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ABSTRACT. For the problem to determine the shape of a
perfectly conducting inclusion within a conducting homoge-
neous host medium from overdetermined Cauchy data on the
accessible exterior boundary, that is, for an inverse Dirich-
let boundary value problem, recently Kress and Rundell sug-
gested a new inverse algorithm based on nonlinear integral
equations arising from the reciprocity gap principle. The
present paper extends this approach to the case of a perfectly
insulating inclusion and the case of a perfectly conducting
crack. The mathematical foundations of these extensions are
provided and numerical examples illustrate the feasibility of
the method.

1. Introduction. Inverse boundary value problems for the Laplace
equation model electrostatic imaging methods in nondestructive testing
and evaluation. Roughly speaking, in these applications an unknown
inclusion within a conducting medium is assessed by imposing a voltage
pattern at a number of electrodes attached to the boundary of the con-
ducting object and measuring the resulting currents (or vice versa). For
these inverse problems the reciprocity gap approach based on Green’s
integral theorem has been successfully applied, among others, by An-
drieux and Ben Abda [6] for the identification of planar cracks and by
Bryan et al. [9] for the reconstruction of cracks with unknown trans-
mission conditions. For the problem to determine the shape of a per-
fectly conducting inclusion within a two-dimensional homogeneous host
medium from overdetermined Cauchy data on the accessible exterior
boundary, recently Kress and Rundell [20] suggested an inverse algo-
rithm based on nonlinear integral equations arising from the reciprocity
gap principle. The purpose of this paper is to extend this approach to
the case of a perfectly insulating inclusion and the case of a perfectly
conducting crack.
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Let D be a doubly connected domain in R2 with a smooth boundary
∂D, which consists of an interior boundary Γ0 and an exterior boundary
Γ1, such that ∂D = Γ0 ∪ Γ1 where Γ0 ∩ Γ1 = ∅. By ν we denote the
unit normal to the boundary ∂D directed into the exterior of D. For
convenience, we denote the bounded domain with boundary Γ0 by D0

and the unbounded domain with boundary Γ1 by D1.

The electrostatic potential in an electrically conducting medium
D containing a perfect insulator with boundary Γ0 is modeled by
the following mixed boundary value problem: Given a function f ∈
H1/2(Γ1), find a solution u ∈ H1(D) of the Laplace equation

(1.1) Δu = 0 in D

that satisfies the mixed Neumann and Dirichlet boundary conditions

(1.2)
∂u

∂ν
= 0 on Γ0, u = f on Γ1

in the sense of the trace theorem. It is well known that a unique solution
exists to this mixed problem. For a classical approach via boundary in-
tegral equations we refer to [14] and for weak solutions to [18, 23]. For
the approximate solution of the boundary integral equations plenty of
techniques are available, among others we refer to [7, 18]. In the spirit
of Atkinson, for our work we base the numerical solution on trigono-
metric polynomials. From Atkinson [7, p. 383], we quote: It is the
personal opinion of the author that the most efficient numerical meth-
ods for solving boundary integral equations on smooth planar boundaries
are those based on trigonometric polynomial approximations, and such
methods are sometimes called spectral methods. When calculations us-
ing piecewise polynomial approximations are compared with those using
trigonometric polynomial approximations, the latter are almost always
the more efficient.

Assuming that the interior boundary degenerates into a crack Γc,
that is, an open arc, the corresponding problem for a domain with a
perfectly conducting crack is: Given a function f ∈ H1/2(Γ1), find a
solution u ∈ H1(D) to the Laplace equation

(1.3) Δu = 0 in D

satisfying the Dirichlet boundary conditions

(1.4) u = 0 on Γ0, u = f on Γ1.
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Again, existence and uniqueness of a solution to this crack problem are
well established.

The topic of this paper is the inverse problem to determine the shape
of the inclusion Γ0 or the crack Γc from an imposed voltage f on the
outer boundary Γ1 and the measured currents

(1.5) g =
∂u

∂ν
on Γ1,

i.e., the resulting Neumann data. Note that in the case of the noncon-
ducting inclusion by Green’s integral theorem

(1.6)
∫

Γ1

g ds = 0

has to be satisfied as necessary condition for the total current. Concern-
ing the issue of uniqueness the identifiability of the interior boundary
curve Γ0 from one pair of Cauchy data (f, g) on the exterior bound-
ary curve Γ1 for the case of a homogeneous Neumann condition on
Γ0 can be reduced to the case of a homogeneous Dirichlet condition,
see [15]. For the latter we refer to [18, 19] and note that the idea
of the proof actually goes back to a private communication of Schiffer
referenced in [22]. Addressing the ill-posedness of the inverse problem,
among others, stability estimates were obtained in [2, 5, 8, 10, 12].
In these references, as a by-product, also the question of uniqueness is
addressed.

For the inverse crack problem, in general, the shape of Γc is not
uniquely determined by one pair of Cauchy data, since the crack might
coincide with an equipotential line of the solution for the domain
without crack. However, in [13] it was shown that two boundary
measurements with appropriately chosen specific boundary voltages are
sufficient to determine Γc. Stability for the crack reconstruction was
considered in [1, 3, 4, 13].

For a harmonic function U ∈ H1(D) we define the reciprocity gap
functional

(1.7) G(U) :=
∫

Γ1

{
f
∂U

∂ν
− gU

}
ds
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in terms of the data f and g. Then, as a consequence of Green’s second
integral theorem, for the case of an insulating inclusion we have that

(1.8) G(U) = −
∫

Γ0

p
∂U

∂ν
ds,

where p := u|Γ0 denotes the unknown Dirichlet boundary data on Γ0.
In the case of the domain with a crack, we obtain

(1.9) G(U) =
∫

Γc

hU ds,

where

(1.10) h :=
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−

denotes the jump of the normal derivative across the crack Γc. Here, ν is
a continuous unit normal vector on Γc. By proceeding as in the classical
proof of Green’s representation formula for harmonic functions, see [18]
it can be seen that (1.9), in addition to all U ∈ H1(D), is also valid for
all U ∈ span {Φ(x, ·) : x ∈ Γc} where

(1.11) Φ(x, y) =
1
2π

ln
1

|x− y| , x �= y,

denotes the fundamental solution to the Laplace equation in two di-
mensions.

According to the reciprocity gap principle, G would vanish identically
if no inclusion or crack were present. Therefore it can be expected
that the functional G contains information on the unknown boundary
or crack. We will use the identities (1.8) and (1.9) to derive two-by-
two systems of integral equations for the pair of unknowns (Γ0, p) and
(Γc, h), respectively, by choosing the test functions U as fundamental
solutions Φ with appropriately located sources. To obtain the equa-
tions for (Γ0, p) we choose one set of functions with source points in D1

and another set with source points in D0. Then the integral equations
are derived from letting the source points tend to Γ1 and Γ0, respec-
tively. Analogously, for determining the equations for (Γc, h) one set
of functions is chosen with source points in D1 and another set with
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source points on Γc. We will show that solving the inverse problems is
equivalent to solving the two-by-two systems of integral equations.

The integral equations are linear with respect to the densities p and h
and nonlinear with respect to the boundary shapes Γ0 and Γc. For each
of the two systems the equation resulting from the source points inD1 is
severely ill-posed whereas the second equation is only mildly ill-posed.
For the practical solution of the integral equations we propose a Newton
iteration via linearization of the full two-by-two systems. Clearly, the
ill-posedness requires to incorporate a regularization within each step
of the Newton iterations. As in [20] we confine ourselves to the well-
established Tikhonov regularization.

A standard approach to solving the above inverse problems is to apply
Newton iterations to the nonlinear operator equations Fi(Γ0) = g or
Fc(Γc) = g, where for a fixed f the operators Fi and Fc, respectively,
map the interior boundary Γ0 and Γc onto the normal derivative
∂u/∂ν|Γ1 of the solution u to the boundary value problems (1.1) (1.2)
and (1.3) (1.4), respectively. As opposed to this approach, our method
does not require the solution of the forward problem in each iteration
step, and the derivatives occurring in the linearization can be explicitly
expressed in terms of integral operators rather then through associated
boundary value problems. Both these properties lead to a noticeable
reduction of the computational costs without diminishing the quality
of the reconstructions.

Since the equations are linear with respect to the densities, one might
also consider a second variant of Newton iterations. For the perfectly
insulating inclusion, given a current approximation for Γ0, one can
first solve the severely ill-posed linear equation for the density p and
then, keeping p fixed, linearize the second equation to update Γ0. The
same approach could also be pursued for the case of the perfectly
conducting crack. However, we refrain from further pursuing this idea
since the numerical experience as reported in [20] indicates that, for the
perfectly conducting inclusion, this second variant leads to less accurate
reconstructions than the full linearization.

The plan of the paper is as follows. In Section 2 we will derive the
integral equations and prove their equivalence to the inverse problems.
This is followed by the parameterization of the integral operators and
their derivatives with respect to Γ0 and Γc in Section 3. After describing
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the linearization and the iteration scheme in Section 4, we conclude with
numerical examples in Section 5.

2. Nonlinear integral equations.

2.1 Insulating inclusion. In terms of the fundamental solution
(1.11), we introduce double-layer potential operators

Qj : L2(Γ0) −→ L2(Γj), j = 0, 1,

defined by

(2.1) (Qjp)(x) := −
∫

Γ0

p(y)
∂Φ(x, y)
∂ν(y)

ds(y) − 1 − j

2
p(x), x ∈ Γj .

Note that Q0 contains the residual term for the limit of the double-layer
potential when approaching Γ0 from inside D0. In terms of the given
functions f and g, we define the combined single- and double-layer
potential
(2.2)

w(x) :=
∫

Γ1

{
f(y)

∂Φ(x, y)
∂ν(y)

− g(y)Φ(x, y)
}
ds(y), x ∈ R2 \ Γ1.

Further, in terms of the unknown function p, we introduce the double-
layer potential

(2.3) v(x) :=
∫

Γ0

p(y)
∂Φ(x, y)
∂ν(y)

ds(y), x ∈ R2 \ Γ0.

Now we are in a position to state the following theorem.

Theorem 2.1. The inverse boundary value problem for the perfect
insulator and the system of integral equations

Q0p = w|Γ0(2.4)

and

Q1p = w|Γ1(2.5)

are equivalent.
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Proof. Let Γ0 be a solution to the inverse boundary value problem
and p the corresponding Dirichlet data on Γ0. Then, from (1.8) applied
to U = Φ(x, ·) with source point x ∈ R2 \D, we have

−v = w in R2 \D.
By using the jump relations for single- and double-layer potentials, we
observe that Γ0 and p satisfy the equations (2.4) and (2.5).

Conversely, if Γ0 and p satisfy (2.4) and (2.5), in view of the condition
(1.6), the function w+v is bounded and harmonic in D1. From (2.5) it
follows that v+w = 0 on Γ1, hence v+w = 0 in D1 by the uniqueness
for the exterior Dirichlet problem for the Laplace equation. From (2.4)
we conclude that v + w is harmonic in D0 and satisfies v + w = 0 on
Γ0. Therefore, by the uniqueness for the interior Dirichlet problem,
we have that v + w = 0 in D0. Now we define a harmonic function
u := −v − w in D. Then from the jump relations for single- and
double-layer potentials applied to v and w, we conclude that u = f ,
∂u/∂ν = g on Γ1 and u = p, ∂u/∂ν = 0 on Γ0.

We note that the integral equations (2.4) and (2.5) exploit (1.8)
completely, since the set {Φ(x, ·) : x ∈ R2 \ D} is complete in
W := {U ∈ H1(D) : ΔU = 0 in D}, see [20].

2.2 Perfectly conducting crack. To derive nonlinear integral
equations from (1.9), we introduce the single-layer operators

Sj : L2(Γc) −→ L2(Γj), j = c, 1,

defined by

(2.6) (Sjh)(x) :=
∫

Γc

h(y)Φ(x, y) ds(y), x ∈ Γj .

As in the case of a perfectly conducting inclusion with closed boundary
curve, see [20], in order to ensure boundedness at infinity for the
operator S1 and the combined potential w as defined in (2.2), we
introduce modifications S̃1 and w̃ by

(2.7) (S̃1h)(x) := (S1h)(x) + [1 − Φ(x, 0)]
∫

Γc

h(y) ds(y), x ∈ Γ1,
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and

(2.8)
w̃(x) := w(x) − [1 − Φ(x, 0)]

∫
Γ1

g(y) ds(y),

x ∈ R2 \ {Γ1 ∪ {0}}.

Here, without loss of generality, we assume that the origin is contained
in D. After these definitions from (1.9), we can state the following
theorem.

Theorem 2.2. The inverse boundary value problem for the crack
and the system of integral equations

Sch = w|Γc
(2.9)

and

S̃1h = w̃|Γ1(2.10)

are equivalent.

Proof. The proof is analogous to that for the case of a perfectly
conducting inclusion as provided in [20].

Note that (2.4) is a well-posed integral equation of the second kind
and that equation (2.9) is only mildly ill-posed due to its singular
kernel. However the equations (2.5) and (2.10) have smooth kernels
and therefore their inversion is severely ill-posed.

3. Parameterized integral operators and derivatives.

3.1 Inclusion reconstruction. We assume that the boundary
curves are parameterized in the form

Γj = {zj(t) : t ∈ [0, 2π]}, j = 0, 1,

where zj : R → R2 are 2π periodic, twice continuously differentiable
and injective functions. The latter property, in particular, implies
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z′j(t) �= 0 for all t ∈ [0, 2π]. Furthermore, we assume that the
orientations of Γj , j = 0, 1, are counter-clockwise. For convenience,
we introduce the vectors

μj(τ ) = (−1)j (−z′j,2, z′j,1), j = 0, 1,

that are exterior normal vectors to Γj , j = 0, 1. For simplicity we
consider only starlike interior boundary curves with parameterization

(3.1) z0(t) = r(t)(cos t, sin t).

Here r : R → (0,∞) is a 2π periodic twice continuously differentiable
function representing the radial distance from the origin. Then, setting
ϕ = p ◦ z0 and Ajϕ = (Qj(ϕ ◦ z−1

0 )) ◦ zj , we transform (2.1) into the
parametric form

(Ajϕ)(t) = − 1
2π

∫ 2π

0

ϕ(τ )
μ0(τ ) · [zj(t) − z0(τ )]

|zj(t) − z0(τ )|2 dτ − 1 − j

2
ϕ(t),

t ∈ [0, 2π], j = 0, 1.

The kernels of the parameterized double-layer potential operators Aj

are smooth with the diagonal values for A0 given through the limit

(3.2) lim
τ→t

μj(τ ) · [zj(t) − zj(τ )]
|zj(t) − zj(τ )|2 =

μj(t) · z′′j (t)
2|zω

j (t)|2 , j = 0, 1,

for j = 0. For the parameterized form of the combined single- and
double-layer potential wj = w ◦ zj evaluated on Γj , j = 0, 1, due to the
jump relations, we have
(3.3)

wj(t) =
1
2π

∫ 2π

0

f(z1(τ ))
μ1(τ ) · [zj(t) − z1(τ )]

|zj(t) − z1(τ )|2 dτ +
j

2
f(z1(t))

− 1
2π

∫ 2π

0

g(z1(τ ))Φ(zj(t), z1(τ ))|z′1(τ )| dτ, t ∈ [0, 2π].

We will use the notations w0(r) and Aj(r, ϕ), j = 0, 1, to indicate the
dependence on r. Note that w1 does not depend on r. Again, the
kernel of w0 is smooth. In the kernel of w1, the term arising from the
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double-layer potential is smooth with diagonal values given by (3.2)
for j = 1 and the term stemming from the single-layer potential has a
logarithmic singularity. For the numerical approximation of the latter,
we note the decomposition

2πΦ(z1(t), z1(τ )) = − ln
∣∣∣∣sin t− τ

2

∣∣∣∣ + ln
|sin(t− τ/2)|
|z1(t) − z1(τ )| ,

where the second term is smooth with diagonal values

lim
τ→t

ln
|sin(t− τ/2)|
|z1(t) − z1(τ )| = − ln 2|z′1(t)|.

Hence, the well-established quadrature rules for 2π periodic logarithmic
singularities as described in [18] are available. For the 2π periodic
smooth kernels in all the operators, of course, the trapezoidal rule can
be employed for the numerical approximation.

With these notations, the integral equations (2.4) and (2.5) are
transformed into

A0(r, ϕ) = w0(r)(3.4)

and

A1(r, ϕ) = w1.(3.5)

For solving these nonlinear equations via Newton iterations, the deriva-
tives of the operators Aj and the potential w0 with respect to the
interior boundary Γ0 are required. The Fréchet derivatives of these
operators can be obtained by formally differentiating their kernels with
respect to r, see [24]. Hence, the derivative of A0 in direction q is given
by

A′
0(r, ϕ; q)(t)

=
1
π

∫ 2π

0

ϕ(τ )
μ0(τ ) · [z0(t) − z0(τ )] [z0(t) − z0(τ )] · [ζ0(t) − ζ0(τ )]

|z0(t) − z0(τ )|4 dτ

− 1
2π

∫ 2π

0

ϕ(τ )
μ0(τ ) · [ζ0(t) − ζ0(τ )] + [ζ ′0(τ )]

⊥ · [z0(t) − z0(τ )]
|z0(t) − z0(τ )|2 dτ
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for t ∈ [0, 2π]. Here, we have set ζ0(t) = q(t)(cos t, sin t) and

[ζ ′0(t)]
⊥ = q′(t)(− sin t, cos t) − q(t)(cos t, sin t).

The kernel H(t, τ ) of the integral operator A′
0 is smooth with the

diagonal values
H̃(t) := lim

t→τ
H(t, τ )

given by

H̃ =
q′′

(
rr′ 2 + r3

) − 2q′
(
rr′r′′ + r′r2

)
+ q

(
2rr′ 2 − r2r′′ + r′′r′ 2

)
2 (r′ 2 + r2)2

.

Analogously, the Fréchet derivatives of the operator A1 and the poten-
tial w0 are given by

A′
1(r, ϕ; q)(t)

=
1
π

∫ 2π

0

ϕ(τ )
μ0(τ ) · [z1(t) − z0(τ )] [z1(t) − z0(τ )] · ζ0(τ )

|z1(t) − z0(τ )|4 dτ

+
1
2π

∫ 2π

0

ϕ(τ )
[ζ ′0(τ )]

⊥ · [z1(t) − z0(τ )] − μ0(τ ) · ζ0(τ )
|z0(t) − z0(τ )|2 dτ ,

t ∈ [0, 2π],

and

(3.6) w′
0(r; q)(t)

= − 1
π

∫ 2π

0

f(z1(τ ))
μ1(τ ) · [z0(t) − z1(τ )] [z0(t) − z1(τ )] · ζ0(t)

|z0(t) − z1(τ )|4 dτ

+
1
2π

∫ 2π

0

f(z1(τ ))
μ1(τ ) · ζ0(t)

|z0(t) − z1(τ )|2 dτ

+
1
2π

∫ 2π

0

g(z1(τ ))
[z0(t) − z1(τ )] · ζ0(t)

|z0(t) − z1(τ )|2 |z′1(τ )| dτ,
t ∈ [0, 2π].

The operators A′
1 and w′

0 both have smooth kernels and, of course,
w′

0(q) = ζ0 · (gradw) ◦ z0.
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3.2 Crack reconstruction. We assume that the crack Γc ⊂ R2 is
an open curve of class C3, i.e.,

(3.7) Γc = {σ(s) : s ∈ [−1, 1]},

where σ : [−1, 1] → R2 is three times continuously differentiable and
injective. The latter property ensures that σ′(s) �= 0 for all s ∈ [−1, 1].
To incorporate the square root singularities of the solution u at the
crack tips, see [13], we apply the cosine transformation as suggested
by Yan and Sloan [25]. We substitute s = cos t for t ∈ [0, π] into the
presentation (3.7) and transform the integral operator (2.6) into the
parametric form

(3.8) (Bcϕ)(t) =
∫ π

0

ϕ(τ )Φ(zc(t), zc(τ )) dτ, t ∈ [0, π].

Here we have set

zc(t) := σ(cos t), t ∈ [0, π],

and
ϕ(t) := | sin t| |σ′(cos t)|h(zc(t)), t ∈ [0, π].

Since the integrand in (3.8) can be considered as an even 2π periodic
function, we can rewrite it in the form

(3.9) (Bcϕ)(t) =
1
2

∫ 2π

0

ϕ(τ )Φ(zc(t), zc(τ )) dτ, t ∈ [0, π].

To cope with the logarithmic singularity of the kernel we proceed as in
[16] and split

2πΦ(zc(t), zc(τ )) = − ln
(

1
2
| cos t− cos τ |

)
+H(t, τ )

where
H(t, τ ) := ln

|cos t− cos τ |
2 |zc(t) − zc(τ )|

is smooth with diagonal values

lim
τ→t

H(t, τ ) = − ln 2 |z′c(t)|.
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From the identity

(3.10) ln
(

1
2
| cos t− cos τ |

)
= ln

∣∣∣∣sin t− τ

2

∣∣∣∣ + ln
∣∣∣∣sin t+ τ

2

∣∣∣∣ ,
substituting τ by −τ in (3.9) for the integral corresponding to the
second term on the right side of (3.10) it can be seen that

(3.11) (Bcϕ)(t) =
1
2π

∫ 2π

0

{
− ln

∣∣∣∣sin t− τ

2

∣∣∣∣ +
1
2
H(t, τ )

}
ϕ(τ ) dτ,

t ∈ [0, π].

Hence, the logarithmic singularity is of the same type as for the single-
layer potential part of w1 over the closed curve Γ1 from the previous
subsection and therefore the same quadratures can be applied.

For the operator S̃1 as defined by (2.10) the cosine substitution leads
to

(B̃1ϕ)(t) =
∫ π

0

ϕ(τ )Φ(z1(t), zc(τ )) dτ + [1 − Φ(z1(t), 0)]
∫ π

0

ϕ(τ )dτ,

t ∈ [0, 2π].

For the numerical approximation of the operator B̃1 with smooth kernel
we again use the fact that the integrand can be smoothly extended as
a 2π periodic even function and apply the trapezoidal rule.

Analogous to the previous subsection, the parameterization of the
potential w on Γc yields

wc(t) =
1
2π

∫ 2π

0

f(z1(τ ))
μ1(τ ) · [zc(t) − z1(τ )]

|zc(t) − z1(τ )|2 dτ

− 1
2π

∫ 2π

0

g(z1(τ ))Φ(zc(t), z1(τ ))|z′1(τ )| dτ, t ∈ [0, π],

where wc := w ◦ zc. The parameterization w̃1 = w̃ ◦ z1 of the modified
potential w̃ on Γ1 is given by

w̃1(t) = w1(t) − [1 − Φ(z1(t), 0)]
∫ 2π

0

g(τ )dτ, t ∈ [0, 2π],

with w1 as in (3.3).
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As in the previous subsection we will use the notations wc(zc),
Bc(zc, ϕ), B̃1(zc, ϕ) to indicate the dependence of the crack parame-
terized by zc. With the above notations, the integral equations (2.9)
and (2.10) can now be rewritten in the parametric form

Bc(zc, ϕ) = wc(zc)(3.12)

and

B̃1(zc, ϕ) = w̃1.(3.13)

The Fréchet derivatives at zc in the direction ζc are given by
(3.14)

B′
c(zc, ϕ; ζc)(t) = − 1

2π

∫ π

0

ϕ(τ )
[zc(t) − zc(τ )] · [ζc(t) − ζc(τ )]

|zc(t) − zc(τ )|2 dτ ,

t ∈ [0, π].

Here, as for zc(t) = σ(cos t) we have substituted ζc(t) = σζ(cos t) for
some σζ creating a perturbed crack with parameterization σ+σζ . The
kernel in (3.14) is smooth with diagonal values

lim
τ→t

[zc(t) − zc(τ )] · [ζc(t) − ζc(τ )]
|zc(t) − zc(τ )|2 =

z′c(t) · ζ ′c(t)
|z′c(t)|2

.

Finally, the derivative of the operator B̃1 is given by

B̃′
1(zc, ϕ; ζc)(t) =

1
2π

∫ π

0

ϕ(τ )
[zc(t) − zc(τ )] · ζc(τ )

|zc(t) − zc(τ )|2 dτ, t ∈ [0, 2π],

and for the Fréchet derivative w′
c(zc; ζc) we have the same formula as

for w′
0(r; q) in (3.6) with z0 and ζ0 replaced by zc and ζc, respectively,

and for t ∈ [0, π].

4. The iteration scheme. Since the integral operators A0 and A1

are linear with respect to ϕ, the linearization of the system (3.4) (3.5)
leads to

A0(r, ϕ) +A0(r, ψ) +A′
0(r, ϕ; q) = w0(r) + w′

0(r; q)(4.1)
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and

A1(r, ϕ) +A1(r, ψ) +A′
1(r, ϕ; q) = w1.(4.2)

Given a current approximation for r and ϕ, the linear system (4.1)
and (4.2) needs to be solved for q and ψ to obtain the update r + q
for the radial function and ϕ + ψ for the boundary values. Then, in
an obvious way, this procedure is iterated. Clearly, the ill-posedness
requires to incorporate a regularization in order to achieve stability. For
this, in our numerical examples we used the well-established Tikhonov
regularization with a Sobolev penalty term on the radial function and
an L2 penalty term on the boundary values.

Analogously, the linearization of (3.12) (3.13) yields

Bc(zc, ϕ) +Bc(zc, ψ) +B′
c(zc, ϕ; ζc) = wc(zc) + w′

c(zc; ζc)
(4.3)

and

B̃1(zc, ϕ) + B̃1(zc, ψ) + B̃′
1(zc, ϕ; ζc) = w̃1.

(4.4)

The following theorem claims the injectivity of the linearization
(4.1) (4.2) at the exact solution.

Theorem 4.1. Let r be the parameterization of the interior boundary
Γ0 and let ϕ = u ◦ z0 in terms of the solution u of (1.1) (1.2). Assume
that q ∈ C2[0, 2π] and ψ ∈ L2[0, 2π] solve the homogeneous system

A0(r, ψ) +A′
0(r, ϕ; q) − w′

0(r; q) = 0(4.5)

and

A1(r, ψ) +A′
1(r, ϕ; q) = 0.(4.6)

Then q = 0 and ψ = 0.

Proof. We begin by showing that, for sufficiently small q, the
perturbed interior curve as given in polar coordinates by

Γr+q = {(r(t) + q(t))(cos t, sin t) : t ∈ [0, 2π]}
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can be represented in the form

Γr+q = {r(t)(cos t, sin t) + q̃(t) ν(t) : t ∈ [0, 2π]}

in terms of the unit normal vector

ν(t) = r′(t)(− sin t, cos t) − r(t)(cos t, sin t)

to the unperturbed curve Γr = Γ0 and a function q̃. For this we need to
show that each point y in some neighborhood of Γ0 can be represented
in the form

y = r(t)(cos t, sin t) + η ν(t)

for some t ∈ [0, 2π] and some η ∈ R. To this end, for sufficiently small
h > 0, we consider the corresponding map F : [0, 2π] × [−h, h] → R2

given by
F (t, η) = r(t)(cos t, sin t) + η ν(t).

Since

∂F

∂t
(t, 0) = r′(t)(cos t, sin t)+r(t)(− sin t, cos t) and

∂F

∂η
(t, 0) = ν(t),

obviously, for sufficiently small h the mapping F is bijective. From the
analysis in Subsection 3.1 we observe that in the Fréchet derivatives
A′

0, A
′
1 and w′

0 we now may replace the perturbation vector ζ0(t) =
q(t)(cos t, sin t) by ζ̃0 = q̃ ν.

We introduce the function

V (x) :=
∫ 2π

0

ψ(τ )grad xΦ(x, z0(τ )) · ν(z0(τ )) dτ

+
∫ 2π

0

ϕ(τ )grad x(grad xΦ(x, z0(τ )) · ν(z0(τ ))) · ζ̃0(τ ) dτ,

x ∈ R2 \ Γ0.

Then (4.6) implies that V = 0 on Γ1. Since V is bounded in D1, from
the uniqueness for the exterior Dirichlet problem and analyticity we
can conclude that V = 0 in D ∪D1.
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In view of the jump relations from equation (4.5) and V = 0 in D,
by approaching Γ0 from inside D we conclude that

ψ + ζ̃0 · (grad [v + w]) ◦ z0 = 0,

that is,

(4.7) ψ + q̃ ν · (grad [v + w]) ◦ z0 = 0.

Recalling from the proof of Theorem 2.1 that u = −v − w in D and
using ∂u/∂ν = 0 on Γ0, from (4.7) we now obtain that ψ = 0. Therefore
the property V = 0 in D simplifies into

∫ 2π

0

ϕ̃(τ )grad x(grad xΦ(x, z0(τ )) · ν(z0(τ ))) · ν(z0(τ )) dτ = 0, x ∈ D,

where we have set ϕ̃ := ϕ q̃. Note that ϕ̃ is continuous. Working out
the derivatives, and making use of periodicity, we rewrite this into the
form

(4.8) V1(x) + V2(x) = 0, x ∈ D,

for

V1(x) := − 2
∫ π

−π

ϕ̃(τ )
[(x− z0(τ )) · ν(z0(τ ))]2

|x− z0(τ )|4 dτ

and

V2(x) :=
∫ π

−π

ϕ̃(τ )
|x− z0(τ )|2 dτ.

The kernel in the integral for V1 coincides with the square of the kernel
of the double-layer potential. Therefore, proceeding as in the proof
for the jump relations of the double-layer potential (see the proof of
Theorem 6.17 in [18]) it can be seen that the function V1 is bounded
in D. Consequently, in view of (4.8), the function V2 also must be
bounded in D.

Now assume that ϕ̃ �= 0. Then, because ϕ̃ is continuous, without
loss of generality we may assume that there exist positive numbers



30 O. IVANYSHYN AND R. KRESS

δ and μ with δ < π such that ϕ̃(τ ) ≥ μ for |τ | ≤ δ. Then for
x = z0(0) + hν(z0(0)) we can estimate

|z0(τ ) −x|2 ≤ 2|z0(τ ) −z0(0)|2+ 2h2 ≤ 2‖z′0‖∞τ2+ 2h2 ≤ C(τ2+ h2)

for all |τ | ≤ δ and some constant C > 0. Consequently we can estimate

(4.9)
∫ δ

−δ

ϕ̃(τ )
|x− z0(τ )|2 dτ ≥ μ

C

∫ δ

−δ

1
τ2+ h2

dτ =
2μ
Ch

arctan
δ

h
.

Since the remaining integral over δ ≤ |τ | ≤ π in the expression for
V2(x), for sufficiently small h, is uniformly bounded with respect to h,
from (4.9) we conclude that

lim
h→0

V2(z0(0) + hν(z0(0))) = ∞,

which is a contradiction to the boundedness of V2 in D. Hence,
ϕ̃ = 0 and consequently ϕ q̃ = 0. From Holmgren’s theorem and the
homogeneous Neumann boundary condition for u on Γ0, we conclude
that u cannot vanish on an open subset of Γ0. Therefore, in view of
ϕ = u ◦ z0, we finally conclude that q̃ = 0 and consequently q = 0 and
this concludes the proof.

A corresponding result for the perfectly conducting crack can be
shown analogously to the case of a perfectly conducting inclusion in
[20]. We note that the proof of Theorem 4.1 required additional
techniques as compared with that of Theorem 5.1 in [20].

5. Numerical examples. In this final section we present some
numerical results for the reconstruction method described above both
for the perfectly insulating inclusion and the perfectly conducting crack.
For the sake of simplicity, in all examples, the outer boundary Γ1 is
chosen to be the unit circle, i.e., z1(t) = (cos t, sin t). The synthetic
data g were obtained by solving the direct problem (1.1) (1.2) for the
inclusion and (1.3) (1.4) for the crack by the Green’s function approach
as described in [11]. Roughly speaking, this approach solves both
problems by a superposition of the solution for the Dirichlet problem for
the unit disk and a single-layer potential with an unknown density on Γ0
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and Γc, respectively, and with the Green’s function for the unit disk as
kernel. In the case of the Neumann boundary condition, this leads to a
boundary integral equation of the second kind on the boundary Γ0 that
can be numerically solved by the Nyström method. In the case of the
Dirichlet condition on the crack Γc the resulting integral equation is of
the first kind and can be solved via the cosine transformation. In order
to compute the normal derivative on Γ1 it is required to evaluate the
normal derivative of the Poisson integral which leads to a hypersingular
integral. To deal with this singularity we use Garrick’s quadrature
formula and trigonometric interpolation as described in [17].

Using the Green’s function approach for creating the synthetic data
clearly avoids committing an inverse crime, since the inverse solver is
not based on using the Green’s function. For noisy data, random errors
are added pointwise to g with the percentage given in terms of the L2

norm. In all examples the regularization parameters were chosen by
trial and error.

We begin with considering the numerical solution of the inverse
boundary value problem (1.1), (1.2) and (1.5), i.e., the reconstruction
of an inclusion. Here, we assume that the interior boundary is starlike,
i.e., that it is given in the form (3.1). As finite dimensional space for
the approximation and the update we use the space of trigonometric
polynomials of degree less than or equal to K, that is,

(5.1) q(t) =
K∑

m=0

am cosmt+
K∑

m=1

bm sinmt.

To approximate the integral operators in (4.1) (4.2) we use 2M equidis-
tant quadrature points for the trapezoidal rule and the logarithmic
singularity quadrature. Further, for the solution of the linear equa-
tions (4.1) (4.2) we apply a fully discrete collocation at the same 2M
equidistant points to obtain a 4M × 4M linear system for the 2K + 1
coefficients (am, bm) from (5.1) and the 2M approximate values for
ψ(t0), . . . , ψ(t2M−1), where tj = πj/M , j = 0, . . . , 2M −1. Due to the
ill-posedness, Tikhonov regularization is incorporated with a Sobolev
H l penalty term on q and L2 penalty term on ψ. The initial guess for
the interior boundary Γ0 is chosen as a circle of radius 0.8 centered at
the origin. We denote the regularization parameters for penalizing ψ
and q by α and β, respectively.
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FIGURE 1. Reconstruction of a peanut-shaped contour.

In the first example, we consider the identification of a peanut shaped
boundary curve Γ0 given by the radial function

r(t) =
3
4

√
cos2 t+ 0.25 sin2 t, t ∈ [0, 2π].

The boundary data are of the form

f(z1(t)) = exp(− cos2 t), t ∈ [0, 2π].

The reconstructions with M = 16, K = 8, α = 1e − 9, β = 1e − 7,
l = 2 are presented in Figure 1. For the reconstruction with 3% random
noise we choose the regularization parameters α = 1e− 4, β = 1e− 3,
with the other parameters remaining unchanged. The correct interior
boundary Γ0 is presented by the dashed line and the reconstruction by
the solid line.

For the second example we consider the reconstruction of an apple-
shaped contour with radial function

r(t) =
0.5 + 0.4 cos t+ 0.1 sin 2t

1 + 0.7 cos t
, t ∈ [0, 2π].

The Dirichlet data are the same as in the first example. The results for
α = 1e − 6, β = 1e − 4, M = 16, K = 6, l = 0 without noise and for
α = 0.0001, β = 0.005 with 3% noise are presented in Figure 2.
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FIGURE 2. Reconstruction of an apple-shaped contour.

In the third example we consider a kite-shaped inclusion with the
parameterization

z0(t) = (0.6 cos t+ 0.3 cos 2t− 0.2, 0.6 sin t), t ∈ [0, 2π]

and the Dirichlet data

f(z1(t)) = cos t+ sin t, t ∈ [0, 2π].

The reconstruction with exact data for M = 24, K = 16, l = 2,
α = 0.0001, β = 0.001 and with 3% noise are shown in Figure 3.

We conclude with some numerical examples for crack identification
(compare also [21]). As finite dimensional space for the reconstructions
and the updates ζc, we choose the space of Chebyshev polynomials of
degree less than or equal to K, that is,

(5.2) ζc(s) =
K∑

j=0

ajTj(s), s ∈ [−1, 1],

with coefficients aj ∈ R2. To approximate the integral operators in
(4.3) (4.4) we use 2M equidistant quadrature points for the trapezoidal



34 O. IVANYSHYN AND R. KRESS

Γ
1

Γ
0

Γ
1

Γ
0

8 iterations, exact data 8 iterations, 3% noise

FIGURE 3. Reconstruction of a kite-shaped contour.

rule and the logarithmic singularity quadrature. Again, for the solution
of the linear equations (4.3) (4.4) we apply a fully discrete collocation
at the same 2M equidistant points to obtain a (3M + 1) × (3M + 1)
linear system for the 2K + 2 components of the coefficients aj in (5.2)
and the M + 1 approximate values for ψ(t0), . . . , ψ(tM ). Here, the
symmetry property ψ(tj) = ψ(t2M−j) for tj = 2πj/M , j = 0, . . . ,M
is incorporated. Since the linearized equations inherit the ill-posedness
from the equations (3.12) (3.13), a Tikhonov regularization with an L2

ω

penalty term with a weight ω(s) = 1/
√

1 − s2 is applied both for ζ and
ψ. We denote the regularization parameters for penalizing ψ and q by
α and β, respectively. As a stopping rule we use the condition

‖ζc‖L2
ω[0,π]

‖zc‖L2
ω [0,π]

< δ,

where δ is a given tolerance. For all examples we choose the parameters
M = 32, K = 7 and δ = 0.0001.

We start by presenting the reconstruction of a parabolic crack given
by

z(s) = (0.5s, 0.5(s2 − 0.5)), s ∈ [−1, 1].

The boundary data are of the form

(5.3) f(z1(t)) = 1 + cos2 t, t ∈ [0, 2π].
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FIGURE 4. Reconstruction of a parabolic crack.

The initial guess for Γc is chosen as the straight line {(0.5s, 0) : s ∈
[−1, 1]}. The results with the parameters α = 0.001, β = 0.01 and data
without noise and with 3% noise are presented in Figure 4. The exact
crack Γc is given by the dashed line, the reconstruction by the solid
line and the initial guess by the dotted line.

In Figure 5 we show the reconstructions of a crack with the parame-
terization

(5.4) z(s) = (0.5(s2 + s− 1), 0.125(s2 + 0.5s4)), s ∈ [−1, 1],

with Dirichlet data (5.3), the regularization parameters α = 0.0001,
β = 0.001 for exact data and α = 0.001, β = 0.01 for data with 3%
noise. The initial guess for Γc is chosen as {(0.5s,−0.1) : s ∈ [−1, 1]}.

In the last example, we present a reconstruction of a crack that is not
contained in the approximation space, i.e., in the space of polynomials
of degree less than or equal to K, and has the parameterization

(5.5) z(s) =
1
2

(
s, sin

3s
2

)
, s ∈ [−1, 1].

The Dirichlet data are given by

f(z1(t)) = exp(− sin2 t), t ∈ [0, 2π].
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FIGURE 5. Reconstructions of the crack (5.4).
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FIGURE 6. Reconstructions of the crack (5.5).

The initial guess for the crack Γc is chosen as {(0.5s, 0.25s) : s ∈
[−1, 1]}. The reconstruction for exact data and data with 3% noise
with regularization parameters α = 0.01, β = 0.1 are presented in
Figure 6.



NONLINEAR INTEGRAL EQUATIONS 37

Summarizing, the numerical results show rather accurate reconstruc-
tions with reasonable stability against noisy data. In particular, the
crack reconstructions show a satisfying identification of the location
of the crack tips. Further numerical experiments indicated that for a
noise level above about 5% the reconstructions started to deteriorate.
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