) = Xd (Mz|) ——=——= for |\z|> B,
Al - [
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where a(¢), 6(¢), v(¢), and 6(¢) are bounded analytic functions on
Re( > ¢ > 0 and B > 0 is some constant.

Using representations (24) we introduce a function M (z, A), analytic
with respect to A € {Re A > g¢}, uniquely defined by (24), and such
that

R(z,\) = —g—i—M(x,)\).

We then consider operators

Mylf](@) = / Yalw) Mz — y, ) £ (y) dy,

ly|>1

and

Ra=7U-P+ M,.
In the next proposition we prove compactness of the operator
(25) ./\/’,\ZL./\/I,\O?_1
U
on L2 (I¢(1)).

Proposition 5.1. For any fized A\ € C, the operator Ny =
(1/7mU)My o P~L is compact on L% (1¢(1)), and therefore the operator

(26)  Ga=RyoP '=(@U-P+My)oP l=xU(T+AN)),

where T is the identity operator, is a Fredholm operator on £ (I°(1)) =
L2 (I¢(1)). In addition, the kernel N(x,y, \) of the operator Ny admits
estimate

(27) / |N(x,y,\)|* dr dy < C|\log A
RZ

with constant C' independent of \.
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Proof. Using formula (23) for P~1, we obtain

i) =[5 [ [oo (8) ]

ol T )

) v [ WLy
M [ VT g() o

~ Xa(z) — lulvy? =1 du

~ U /|y>1g(y)dy ot TN E =T Tamy)

= N(z,y,Ng(y) dy
ly|>1

- 2
U Jju>1

with kernel

N ) = o oy )|Z||¢—32_1 o

To prove compactness of Ny, we use the representation

N(z,y,\) = % [N1(z,y,A) + Na(z,y,N)],
with
SRS F1C 1 WL I
e Yyl Jju>1 (u—y)’
and
N2($7y7>\)
 xal) (T veET)
Y /|u>1M<”” ) Z 1 (u—)
 Xa(2) Mo —u |ul (y + u) du
|yl lu|>1 ( ’ )<\/y2_1+\/u2—1) \/u2_17

and prove the Hilbert-Schmidt property, cf. [12], of the kernels
Nl (J?, Y, )‘) and NQ(-Ta Y, )‘)
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For Ni(x,y,\), we notice that, for fixed x satisfying 1 < |z| < A,

Mz — u, \)u| — 2
Ju|>1 (U - y)

is a multiple of the Hilbert transform of an L? (I¢(1))-function M (x —
u, A)|u| with
[ M (z = u, Nul |23 < o0

Therefore we have

[ ar dyis
1<|z|<A ly|>1
du

1
(28) = / dx/ dy‘— M(x —u, \)|u| ——
1<|z|<A w1 Yl S (u—y)

< c/ der | M (2 = u, Ml < oc.
1<|z|<A “

2

2

For Na(z,y,\), we have

[ @ dyNatew
1<|z|<A ly|>1

d
:/ dx/ _y2
1<|z|<A ly|>1 lyl

_ lul (y + u) du
|u\>1M(x u, \) (VP -1+ v —D)ve =1

d o0 Vi2+1) dt
gz/ dx/ —92‘/ M(z— \/t2+1,>\)u
1<|z|<A ly|>1 |yl 0 (\/y2 —1 +t)
I Y
1<|z|<A lyl>1 1Yl

o 5 (y—VE2+1)dt
/O Mz + +1,)\)E/\/y2__—1+t)

where we changed the variable of integration to t = v/u? — 1.

2

X

2

2
X

Both integrals of the right-hand side of (29) are estimated analo-
gously; therefore, we will present an estimate of the first of them only.
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For |y| > 2, we have inequality

y+VETL
VR =1+t

for some C' independent of y and ¢, and therefore, using representations
(24), we obtain

(31)

/1<|gc<A /y>2 |y?

<C? / —
1<\z|<A ly|>2 |y|

For 1 < |z| < A, 1< |y| <2, and t > A + B, we again use inequality
(30) and obtain

(30) <C

Ty (y+Ve+1)dt
/ Mz —vVt2+1,)) ( — +t>

/ Mz —vVt2+1,\)dt

< 00.

(32)
25
[ ] I e yEy YD
1<|z|<A 1<|y|l<2 ] A+B (1 /y2 — —l—t)

< 02/ dx/ — V2 + 1,0 dt
1<|z|<A 1<ly|l<2 |y|
For 1< |z| < A,1<|y] <2andt< A+ B, we have

d A"FB + t2
/ dx/ et / o BV Gl L L.
1<|z|<A 1<|y|<2 ] 0

(vir=1+1) +t>
A+B _ 2
<C/ dm/ ” / Mz - VETLNdt|
1<|z|<A 1<|y|<2 0 (
<C|/\10gA\2/ d:c/ dy
1<|z|<A 1<|y|<2

< 0.

\/y27—1+t)

/A+B dt
0 (\/3127—1 + t)
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/’”Blogw V]
0 (\/y——+t)

+C|/\|2/ da:/ dy
1<|z|<A 1<|y|<2

< CIA?| |log A —|—/ dx
1<|z|<A

X / dy
1<|y|<2

/A+B log |z — \/tg—|
0 (\/y——+t)

i)

where we used the representation

M (m - \/t2+1,)\) =A (logA—i— log |x — \/t2+1|) « ()\|x - \/t2+1\>
+28 (N = VEF1]) +4 (Mo - VE+1])

for 1 < |z| < A and 0 <t < A+ B, which is a corollary of (24).

To estimate the last integral we represent it as

/ dx/ dy
1<|z|<A 1<]y|<2

:/ dx/ dy
1<|z|<A 1<|y|<2

+/ dx/ dy
1<|z|<A 1<|y|<2

/A+B log | — V2 + 1 @t ’
0 (\/y2 -1+ t)
/ log|x—\/t?—|—1|dt2

S(a.y) (\/y27—1+t)
/ log |z — vt +1| d
{[0,A+BN\S(2.0)} (\/y - +t)

where S(z,y) = {t o= VE+1]>1/2(x—1)/y? - 1}.
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Then, for S(z,y), we have

/ dx/ dy
1<|z|<A 1<|y|<2
2
AB Jog |z —1] + log (/32 -1
gC/ dw/ dy/ oglz—1| +log (Vy*~1)
1<]z|<A 1<]y|<2 0 (w/yQ—l—i—t)

2
SC/ dx/ dy log? \/yz—l(10g|x—1|—|—log\/y2_1)
1<]z|<A 1<lyl<2

< (C < 0.

2

/ log|x—\/t2+1|dt
S(z.y) (\/y2 -1+ t)

For t € [0,A+ B]\ S(z,y), we have

t2

1
1+52\/t2+1>x—§(a:—l)\/yz—l,

and therefore
ﬁ>(x—1) 1—1 2-1
9 = g VY ’
or

t>CvVr—1.

Using the last inequality we obtain

1
Ve —1

du

VitZ 41
|dt|§‘ t+ du‘g(]‘

)

and, switching to variable u = v¢? + 1 for [0, A + B]\S(z, y), we obtain
2
log | — V2 + 1] &t

Jewan® o
1<|z|<A 1<lyl<2 {[0,A+B]\S(z,y)} ( y2—1—|—t)

C/ z+(1/2)(z—1)4/y>*—1 10g|u—a:|
< dx/ dy / —
1<|z|<A 1<|y|<2 e—(1/2) (/-1 Vy2—1-Va—1

du
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< C’/ dm/ dy
1<|z|<A 1<|y|<2

(x—1)\/y?>—1- (1og (x —1) +log/y? — 1) 2
X < C < o0.
Vyi—1-vz -1
Combining the last two estimates above, we obtain
2
AB Jog |z — V241
/ dx/ dy/ Ogm—ﬂdt < C < 0,
1<|z|<A 1<|y|<2 0 (w/yz—l—i—t)

and therefore,
(33)

d
/ da:/ _y2
1<]z|< A 1<|y|<2 |y

2

/0A+B M(z—V1241,)) (Z(Hy;%\/ﬁ)t()ﬁ

< C|Alog A

To prove estimate (27), we use the following lemma.

Lemma 5.2. The following estimates hold for 1 < |z| < A and
Re X € [01,02]:

(34)
|M(z —u, \)|[*u? du < C(e)|\*F¢  for arbitrary ¢ > 0,

R
o0
/ M(z =P +1,A) dt| < CI\||Tog Al
0

Proof. Using representation (24) for 1 < |z] < A and |A(z —u)| < B,
we obtain

Mz —u,\)-u
= [Mog (Alz—u|) Az —ul) + AB (Alz—ul) + v (Alz—u|)] u,
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and therefore

/ |M (x — u, \)[*u? du
|e—u|<B/|A
<C/ [IA% (Jlog A% + log? |2 — ul) |a(A|z — ul)[?
|lz—u|<B/|A|
+APIB Az = ul) 2+ |y (Alz = u]) [*] v* du
< C|\||log A

For 1 < |z| < A and |A(x — u)| > B from (24), we have

o—(oin)|z—ul

and therefore

/ |M (z — u, \)|*u? dzx
lz—u|=B/|A|

<C/LW“MOM—MH2
R

< C(e)|N'Te
for any € > 0.

6720'\zfu|u2 du

(M = w)])" & — uf=

Combining the estimates above we obtain the first estimate of (34).

For the second integral in (34), we use representation (24) and obtain,
for 1 < |z| < A and |A(x — Vt? + 1)| < B, after the change of variable
u=+t?+1,

Mz —Vt2+1,\)dt

|/zm<3/x|

s/pmuqu}hngw—u)MMx—M)

2>|ul>1
£ A8 (o — ul) 4 (N — uf) |92
V=1
+ /{ B } ‘)xlog Az — u]) a(A|z — u|)
ful>2
|u|du

+Aﬂuu—un+vum—mw7§fﬁ.
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For the first integral of the right-hand side above, we obtain, using
Holder inequality:

/{ je—ul<B/\ } [Mog (Alz = ul) a(Az — ul)

2>|u|>1
|u| du
FAG (e =)+ O — ul) | o
1
< C|A| - |1log A| - ||log |z — u —
= | ‘ | g | || gl H|L4[1,2] m LA/3[1.2]

< C|A| - [log Al.

For the second integral of the right-hand side above, we have

/{ B/ } [Mog (Ale = ul) a(Ala — ul)
|u|>2

|u|du

u?—1
< CllogAl,

+ A8 Az —ul) + (Alz — uf)

where we used the estimate |u|/vu? —1 < C and the fact that the
length of the interval of integration is bounded by B/|A|.

For 1 < |z| < A and |A(z — V12 4+ 1)| > B, using representation (24)
and changing to variable u = v/t2 + 1, we obtain

M(z—~/t24+1,)\)dt

/a;—\/t2+1|>B/|)\

/ M(z —u, \) e
|e—u|>B/|A| u? —1

67(0""'1-77)‘3?7“‘ ‘u| du

<C / Ad (AN|x — u|)
lz—u|>B/|A| VI =] Va2 =1
< C\| e~ (ot+in)|z—ul M < C|A|
Jul>1 u? —1

Combining these estimates, we obtain the second estimate of (34).
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Using now estimates (34) from the lemma above in estimates (28),
(31) and (32), and combining them with estimate (33), we obtain
estimate (27) of Proposition 5.1. o

Proposition 5.1 allows us to reduce the question of solvability of (16)
to the solvability of the corresponding equation for G,. Namely, calling
those A for which the operator G, is not invertible by characteristic
values of Gy, we have

Proposition 5.3. If \g is not a characteristic value of Gy, then for
an arbitrary function f € £2 (I°(1)) and X\ = \o, there exists a solution
h of equation (16) such that h € LP (I°(1)) for any p < 4/3.

Proof. Considering a solution of
Gilgl =RaoP7'g] = f,

we define h = P~1[g], which satisfies equation (16) and belongs to
LP (I¢(1)) for any p < 4/3 according to Proposition 4.1. O

6. The resolvent of operator G,. In this section we construct the
resolvent of the operator G, and show that it is a Fredholm operator
depending analytically on A € {Re A > o1 }.

Let 7 : L>(R) — L?(R) be an integral operator with kernel T'(x, )
satisfying the Hilbert-Schmidt condition. Following [7], we consider for
operator 7 Hilbert’s modification of the original Fredholm’s determi-
nants:

(35)
0 T(t1,t2) T(t1,tm)
T(tg,tl) 0 e T(tZ,tm)
Dro (troitm) = | M,
T(tma tl) : T(tma tmfl) 0

Dr

(o)
1
1+ —/---/DT,m tyotm) dby o d,
= m! Jr R (

m=1
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T(:I;7y) T(xutl) U T(‘Tvtm)
( ) T(t1,y) 0 : T(ty,tm)
DT m tla atm - 5
T(tma y) e T(tvm tm—l) 0

and

(36)  Dr (””) — T(z,y)

Y
+§: i/~-~/DTW(‘Ttl,...,tm) dty - - dt,,
m:lm! R R ’ Yy
=T(z,y)+ Y om (’;)
m=1

We start with the following proposition which summarizes the results
from [7], cf. also [13], that will be used in the construction of the
resolvent of G.

Proposition 6.1 [7]. Let the function T(z,y) : R?> — C satisfy
Hilbert-Schmidt condition

HTH2 = /R2 \T(m,y)|2 dx dy < 0.

Then the function Dp (Zj) € L%(R?) is well defined, and the follow-
ing estimates hold:

e m/2 2
(37) 6] < (—) ITI™, [Dr| < TP,
m

(39) ‘DT (y)} < elTI/2 (1T (3, )| + Vea(@)8(y))
where

a?(z) = z,t)? 2(y) = 2 at.
(2) /R|T< DPd, B /R|T<t,y>| dt
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If Dy #0, then the kernel

(39) H(z,y) = [Dr]™ - Dy (;)

defines the resolvent of operator T — T, i.e., it satisfies the following
equations

H(x,y)+ / T(x,t)- H(t,y)dt = T(x,y),
(40) p

H(x,y)+ /RT(t,y) -H(z,t)dt = T(z,y),

and therefore the operator T — H is the inverse of operator T + T .

Using Proposition 6.1, we construct the resolvent of operator G, =
7U (Z +N)), defined in (26), and prove the estimate that will be
necessary in the proof of Theorem 1.

Proposition 6.2. The set of characteristic values of operator Gy
coincides with the set

E(G)={\€C: ReA >0y, Dy, =0}

and consists of at most countably many isolated points.

For A ¢ E(G), there exists an operator Hy with kernel H(x,y,\)
satisfying the Hilbert-Schmidt condition and such that T — H)y is the
inverse of T+ Ny, and therefore 1/(wU) (Z — Hy) is the inverse of G.

If the function Dn(A) = Dy, has no zeros in a strip {\: o1 <ReA
< 039}, then the operator Hy admits estimate

(41) Al < C(e) - exp {e - (1+ [n))**< |

for A€ {o1 +v <Re\ < o9 —~}, arbitrarye > 0, and some C(g) > 0.

Proof. Applying Proposition 6.1 to the operator N defined in (25),
we obtain the existence of functions

(42) Dy(A) = Dn,
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and

o (3) =2 (0)

such that, for any fixed A, satisfying Dy (\) # 0, kernel

H(z,5,)) = [Dy(\)] " Dy (;

>\> € L*(R?),

and the operator Z — H, is the inverse of operator 7 + Nj.

Terms of the series (35) for N, depend analytically on A, and,
according to estimates (37), this series converges uniformly with respect
to A on compact subsets of {A € C: ReA > 01}. Therefore, Dy ()) is
an analytic function on {A € C: Re\ > 01}, and the set E(G) consists
of at most countably many isolated points.

Analyticity of 7 — H, with respect to A on
{AeC: ReA>o0o1}\ E(G)

follows from [18, Theorem VI.14]. It is proved by approximating the
kernel by degenerate kernels and employing an argument that can be
traced back to at least [13].

To prove estimate (41) we use the well-known estimate [12]
2
I171° < [ 17G0) de dy
R2

for integral operators. Using this estimate, and estimates (38) and (27),
we obtain

xT
HDN (y ] A) H < exp {C(L+[n))? - log? 1]} (1 + n])* - log™ |

To estimate the function [Dy (X))~ for A € {01 +~ < Re X < g2 — 7}
we use the following lemma.

Lemma 6.3. If the function Dn(A\) = Dy, has no zeros in the strip
{A: 01 <Re\ < 03}, then the estimate

(43) /Dy (V)] < Ce)exp {el - (14 )}
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holds for A € {o1 +~v < Re\ < 02 — v} with fixzed v > 0 and arbitrary
e>0.

Proof. We consider a biholomorphic map
U: {A: op<Red<oy} —D(1)={z€C:|z| <1},
defined by the formula

e'L‘ﬂ'(}\*U’l)/(UQ*Ul) —

T(N) =

eit(A—01)/(o2=01) 4 i

Denoting

w=u-+jv= 61'77(/\—01)/(‘72—01)7

we obtain for the circle C(r) = {z: |z| = r},

v (Or) = {0’ +in:

oim(A=01)/(02—01) _ z‘

j

:{u—l—iv: (u2—|—v2—2v—|—1)
r? (u2—|—02+2v—|—1)}

=L u+iv: v+ v—1+r2 2— 4r?
- ' 1—r2) ~@=r2)2 ("

Introducing coordinates

=7 eiTr(/\—al)/(Uz—o'l) +i

t:Re’ﬂ'(A—Ul)’ :Im7r()\—01)7
09 — 01 02 — 01
such that
w =+ iv = Ao T/02m) — git=s — 075 (cost 4 isint),

we can rewrite the last condition as a quadratic equation with respect
to e * for fixed ¢

s o142 2 9 1472 2 472
(e —31nt1_r2> + cos“t 1,2 _(1—7“2)220'
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Solving the equation above we obtain

1+ 72 472 14+72\2
s _ 9
e _Smtl—rzi\/(l—ﬂﬂ COSt(l—r2

with solutions existing for ¢ such that

| 1 < or 1—172 2r
cos = .
T 1=r2 1472 1472

~% is achieved at t = Z and it is

The maximal value for e 5
71—|—T2 2r 71—|—T2—|—2T7(1—|—T)271—|—7‘

1= 1—92 1—92 1= 1-7

—S8

(&

Therefore the maximal value for |s| is achieved at ¢t = /2, is equal to

|s| =log (14 r/1 —r), and for r = 1 — §, we have the maximal value
1

(44) max |s| = log <1i> = —logd + log (2 — 9).

—r

Since the function Dy (A) has no zeros in {\: 01 < Re X < 02}, we
can consider the analytic function log (Dy (A)) in this strip and, using
estimates (37)and (27), and equality (44), we obtain the following
estimate for z = (1 — §)e®,

log D (1(2)] <

2
o=l < o y1e) g (w2 P

< C|logé - log (log §) |2.
Using the Borel-Caratheodory inequality [4, 21] on disks with radii

1-26=r<R=1-4,

we then obtain
2 —46

|1Og (DN (‘IJ?I(Z)))|{|Z|:1_25} < T IIZI‘li)}(%Re {log (DN (\Ilil(z)))}
+ A2 g (D (w1 (0)

< % log? ¢ - log? (log d)
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or

- % log? 6 - log® (log §) < Re {log (Dn (T7'(2))) }

{|z|=1—-26}

< % log? & - log? (log d) .

From the last estimate we obtain an estimate for the function
|1/Dn (¥~1(2))] in the disk D(1 — 26):

(45)  [1/Dn (¥71(2))]

24¢€
< C(e)exp {M}

(lzl<1-25) 0

for arbitrary € > 0.

For a fixed t € (0, 7) and arbitrary s, we have that t+is € U=1 (D(r))
with r =1 — 26 if

1+ r2 4r2 14+7r2)\2
[s] int - _ N i
e’ <sint 1—r2+\/(1—r2)2 cos2t (1—7"2)

2 — 45 + 462 N VA1 —26)2 —cos?t - (2 — 46 + 402)?2
20(2 — 26) 26(2 — 26) ’

=sint

and therefore, for any interval [y, m — +'], there exist constants Cy, Co
such that conditions

C
tely,m—+"], Tl<e‘s|<7

imply that ¢ +is € U= (D(1 — 24)).
Using estimate (45) we then obtain for A with

! _ ! _
Re )\ € [014—7(02 01),02_7(02 01)}
™ T

the estimate
[1/Dy (V)] < C(e)exp {e! - (1 +s])*+ |

for arbitrary € > 0, which leads to estimate (43). O
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Combining the estimate for
the estimate (41). O

Dn ( gyc ‘ /\) H with (43), we now obtain

7. Proof of Theorem 1. Before proving Theorem 1 we will prove
two lemmas that will be used in the proof of this theorem.

In order to assure applicability of Proposition 5.3 to f, defined in
(17), we have to prove that

ferrue)
for w satisfying (4). In the lemma below we prove the necessary

property of f.

Lemma 7.1. If @ satisfies condition (4), then f(xz,\) defined by
formula (17) is a function in L2 (I°(1)) for any fized X\, which satisfies
the estimate

(46)  1IfCoo+inllgareqy < Cexp { el (1+ nl)><}

with some € > 0 for o € [01,09].

Proof. For a fixed A\ = o + in with ¢ € [01,02], we choose B > 1
and, using the second representation from (24) of R(x, \) for |A\z| > B,
obtain an estimate

A 1/2 ,—Xz—y|
R(z—y, )| <o R0
|z —yl

Using condition (4), we then have

1/2
( / V) dm)
|z|>B/|Al|

1 1
- / / Rz — 5, N (y, \) dy
|[z|>B/|M | /-1

T2
1 2 1/2
< C|)\|1/2(/ (/ el @y, N dy) dac)
[z|>B/|Al -1

2
dzr

1/2
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1

1
<0MW{/|mymww<CMW{/|wmAWdy
-1

< Cexp {—e‘"‘ (14 |n\)2+5}.

For |Az| < B, we use the first representation from (24) for R(x—y, A).
Since the Hilbert transform is a bounded linear operator from L9
into L9, see [22, 23], and kernels a(A(z—1y)), S(A(z —y)), and
v (A(x — y)) from (24) are bounded, we obtain

1/2
(y/’ Fa V) dx) < M og A - 180 Moy
(48) jal <|B/A|

< Cexp el (14 )},

where in the last inequality we used condition (4).

Combining estimates (47) and (48), we obtain (46). O

Lemma 7.2. If a function h(y, \) satisfies

(49) / ey, o + in)) dy <

— 00

o
(1+ [nl)/2+=

for some € >0 and 01 < Re X < 0q, then the function
(50)

§(w,2,N) = ed(otin)z
= _)? 1/2
X [/ Ky (T(U—F in)((lx_]\y}z +22> >h(y,0’—|— in) dy]

lies in L*(R,;) for o € [01,02] and satisfies

*E(x, 2,0 +in) *E(x, 2,0 +in)
o2 ’ 022 ’
(51) .
0
e 2o+, g BTN pag

ox
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The function

o+in)x

1 o0 d
z,2,t) = — ——— el
3 ) 27r\/1—M2/_OO

X [/0:0 Ky (r(a—l— m)<(1a:_—]\y/[)22 —|—z2>1/2)h(y,0+i77) dy}

x elotmt g

is then well defined for z > 0 and doesn’t depend on o € [01, 03].

Proof. To prove that the function £(z,z,\) defined in (50) lies in
L'(R,), it suffices to prove that under the conditions above

ed(gﬂ-n)x[/m K, <r(a+i,7)((1x_—]\y/[); +22)1/2>h(y,o+z’77) dy]

<C(M,z)

L' (Ry)

holds uniformly with respect to o € [0, 09] for fixed z, fixed z > 0 and
for some o1 > 0. Applying then Theorem 47 from [5] we will obtain
the second part of the lemma.

Using asymptotics of Ky(¢) for large and for small |(] ([9]), we obtain
the existence for fixed z > 0 of a constant A(z) > 0, large enough, such
that the estimates

(53) |K0 <r(0' + i) <% + 22> 1/2) |
C(M, z)e=cle=vl

< .
Ve +inl- |z -yl

for |z —y| > A(2),
and
(54) |K0 <r(0 + i) <% + 22) 1/2) |

C(M, 2)

<7
V0o +in|

for |z —y| < A(z),
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hold uniformly for o € [0, 03], with a constant C' depending on M and
z.

Combining estimates (53) and (54) with the estimate for h(y, A), we
obtain

pilo-tin)z VOO K, (r(a +in) (% + z2> 1/2) h(y, o + in) dy]

—00

C(Ma Z) Gigl‘y”h(y,a—kzn)‘dy < C’(]\47 Z)

< ==L e
Ve +in /s (1 + [n))***

for z > 0, which leads to estimate (52).

Again, using estimates (53) and (54) and analogous estimates for

(% K, (r(a +in) (% + 22) m)’

92 ' z— )2 1/2
w[(o(r(a—km)(%_FZ?) )7

92 _ N2 1/2
w[(o<r(a+m)<%+22) )

we obtain inclusions (51). u]

and

To prove Theorem 1 we consider w satisfying condition (4) and define
f by the formula (17). Using Lemma 7.1 we obtain that f satisfies
estimate (46). Applying Proposition 5.3 to f and using estimate (41)
from Proposition 6.2, we obtain the existence of h satisfying equation
(16) and such that

1Ay o+ )| o (e ayy < C(€) exp {e!™- (14 > I £ o+ i) 2 1e 1)
C(m)
< T
(1 +[nl)

for arbitrary m, arbitrary p < 4/3 and o € [01, 03], with ¢ < 07.
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Using the estimate above for p = 1, we obtain

C(m)

(55) / |h(x, 0 +in)| - |z| ™t de < ———.
From the definition of h on [—1,1] as

e~ N7 Gz, )

™

h(z,\) =

and from condition (4), we obtain

o iy = e a0 )
Ih(z, o+ i)l Lorry) = || w(z, o+ ) Lr(1(1))

<O, o+ i)l 2 ry

C(m)
SaTm)T

4
for p< 30 € |o1,02] with g < 01,
and therefore

(56) (o + i)l ) < ﬁ

for arbitrary m > 0.

67

From the estimates (55) and (56) we conclude that the function
h satisfies estimate (49), and therefore, applying Lemma 7.2 and
Proposition 2.3, we obtain that the function ¢(z,z,t) in formula (5)

is well defined and satisfies equation (1).

To prove that ¢(z, z,t) satisfies boundary condition (2), we fix z €

[—1,1] and denote § = min {x + 1,1 — z}. Then we have

.0 — 1 o [~ d(N)y
tiy €2 0) =t 2 [ Sy e (. ) dy

— 00

T+5
= lim 9 ’ S(z—y,z, N e?™¥h(y, \) dy
20 822 % ) )

z—0 0z

0
+ lim —/ S(z—y, 2, \)e?™Vh(y, \) dy.
5§ .8
R\[z—5 2+7]
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For the first integral in the right-hand side of (57), we obtain using
Lemma 2.2

lim 9 /$+2 S(x — 1y, 2, \)e?™VYh(y, \) dy
250 32 x_% X2 )

s
o [Tz
=—lim o= [ e MVn(y, \) dy
v
o efz((ler“’)(erid()\))errz()\))1/2
></ elr—y)w dw
- 2/ = 2%)(w + dd(N)? + ()
= w(z,\).

For the second integral in the right-hand side of (57), we have

lim -~ / S(x =y, 2, \)e?NVh(y, \) dy
2—0 0z R\[z—(5/2),24(5/2)]
ed()\):c

N
. 0 ( ((x—y)2 2) 1/2)

x lim — Ko r(A +2 h(y, \) dy.
=0 R\[:c—(é/z),x+(5/2)][3z 0 ) 1— M2 (

Using estimate (55) and equality

. 0 (z —y)? , 1/2 -

%ﬂngmﬁ_w+z i

fory € R\[x—(0/2),2+(0/2)], we then obtain that the second integral
in the right-hand side of (57) is equal to zero.

From the equalities above we conclude that

.0 .
zhE{%) &f(x,z,)\) = w(xz, \)

for z € [-1,1] and Re A € [01, 03], and therefore

lim 9 (z,2,t) = w(x,t).

00z
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Straightforward substitution of v(z,\) = eM®h(x, \) into the for-
mula (10), with h(z, A) defined as

h(-T A) = { (1/7r)67d()\)z ' @(:E’ A) fOI‘ z € [_1a 1]7
' solution of equation (16) for z € R\ [-1,1],

shows that £(x, z, \) defined by this formula satisfies equation (14) for
1 < |z| < A. Then for ¢(x, z,t) defined by formula (11) we will have

A¢(x,0,t) 9¢(x,0,t) 1 (0 0 /Oo At
ot +U Ox 2 \ Ot i Oz e E(@, 0,A) dn

I Y W 13}
= e <)\+Uax>§(x,0,/\)d77

27 J_ o

=0
for 1 < |z| < A. o
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