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NONLINEAR INTEGRAL EQUATIONS WITH
INCREASING OPERATORS IN MEASURE SPACES

LÁSZLÓ HORVÁTH

ABSTRACT. In this paper we consider a class of integral
equations in measure spaces. Remarkable and important spe-
cial integral equations are contained among them, which have
been extensively investigated nowadays. The main results of
this paper are existence theorems for the studied integral equa-
tions under the condition that the operator defined by the
equation is increasing. Moreover, there are some auxiliary
results which are interesting in their own rights. We shall
see that some of the problems formulated for the classical in-
tegral equations can be solved in a very satisfactory way in
this essentially more general case, and the results give unified
approaches of the problems. Finally, some applications are
given.

1. Introduction. In what follows (X,A, μi), i = 1, . . . , n are
measure spaces, S is a function from X into A, and μ :=

∑n
i=1 μi.

In this paper we study integral equations of the form

(1) y(x) = f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ y dμi,

where f : Df (⊂ X) → R, gi : Dgi
(⊂ X) → R, i = 1, . . . , n, and hi : Ii

(⊂ R) → R for i = 1, . . . , n.

We recall some concepts from measure theory that will be used in the
present work. When we consider a measure, we take it as understood
that its domain is a σ-algebra. The integrable functions, with respect
to a measure, over a measurable set are regarded as almost measurable
on this set. The product of finitely many measure spaces is understood
as in [8].
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Definition 1. We say that a function s : A→ R is a solution of the
integral equation (1) if

(i) A is a nonempty subset of X such that S(x) ⊂ A for every x ∈ A,

(ii) hi ◦ s is μi-integrable over S(x) for every x ∈ A and i = 1, . . . , n,

(iii) y := s satisfies (1) for every x ∈ A.

The function S is assumed to have some of the following properties,
see [5]:

(C1) x /∈ S(x), x ∈ X.

(C2) If x1 ∈ S(x2), then S(x1) ⊂ S(x2), x2 ∈ X.

(C3) {(x1, x2) ∈ X2 | x2 ∈ S(x1)} is μi × μj-measurable for
i, j = 1, . . . , n.

The first reason for the significance of the considered integral equa-
tions is seen from the observation that, under the previous assump-
tions on S, remarkable and important special integral equations are
contained among them, which have been extensively investigated nowa-
days. This is illustrated by the following examples.

Let X := [0,∞[, and let A be the Lebesgue-measurable subsets of X.
Suppose p : X → [0,∞[ and q : X → [0,∞] are measurable functions
such that p ≤ q. Define S1 and S2 on X by

S1(x) := [p(x), q(x)[ and S2 := [p(x), q(x)] ∩X.
Replacing S by S1 and S2 in (C3), respectively, it is not too hard to
prove that S1 and S2 satisfy (C3) independently of the chosen measures.
If p and q are constant functions, then S1 and S2 satisfy (C2) too. In
particular, when p(x) := 0 and q(x) := ∞, x ∈ X, we can see that
there exist classical Fredholm type integral equations in (1). Finally, if
p(x) := 0, 0 ≤ q(x) ≤ x, x ∈ X, and q is increasing, then S1 satisfies
(C1) (C3), and S2 satisfies (C2) and (C3). These cases show that
classical Volterra type integral equations are also contained in (1). It is
not difficult to obtain analogues of these examples in higher dimensions.

Similarly, the case S(x) := X, x ∈ X corresponds to Fredholm
type integral equations, while the case when S satisfies (C1) (C3)
corresponds to Volterra type integral equations. As for the second
part of this statement, we do not go into the details and refer to [5,
Theorem 2.1]. For further concrete examples, see [7].
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The second reason for the significance of the considered integral equa-
tions comes from the observation that some of the problems formulated
for the classical integral equations can be solved in a very satisfactory
way in this essentially more general case, and the results give unified
approaches of the problems. For example, in the paper [7] existence
and uniqueness results are given for (1) when S satisfies (C1) (C3), and
hi is Lipschitzian in Ii for i = 1, . . . , n. Especially the linear version of
(1) is discussed in [5].

In spite of the above-mentioned facts, research on integral equations
of the form (1) has proceeded slowly, there are relatively few papers
even if the measures μi, i = 1, . . . , n are one dimensional Lebesgue-
Stieltjes measures, see [1 3, 9, 10].

Definition 2. We define two vector spaces.

(a) Let A be a nonempty set from A.

L(A) : = {z : A −→ R | z is μj-integrable over A, j = 1, . . . , n}
= {z : A −→ R | z is μ-integrable over A} .

(b) Let A be a nonempty subset of X such that S(x) ⊂ A for every
x ∈ A.

Lloc(A) := {z : A −→ R | z is μj-integrable over S(x) for every x ∈ A

and j = 1, . . . , n}
= {z : A −→ R | z is μ-integrable over S(x) for every x ∈ A} .

If p is a function and A is a subset of the domain of p, we denote
by p|A the restriction of p to A. In the sequel we follow the next
convention: let F be a set of real-valued functions from A ⊂ X, and let
the function T be defined on F ; if p : B → R with A ⊂ B, then p ∈ F
means p|A ∈ F , and T (p) := T (p|A).

We also make the following assumptions for the functions f , gi and
hi, i = 1, . . . , n:

(H1) A is a nonempty set from A such that S(x) ⊂ A for every x ∈ A
and such that f , gi ∈ L(A), i = 1, . . . , n.
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(H2) A is a nonempty subset of X such that S(x) ⊂ A for every
x ∈ A and such that f , gi ∈ Lloc(A), i = 1, . . . , n.

(H3) Ii is an interval, i = 1, . . . , n.

(H4) Either hi is increasing, and gi is nonnegative, or hi is decreasing,
and gi is nonpositive, i = 1, . . . , n.

In the present paper existence theorems are given for the integral
equation (1). In each of these results we suppose that some of the
properties (C1) (C3) and (H1) (H4) hold. We study the existence of
maximal and minimal solutions, and the convergence to these solutions
of the successive approximations determined by some supersolutions
and subsolutions. The key to the proof of existence is a fixed point
theorem for increasing mappings on ordered sets. Finally, some appli-
cations are given to illustrate the results.

2. Some preliminary results. In this section we collect together
some results which are needed in the main body of this paper. They
do not belong to the main line of development, but they are interesting
in their own rights.

An ordered set is an ordered pair (A,≤), where A is a set endowed
with a binary relation, denoted by ≤, which is supposed to be reflexive,
antisymmetric and transitive. An order interval [a1, a2], where a1,
a2 ∈ A, is the set {a ∈ A | a1 ≤ a ≤ a2}. If there exists a supremum of
a subset B of A, it is denoted by supB.

In the next section, where we discuss existence theorems for the
integral equation (1), our arguments depend on the following fixed
point theorem which generalizes the fixed point theorem of Amann,
see [4, 12].

Theorem 3. Let (A,≤) be an ordered set, and let f : D(⊂ A) → A
be a function such that

(i) f is increasing, that is, if a1, a2 ∈ D and a1 ≤ a2, then
f(a1) ≤ f(a2),

(ii) there are a0, b0 ∈ D for which a0 ≤ b0, a0 ≤ f(a0), f(b0) ≤ b0
and [a0, b0] ⊂ D,

(iii) every chain of [a0, b0] has a supremum.
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Then

(a) f has a smallest fixed point amin in the set Iu := {a ∈ D | a0 ≤ a},
(b) every b ∈ Iu with the property f(b) ≤ b satisfies amin ≤ b.

Proof. Let I := {b ∈ Iu | f(b) ≤ b}, for all b ∈ I let H(b) := {a ∈
Iu | a ≤ b and a ≤ f(a)}, and let H := ∩{H(b) | b ∈ I}. It is obviously
enough to show that f has a fixed point in H.

It is easy to see that H ⊂ D and a0 ∈ H.

First we prove that f(H) ⊂ H. Let a ∈ H and b ∈ I. Then by (i),
a0 ≤ a ≤ f(a) ≤ f(b) ≤ b. In particular, when b = b0, it follows from
[a0, b0] ⊂ D that f(a) ∈ D, and this implies by (i) and a ≤ f(a), that
f(a) ≤ f(f(a)). The previous statements give f(a) ∈ H.

We show now that supC ∈ H whenever C is a chain in H. Since
H ⊂ [a0, b0], (iii) implies that supC exists. Suppose b ∈ I. Then by
C ⊂ H ⊂ H(b) ⊂ [a0, b], b is an upper bound of C, and therefore
supC ∈ [a0, b]. In the special case b = b0 we have supC ∈ D, by
[a0, b0] ⊂ D. If a ∈ C, then (i) implies that a ≤ f(a) ≤ f(supC), and
hence f(supC) is an upper bound of C, so that supC ≤ f(supC).

We consider now the ordered set (H,≤) and the function f | H. We
have already proved that the range of f | H is a subset of H and that
every chain of H has a supremum under the given order relation ≤ on
H. It now follows from the Zorn’s lemma that there exists a maximal
element am in H. By the definition of H, a ≤ f(a) for every a ∈ H, so
that am = f(am).

The proof is complete.

Corollary 4. Let (A,≤) be an ordered set, and let f : D(⊂ A) → A
be a function such that the hypotheses (i) and (ii) made above are
satisfied, and

(iii) every chain of [a0, b0] has an infimum.

Then

(a) f has greatest fixed point bmax in the set Id := {a ∈ D | a ≤ b0},
(b) every a ∈ Id with the property a ≤ f(a) satisfies a ≤ bmax.
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The next result belongs to integration theory, and it will be used in
the proof of a special existence theorem for (1), see Theorem 23.

Theorem 5. Let (Y,B, ν) be a measure space, and let S : Y → B
satisfy the conditions (C1) (C3). Suppose ν(Y ) > 0, and ν(B) = 0
for every measurable subset B of N := {x ∈ Y | ν(S(x)) = 0}. If
p : Y → R is nonnegative and ν-integrable over S(x) for every x ∈ Y ,
then for each ε > 0 there is xε ∈ Y such that ν(S(xε)) > 0 and∫

S(xε)
p dν < ε.

We require two lemmas. The n-fold product of a measure space
(Y,B, ν) is denoted by (Y n,Bn, νn), n ∈ N+.

The first lemma contains an integral inequality which is a special case
of the main result in [6].

Lemma 6. Let (Y,B, ν) be a measure space, and let S : Y → B
satisfy the conditions (C1) (C3). If p : Y → R is nonnegative and
ν-integrable over Y , then∫

Hn(Y )

p× · · · × p dνn ≤ 1
n!

( ∫
Y

p dν

)n

, n ∈ N+,

where

(2) Hn(Y ) := {(x1, . . . xn) ∈ Y n | xk ∈ S(xk−1), k = 2, . . . , n} .

In the second lemma we construct a measure space from a given one,
and we discuss the connections between them.

Lemma 7. Let (Y,B, ν) be a measure space, and let H ⊂ Y such
that for every measurable set B ⊂ Y \H we have ν(B) = 0. Let

C := {B ∩H | B ∈ B} ,

and for each B ∈ B let π(B ∩H) := ν(B).

(a) π is well defined. This means that if B1, B2 ∈ B and B1 ∩H =
B2 ∩H, then ν(B1) = ν(B2).
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(b) (H, C, π) is a measure space.

Suppose B ∈ B, and p : B → [−∞,∞] is ν-almost measurable on B.

(c) p|B ∩H is π-almost measurable on B ∩H.

(d) If p is ν-integrable over B, then p is π-integrable over B ∩ H
and

∫
B
p dν =

∫
B∩H

p dπ.

The product measure ν2 (π2) is defined by an outer measure on the
power set of Y (H), see [8]. This outer measure is also denoted by ν2

(π2).

(e) If A ⊂ H2, then π2(A) = ν2(A).

(f) If A ∈ B2, then A ∩H2 ∈ C2.

Proof. (a) The hypotheses on B1 and B2 imply that B1 \ B2 and
B2 \ B1 are B-measurable subsets of Y \ H, whence ν(B1 \ B2) =
ν(B2 \B1), and therefore

ν(B1) = ν(B1 \B2) + ν(B1 ∩B2) = ν(B2 \B1) + ν(B2 ∩B1) = ν(B2).

(b) It is easy to see that C is a σ-algebra in H. To prove that π is a
measure on C, let Bn ∈ B, n ∈ N such that (Bn ∩H)∞n=0 is a sequence
of pairwise disjoint sets of C. Then Bi ∩ Bj , i, j ∈ N, i 	= j are B-
measurable subsets of Y \H, so that ν(Bi ∩ Bj) = 0, i, j ∈ N, i 	= j.
Let B := ∪∞

i,j=0, i �=j(Bi ∩ Bj). It follows that B is a B-measurable
subset of Y \H and ν(B) = 0. If B̂n := Bn \ B, n ∈ N, then B̂n ∈ B
and B̂n ∩H = Bn ∩H, n ∈ N as well as

B̂i ∩ B̂j ⊂ (Bi \ (Bi ∩Bj)) ∩ (Bj \ (Bi ∩Bj)) = ∅, i, j ∈ N i 	= j.

Hence

π

( ∞⋃
n=0

(Bn ∩H)
)

= π

(( ∞⋃
n=0

Bn

)
∩H

)
= π

(( ∞⋃
n=0

B̂n

)
∩H

)

= ν

( ∞⋃
n=0

B̂n

)
=

∞∑
n=0

ν(B̂n) =
∞∑

n=0

π (Bn ∩H) .

(c) There exists a B-measurable subset B1 of B such that ν(B1) = 0
and p is B-measurable on B \B1. Then B1 ∩H ∈ C, B1 ∩H ⊂ B ∩H
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and π(B1 ∩H) = 0. Hence it is enough to show that p is C-measurable
on (B \B1) ∩H. This follows from

{x ∈ (B \B1) ∩H | p(x) < c} = {x ∈ B \B1 | p(x) < c} ∩H ∈ C,
c ∈ R.

(d) Suppose that p is a nonnegative B-measurable simple function on
B, that is,

p =
n∑

i=1

ci1Bi
, ci ∈ [0,∞[ , Bi ∈ B, i = 1, . . . , n,

where the Bi’s are pairwise disjoint and 1Bi
denotes the characteristic

function of Bi on B, i = 1, . . . , n. Then p|B ∩ H is a C-measurable
simple function with the C-measurable sets Bi ∩H, i = 1, . . . , n, and

∫
B

p dν =
n∑

i=1

ciν(Bi) =
n∑

i=1

ciπ(Bi ∩H) =
∫

B∩H

p dπ.

By using this and (c), we obtain the rest of the assertion in the usual
way.

(e) Let (Bn
1 × Bn

2 )∞n=0 be a sequence of sets from B × B whose
union contains A. Since A ⊂ H2, the members of the sequence
((Bn

1 ∩ H) × (Bn
2 ∩ H))∞n=0 belong to C × C and cover A. Further,

we have

π2((Bn
1 ∩H) × (Bn

2 ∩H)) = π(Bn
1 ∩H)π(Bn

2 ∩H)
= ν(Bn

1 )ν(Bn
2 ) = ν2(Bn

1 ×Bn
2 ), n ∈ N,

hence π2(A) ≤ ν2(A). The opposite inequality can be proved similarly.

(f) Since A ∈ B2, the Carathéodory condition implies that

ν2(U) ≥ ν2(U ∩A) + ν2(U \A)

for every U ⊂ Y 2. Hence, by (e)

π2(V ) ≥ ν2(V ∩A) + ν2(V \A) = π2(V ∩A) + π2(V \A)
= π2(V ∩ (A ∩H2)) + π2(V \ (A ∩H2))
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for every V ⊂ H2. This gives A ∩ H2 ∈ C2 by the Carathéodory
condition.

The only interesting case of Lemma 7 arises when H is not measur-
able. If H ∈ B, then the result is elementary.

Consider now the proof of Theorem 5.

Proof. We begin with the case where N = ∅. If the result is
false, then there exists ε0 > 0 such that for every x ∈ Y we have∫

S(x)
p dν ≥ ε0. Let x0 ∈ Y . We prove by induction on n that

(3)
∫

Hn(S(x0))

p× · · · × p dνn ≥ εn
0 , n ∈ N+.

Concerning the meaning of the set Hn(S(x0)), see (2). The case n = 1
is obvious. Suppose then that n ∈ N+ for which (3) holds. Then, by
Fubini’s theorem, see [8],

∫
Hn+1(S(x0))

p× · · · × p dνn+1

=
∫

Hn(S(x0))

( ∫
S(xn)

p(x1) . . . p(xn)p(xn+1) dν(xn+1)
)
dνn(x1, . . . , xn)

=
∫

Hn(S(x0))

(
p(x1) . . . p(xn)

∫
S(x0)

p dν

)
dνn(x1, . . . , xn)

≥ ε0

∫
Hn(S(x0))

p× · · · × p dνn ≥ εn+1
0 .

Next, Lemma 6 shows that

(4)
∫

Hn(S(x0))

p× · · · × p dνn ≤ 1
n!

( ∫
S(x0)

p dν

)n

, n ∈ N+.
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It now follows from (3) and (4) that

1 ≤ 1
n!

(( ∫
S(x0)

p dν

)/
ε0

)n

, n ∈ N+,

giving a contradiction.

To prove the theorem in the general case, where N 	= ∅, we construct
from (Y,B, ν) and N a new measure space (Y \N, C, π), as in Lemma 7.
Let SN : Y \N → C be defined by

SN (x) := S(x) ∩ (Y \N).

Then π(Y \ N) = ν(Y ) > 0, π(SN (x)) = ν(S(x)) > 0 for every
x ∈ Y \N , SN obviously satisfies (C1) and (C2), and by Lemma 7 (f),
SN satisfies (C3) too. By applying the first part of the proof with the
measure space (Y \ N, C, π) and the function SN , we obtain that for
each ε > 0 there is xε ∈ Y \N such that

∫
SN (xε)

p dπ < ε. By Lemma
7 (d),

∫
S(xε)

p dν < ε.

3. Main results. We begin this section by introducing some
terminology that will be used further.

Definition 8. (a) Let A be a nonempty set from A such that
S(x) ⊂ A for every x ∈ A. For a given z ∈ L(A), the symbol ‖z‖
is defined by ‖z‖ :=

∫
A
|z| dμ.

(b) Let N := {z ∈ L(A) | ‖z‖ = 0}, and let L(A) := L(A)/N .
For every z ∈ L(A), let z ∈ L(A) be the equivalence class containing
z ( z = z + N ), and we set ‖z‖ := ‖z‖. For F ⊂ L(A) we define
F := {z ∈ L(A) | z ∈ F}.

(c) We introduce the canonical ordering on L(A): for z1, z2 ∈ L(A),
z1  z2 means that z1 ≤ z2, μ almost everywhere on A.

Remark 9. (a) (L(A), ‖·‖) is a complete pseudometric space.

(b) (L(A), ‖·‖ ,) is an L-normed Banach lattice, briefly, AL-space,
see [11].

Definition 10. We consider the integral equation (1) under the
hypotheses (C3) and (H1).
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(a) We define an operator corresponding to (1):

D(A) := {y ∈ L(A) | hi ◦ y is μi-integrable over A, i = 1, . . . , n} ,

TA : D(A) −→ L(A),

TA(y)(x) := f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ y dμi, x ∈ A.

(b) The following essential operator is derived from TA:

TA : D(A) −→ L(A), TA(y) := TA(y).

Remark 11. (a) Theorem 2.3 (b) in [5] guarantees that the range of
TA is a subset of L(A).

(b) TA is well defined, since TA(y1) = TA(y2) whenever y1, y2 ∈ y ∈
D(A).

(c) It is easy to check that y ∈ D(A) implies y ⊂ D(A).

The following results are technical preliminaries to the main theo-
rems.

Lemma 12. Assume that the hypotheses (C3) and (H1) are satisfied.

(a) If s ∈ D(A) is a solution of (1), then s is a fixed point of TA.

(b) If y ∈ D(A) is a fixed point of TA, then there exists exactly one
solution s ∈ D(A) of (1) such that s ∈ y.

(c) If the condition (H4) is also satisfied, and y1, y2 ∈ D(A) for
which y1 ≤ y2, μ almost everywhere on A, then TA(y1) ≤ TA(y2).

Proof. (a) and (c) are obvious.

(b) Let s := TA(y). Then s ∈ TA(y) = y, and therefore s = y, μ
almost everywhere on A. Hence s = TA(y) = TA(s). If s1, s2 ∈ y such
that si = TA(si), i = 1, 2, then s1 = s2, μ almost everywhere on A,
whence s1 = TA(s1) = TA(s2) = s2.
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We are now in a position to state the first existence theorem for (1).
We assume the integrability condition (H1) which is more restrictive
than (H2), but this has the advantage that only (C3) is required from
the conditions concerning the function S.

Theorem 13. Assume that the hypotheses (C3), (H1), (H3) and
(H4) are satisfied. Suppose further that there exist functions ϕ, ψ ∈
D(A) such that y = ϕ satisfies the inequality

(5) y ≤ TA(y) μ-a.e. on A,

y = ψ satisfies the inequality

(6) TA(y) ≤ y μ-a.e. on A,

and ϕ ≤ ψ, μ almost everywhere on A. Let

Du(ϕ) := {y ∈ D(A) | ϕ ≤ y, μ-a.e. on A} ,

and

Dd(ψ) := {y ∈ D(A) | y ≤ ψ, μ-a.e. on A} .

Then

(a) TA has a smallest fixed point smin in Du(ϕ), and smin  y for
every y ∈ Du(ϕ) with TA(y)  y.

(b) There exists a smallest solution smin of (1) in Du(ϕ) which means
that smin ≤ s whenever s ∈ Du(ϕ) is a solution of (1).

(c) If y ∈ Du(ϕ) satisfies (6), then smin(x) ≤ y(x) whenever (6)
holds at x ∈ A.

(d) The successive approximations determined by ϕ

ϕ0 := ϕ, ϕk+1 := TA(ϕk), k ∈ N

are well defined, the sequence (ϕk)∞k=1 is increasing, and converge
pointwise on A to smin whenever hi, i = 1, . . . , n is left continuous.
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(a1) TA has a greatest fixed point smax in Dd(ψ), and y  smax for
every y ∈ Dd(ψ) with y  TA(y).

(b1) There exists a greatest solution smax of (1) in Dd(ψ) which
means that s ≤ smax whenever s ∈ Dd(ψ) is a solution of (1).

(c1) If y ∈ Dd(ψ) satisfies (5), then y(x) ≤ smax(x) whenever (5)
holds at x ∈ A.

(d1) The successive approximations determined by ψ

ψ0 := ψ, ψk+1 := TA(ψk), k ∈ N

are well defined, the sequence (ψk)∞k=1 is decreasing, and converge
pointwise on A to smax whenever hi, i = 1, . . . , n is right continuous.

Proof. (a) From the given conditions for ϕ and ψ it follows that
ϕ  ψ, ϕ  TA(ϕ) and TA(ψ)  ψ.

We prove first that the order interval [ϕ, ψ] in L(A) is a subset of
D(A). It suffices to show that if y ∈ L(A) with ϕ ≤ y ≤ ψ μ
almost everywhere on A, then y ∈ D(A). Let i be an integer such
that 1 ≤ i ≤ n. Since hi ◦ ϕ and hi ◦ ψ are μi-integrable over A, there
exists Bi ∈ A, Bi ⊂ A such that μi(A \ Bi) = 0 and that hi ◦ ϕ and
hi ◦ ψ are measurable on Bi. Further, by μi ≤ μ, we can suppose
that y is measurable on Bi and ϕ(x) ≤ y(x) ≤ ψ(x), x ∈ Bi. By
applying these statements, the properties of hi ◦ y can be obtained:
(H3) implies that Bi is a subset of the domain of hi ◦ y; it therefore
follows from the monotonicity of hi (thus hi is Borel-measurable) that
hi◦y is measurable on Bi, hence hi◦y is μi-almost measurable on A; this
shows that hi ◦y is μi-integrable over A, since either hi is increasing, in
which case hi(ϕ(x)) ≤ hi(y(x)) ≤ hi(ψ(x)), x ∈ Bi, or hi is decreasing,
that is hi(ψ(x)) ≤ hi(y(x)) ≤ hi(ϕ(x)), x ∈ Bi.

We now prove that TA is increasing. It is enough to show that if
y1, y2 ∈ D(A) such that y1 ≤ y2 μ-almost everywhere on A, then
TA(y1) ≤ TA(y2). This comes from Lemma 12 (c).

Remark 9 (b) implies that (L(A), ‖·‖ ,) is order complete, thus every
chain of [ϕ, ψ] has a supremum.

By what we have already proved, Theorem 3 can be applied to the
ordered set (L(A),) and the operator TA, and this gives the result.
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(b) and (c). By Lemma 12 (b), we can find exactly one solution
smin ∈ D(A) of (1) with the property smin ∈ smin. Then smin ∈ Du(ϕ)
holds. Let y ∈ Du(ϕ) satisfy the inequality (6). Clearly TA(y)  y,
hence, by (a), smin  y, and therefore smin ≤ y μ-almost everywhere
on A. It follows from Lemma 12 (c) that TA(smin) ≤ TA(y), and hence
smin(x) ≤ y(x) whenever (6) holds at x ∈ A.

(d) LetB ∈ A, B ⊂ A such that μ(A\B) = 0 and that the inequalities
ϕ(x) ≤ ψ(x), ϕ(x) ≤ TA(ϕ)(x) and TA(ψ)(x) ≤ ψ(x) are satisfied for
every x ∈ B.

We prove by induction on k that ϕk ∈ D(A) and ϕ(x) ≤ ϕk(x) ≤ ψ(x)
for every x ∈ B and k ∈ N. The case k = 0 is obvious. Suppose then
that k ∈ N for which the result is true. To show that ϕk+1 ∈ D(A),
we refer to the first part of the proof of (a). By the definition of B
and Lemma 12 (c), ϕ(x) ≤ TA(ϕ)(x) ≤ TA(ϕk)(x) ≤ TA(ψ)(x) ≤ ψ(x),
x ∈ B.

To prove that (ϕk)∞k=1 is increasing, we also use induction on k. We
have seen above that ϕ0(x) ≤ ϕ1(x), x ∈ B, hence by Lemma 12 (c),
ϕ1 ≤ TA(ϕ0) ≤ TA(ϕ1) = ϕ2. Now let k ∈ N+ such that ϕk ≤ ϕk+1.
This and Lemma 12 (c) imply that ϕk+1 = TA(ϕk) ≤ TA(ϕk+1) =
ϕk+2.

Since ϕk(x) ≤ ψ(x), x ∈ B, it follows from Lemma 12 (c) that
ϕk = TA(ϕk−1) ≤ TA(ψ) =: ψ1, k ∈ N+. We have established that the
sequence (ϕk)∞k=1 is increasing and bounded above by ψ1, hence (ϕk)
converges pointwise to a function s on A such that ϕ(x) ≤ s(x) ≤ ψ(x),
x ∈ B. Now the Monotone Convergence Theorem shows that s ∈ L(A),
thus the previous inequality and the first part of the proof of (a) imply
that s ∈ D(A).

We observe next that s is a solution of (1). Since s, ϕk ∈ D(A), k ∈ N,
(ϕk)∞k=1 is increasing and hi is left continuous, hi◦ϕk → hi◦s μi-almost
everywhere on A for every i = 1, . . . , n. If hi is increasing, then (hi◦ϕk)
is increasing μi-almost everywhere on A, and if hi is decreasing, then
(hi ◦ ϕk) is decreasing μi-almost everywhere on A. According to these
two statements and the monotone convergence theorem, we have∫

A

hi ◦ ϕk dμi −→
∫

A

hi ◦ s dμi, i = 1, . . . , n.

From the definition of (ϕk) and the condition S(x) ⊂ A, x ∈ A, we
therefore deduce that s is a solution of (1).
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It remains to prove that s = smin, and it is enough to show that
if ŝ ∈ Du(ϕ) is a solution of (1), then ϕk ≤ ŝ, k ∈ N+. Since
ϕ ≤ ŝ, μ-almost everywhere on A, it follows from Lemma 12 (c) that
ϕ1 = TA(ϕ) ≤ TA(ŝ) = ŝ. We complete the proof by induction on
k. If k ∈ N+ for which the result holds, then by Lemma 12 (c),
ϕk+1 = TA(ϕk) ≤ TA(ŝ) = ŝ.

The cases (a1), (b1), (c1) and (d1) follow in a similar manner, we
omit the details.

When there is a function which is not left (right) continuous in (d)
((d1)), the successive approximations ϕk (ψk) may fail to converge to
smin (smax), even if (1) has a unique solution s ∈ D(A). This can be
illustrated by examples.

Remark 15 justifies the following definition.

Definition 14. We consider the integral equation (1) under the
hypotheses (C2), (C3) and (H2).

Dloc(A) := {y : A→ R | for x ∈ A with S(x) 	= ∅,

y |S(x) ∈ D(S(x))} .

Remark 15. We consider the integral equation (1) under the hypothe-
ses (C2), (C3) and (H2). If s : A→ R is a solution of (1), then Theorem
2.3 (b) in [5] shows that s ∈ Dloc(A).

Before we turn to another existence theorem for (1), we need a result
which will be important in what follows.

Lemma 16. Assume that the hypotheses (C2), (C3) and (H2) are
satisfied. Let L := {x ∈ A | S(x) 	= ∅}. Suppose we are given
solutions sx ∈ D(S(x)), x ∈ L of (1) such that sx2 |S(x1) = sx1 for
each x1 ∈ L, x2 ∈ A with x1 ∈ S(x2). Then there exists exactly one
solution s : A→ R of (1) for which s|S(x) = sx, x ∈ L.
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Proof. Let

s : A −→ R,

s(x) :=

⎧⎪⎨
⎪⎩
f(x) +

n∑
i=1

gi(x)
∫

S(x)

hi ◦ sx dμi if x ∈ L

f(x) if x ∈ A \ L.

Let x ∈ L and u ∈ S(x). The conditions imply that if u ∈ L, then

s(u) = f(u) +
n∑

i=1

gi(u)
∫

S(u)

hi ◦ su dμi

= f(u) +
n∑

i=1

gi(u)
∫

S(u)

hi ◦ sx dμi = sx(u),

and if u /∈ L, then s(u) = f(u) = sx(u), thus s|S(x) = sx.

Now let x ∈ A. If x /∈ L, then obviously

s(x) = f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ s dμi,

while if x ∈ L, then by the first part of the proof,

s(x) = f(x)+
n∑

i=1

gi(x)
∫

S(x)

hi◦sx dμi = f(x)+
n∑

i=1

gi(x)
∫

S(x)

hi◦s dμi,

hence s is a solution of (1).

The uniqueness of s is obvious.

We consider next an existence theorem for (1) when the integrability
condition (H2) satisfies.

Theorem 17. Assume that the hypotheses (C2), (C3), (H2), (H3)
and (H4) are satisfied. Suppose further that there exist functions ϕ,
ψ ∈ Dloc(A) such that y = ϕ satisfies the inequality

(7) y(u) ≤ f(u) +
n∑

i=1

gi(u)
∫

S(u)

hi ◦ y dμi μ-a.e. on S(x), x ∈ A,
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y = ψ satisfies the inequality

(8) y(u) ≥ f(u) +
n∑

i=1

gi(u)
∫

S(u)

hi ◦ y dμi μ-a.e. on S(x), x ∈ A,

and ϕ ≤ ψ, μ-almost everywhere on S(x), x ∈ A. Let

Dloc,u(ϕ) := {y ∈ Dloc(A) | ϕ ≤ y, μ-a.e. on S(x), x ∈ A} ,

and

Dloc,d(ψ) := {y ∈ Dloc(A) | y ≤ ψ, μ-a.e. on S(x), x ∈ A} .

Then

(a) there exists a smallest solution smin of (1) in Dloc,u(ϕ) which
means that smin ≤ s whenever s ∈ Dloc,u(ϕ) is a solution of (1).

(b) If y ∈ Dloc,u(ϕ) satisfies (8), then smin(x) ≤ y(x) whenever (8)
holds at x ∈ A.

(c) The successive approximations determined by ϕ

ϕ0 := ϕ,

ϕk+1 : A −→ R,

ϕk+1(x) := f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ ϕk dμi, k ∈ N

are well defined, ϕk ∈ Dloc(A), k ∈ N, the sequence (ϕk)∞k=1 is
increasing, and converge pointwise on A to smin whenever hi, i =
1, . . . , n is left continuous.

(a1) There exists a greatest solution smax of (1) in Dloc,d(ψ) which
means that s ≤ smax whenever s ∈ Dloc,d(ψ) is a solution of (1).

(b1) If y ∈ Dloc,d(ψ) satisfies (7), then y(x) ≤ smax(x) whenever (7)
holds at x ∈ A.

(c1) The successive approximations determined by ψ

ψ0 := ψ,

ψk+1 : A −→ R,

ψk+1(x) := f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ ψk dμi, k ∈ N
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are well defined, ψk ∈ Dloc(A), k ∈ N, the sequence (ψk)∞k=1 is
decreasing, and converge pointwise on A to smax whenever hi, i =
1, . . . , n is right continuous.

Proof. (a) and (b). Let x ∈ A with S(x) 	= ∅. By using the
hypotheses and the definition of Dloc(A), we obtain from Theorem
13 (b) that (1) has a smallest solution smin,x in the set

Dx,u(ϕ) := {y ∈ D(S(x)) | ϕ ≤ y, μ-a.e. on S(x)} .

We show now that if x1, x2 ∈ A, S(x1) 	= ∅ and x1 ∈ S(x2), then
smin,x2 |S(x1) = smin,x1 . To prove this, let

y : S(x2) −→ R, y(x) :=
{
smin,x1(x) if x ∈ S(x1)
smin,x2(x) if x ∈ S(x2) \ S(x1).

Since smin,x2 |S(x1) is a solution of (1) from Dx1,u(ϕ), smin,x1 ≤
smin,x2 |S(x1). It therefore follows that y ∈ Dx2,u(ϕ) satisfies the in-
equality TS(x2)(y) ≤ y. Hence Theorem 13 (c) implies that smin,x2 ≤ y,
and this gives that smin,x2 |S(x1) ≤ smin,x1 .

By Lemma 16 applied to the solution set

{smin,x | x ∈ A with S(x) 	= ∅} ,

we obtain a solution smin : A → R of (1). Since smin ∈ Dloc,u(ϕ), it
remains to prove (b). Let y ∈ Dloc,u(ϕ) satisfy (8), and let x ∈ A such
that the inequality in (8) holds at x. If S(x) = ∅, then

y(x) ≥ f(x) = smin(x),

and if S(x) 	= ∅, then Theorem 13 (c) implies that y|S(x) ≥ smin|S(x).
It therefore follows from the condition (H4) that

y(x) ≥ f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ y dμi

≥ f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ smin dμi = smin(x).
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(c) If x ∈ A with S(x) 	= ∅, then due to condition (C2) and Theorem
13 (d) we have that ϕk|S(x) ∈ D(S(x)), k ∈ N. Hence ϕk ∈ Dloc(A)
follows provided ϕk, k ∈ N is defined on A. This is obvious for ϕ0.
We can deduce it for ϕk+1, k ∈ N too: if x ∈ A with S(x) 	= ∅, then
hi ◦ ϕk is μi-integrable over S(x), i = 1, . . . , n, and if S(x) = ∅, then
ϕk+1(x) = f(x).

By Theorem 13 (d), the sequence (ϕk|S(x))∞k=1 is increasing for every
x ∈ A with S(x) 	= ∅. Together with the condition (H4), this yields
that the sequence (ϕk)∞k=1 is increasing.

We have seen in the proof of Theorem 13 (d) that for x ∈ A with
S(x) 	= ∅∫

S(x)

hi ◦ ϕk dμi −→
∫

S(x)

hi ◦ smin,x dμi, i = 1, . . . , n,

and this is obviously true when x ∈ A with S(x) = ∅. The proof of (a)
gives that smin|S(x) = smin,x for every x ∈ A with S(x) 	= ∅, thus

ϕk+1(x) −→ f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ smin dμi = smin(x), x ∈ A.

The cases (a1), (b1) and (c1) can be proved similarly.

4. Applications. The following existence results provide an
opportunity to realize the scope and the fruitfulness of the theorems of
the preceding section.

Theorem 18. Assume that the hypotheses (C3), (H1), (H3) and
(H4) are satisfied. Suppose that gi|A and hi, i = 1, . . . , n are nonneg-
ative (thus, by (H4), hi, i = 1, . . . , n is increasing), and f ∈ D(A).
Suppose further that there exist nonnegative functions ci : A → R,
i = 1, . . . , n such that

(9)
n∑

i=1

cigi ∈ L(A), f +
n∑

i=1

cigi ∈ D(A)

and

(10)
∫

S(x)

hi ◦
(
f +

n∑
j=1

cjgj

)
dμi ≤ ci(x), x ∈ A, i = 1, . . . , n.
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Then there exists a smallest solution of (1) in D(A).

Proof. We can apply Theorem 13 (b) to the pair of functions

ϕ := f |A and ψ := f +
n∑

i=1

cigi.

Indeed, the inequalities ϕ ≤ TA(ϕ) and ϕ ≤ ψ are obvious. Further-
more, by (10)

TA(ψ)(x) = f(x) +
n∑

i=1

gi(x)
∫

S(x)

hi ◦ ψ dμi

≤ f(x) +
n∑

i=1

ci(x)gi(x) = ψ(x), x ∈ A.

It remains to show that every solution of (1) in D(A) belongs to Du(ϕ),
which follows from the nonnegativity of gi|A and hi, i = 1, . . . , n.

The previous theorem is less general than can be achieved; it would
be enough to suppose that gi|A, i = 1, . . . , n, is nonnegative μ-almost
everywhere on A and the inequalities in (9) hold μ-almost everywhere
on A.

As an example of an integral equation to which Theorem 18 can be
applied, we consider the following result.

Corollary 19. Assume that the hypotheses (C3) and (H1) are
satisfied. Suppose that hi : [0,∞[ → R, hi(t) := tαi , where 0 < αi < 1,
i = 1, . . . , n. If f , gi ∈ D(A), i = 1, . . . , n and they are nonnegative
on A, then there exists a smallest solution of (1) in D(A).

Proof. We show that nonnegative constant functions ci : A → R,
i = 1, . . . , n can be chosen such that (9) and (10) hold, thus the result
can be deduced from Theorem 18.



NONLINEAR INTEGRAL EQUATIONS 433

Let ci ≥ 0, i = 1, . . . , n. L(A) is a vector space, hence
∑n

i=1 cigi ∈
L(A). Since 0 < αi < 1, i = 1, . . . , n, we have

0 ≤
(
f(x) +

n∑
j=1

cjgj(x)
)αi

≤ fαi(x) +
n∑

j=1

cαi
j gαi

j (x),

x ∈ A, i = 1, . . . , n,

and this implies that f +
∑n

i=1 cigi ∈ D(A). Equation (9) is therefore
verified.

To prove that (10) can be realized for some ci ≥ 0, i = 1, . . . , n, it is
enough to show that there are numbers ci, i = 1, . . . , n for which

(11)
∫

A

(
fαi +

n∑
j=1

cαi
j gαi

j

)
dμi ≤ ci, i = 1, . . . , n.

To simplify the notations, let

ai :=
∫

A

fαi dμi and bij :=
∫

A

gαi
j dμi, i, j = 1, . . . , n.

Then (11) has the form

(12) ai +
n∑

j=1

cαi
j bij ≤ ci, i = 1, . . . , n.

We observe now that (12) has a solution such that c1 = · · · = cn > 0.
In fact, under this condition

ai

c1
+ cαi−1

1

n∑
j=1

bij ≤ 1, i = 1, . . . , n

which is obviously true for every sufficiently large c1.

The next result is contained in Theorem 17 as a special case.
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Theorem 20. Assume that the hypotheses (C2), (C3), (H2), (H3)
and (H4) are satisfied. Suppose that gi|S(x), x ∈ A and hi, i =
1, . . . , n are nonnegative, and f ∈ Dloc(A). Suppose further that there
exist nonnegative functions ci : A→ R, i = 1, . . . , n such that

n∑
i=1

cigi ∈ Lloc(A), f +
n∑

i=1

cigi ∈ Dloc(A)

and ∫
S(x)

hi ◦
(
f +

n∑
j=1

cjgj

)
dμi ≤ ci(x), x ∈ A, i = 1, . . . , n.

Then there exists a smallest solution of (1) in Dloc(A).

Proof. By using Theorem 17 (a) instead of Theorem 13 (b), we
proceed similarly to the proof of Theorem 18.

To illustrate this theorem, we give the following result. For simplicity,
we confine ourselves to the case of (1), where n = 1:

(13) y(x) = f(x) + g1(x)
∫

S(x)

h1 ◦ y dμ1.

Corollary 21. Assume that the hypotheses (C2), (C3) and (H2) are
satisfied. Suppose that f |S(x) and g1|S(x), x ∈ A are nonnegative,
h1 : [0,∞[ → [0,∞[ is increasing and h1(t) ≤ αt, t ∈ [0,∞[ for some
α > 0. If there is a number β ∈ ]0, 1[ such that

(14)
∫

S(x)

(
g1(u)

∫
S(u)

f dμ1

)
dμ1(u) ≤ β

∫
S(x)

f dμ1, x ∈ A,

then there exists a smallest solution of (13) in Dloc(A).

Proof. We can apply Theorem 20 by taking

c1 : A −→ R, c1(x) := γ

∫
S(x)

f dμ1
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for some γ > 0. The full argument consists of the verification of the
conditions of Theorem 20, the details are as follows. Let x ∈ A with
S(x) 	= ∅. Then h1 ◦ f is μ1-almost measurable on S(x) (see the first
part of the proof of Theorem 13 (a)) and therefore, by

0 ≤ h1(f(u)) ≤ αf(u), u ∈ S(x),

h1 ◦ f is μ1-integrable over S(x). This implies that f ∈ Dloc(A).
According to Theorem 2.3 (b) in [5], we have that c1g1 ∈ Lloc(A).
Now as we have already proved f ∈ Dloc(A), we can show that
f+c1g1 ∈ Dloc(A). Finally, if x ∈ A with S(x) 	= ∅, then the inequality∫

S(x)

h1

(
f(u) + g1(u)γ

∫
S(u)

f dμ1

)
dμ1(u)

≤ α

∫
S(x)

(
f(u) + g1(u)γ

∫
S(u)

f dμ1

)
dμ1(u) ≤ γ

∫
S(x)

f dμ1

is satisfied whenever∫
S(x)

(
g1(u)

∫
S(u)

f dμ1

)
dμ1(u) ≤

(
1 − α

γ

) ∫
S(x)

f dμ1,

and this is true when 0 < 1 − (α/γ) ≤ β.

Now we apply the preceding result to some particular situations.

Example 22. Let X := [1,∞[, let A be the Lebesgue measurable
subsets of X, and let S(x) := [px,∞[, x ∈ X, where p ≥ 1. If λ is
the Lebesgue measure on A, then S satisfies (C2) and (C3) (see the
examples in the Introduction). We consider the integral equation

(15) y(x) =
1
xa

+
1
xb

∫ ∞

px

h ◦ y dλ,

where a, b > 1, h : [0,∞[ → [0,∞[ is increasing and h(t) ≤ αt,
t ∈ [0,∞[ for some α > 0.

An easy computation shows that (14) is satisfied for each x ∈ [1,∞[
with

β :=
1

(a+ b− 2)pa+b−2
if a+ b ≥ 3



436 L. HORVÁTH

and

β :=
1

pa+b−2
if 2 < a+ b ≤ 3.

Hence, by Corollary 21, there exists a smallest solution of (15) in
Dloc([1,∞[).

We deduce our final result directly from Theorem 18, but it is rather
interesting in its own right.

Theorem 23. Assume that the hypotheses (C1) (C3), (H2), (H3)
and (H4) are satisfied. Suppose that there is x0 ∈ A such that
μ(S(x0)) > 0. Suppose further that f |S(x), gi|S(x), x ∈ A and hi,
i = 1, . . . , n, are nonnegative. If

f ∈ Dloc(A), and f +
n∑

i=1

gi ∈ Dloc(A),

then there exists a solution s : B → R of (1) such that B contains a
measurable set C with μ(C) > 0.

Proof. Let N := {x ∈ A | μ(S(x)) = 0}.
Suppose first that N 	= ∅ and N contains a measurable set C with

μ(C) > 0. N satisfies property (i) in Definition 1, by (C2), hence
s : N → R, s(x) := f(x) is a desired solution.

Suppose now that every measurable subset of N has μ-measure 0. If
we show that there is an x ∈ S(x0) ∪ {x0} for which μ(S(x)) > 0 and

(16)
∫

S(x)

hi ◦
(
f +

n∑
j=1

gj

)
dμi ≤ 1, i = 1, . . . , n,

then it follows from Theorem 18 (by taking ci = 1, i = 1, . . . , n) that
(1) has a solution on S(x) which is appropriate for us. If (16) is satisfied
with x := x0, then the required x is given. Otherwise, let K1 be the
set of those indices from {1, . . . , n} for which the inequality in (16)
does not hold when x = x0, and let i1 ∈ K1. Since μi1(S(x0)) > 0,
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Theorem 5 implies that there is an x1 ∈ S(x0) such that μi1(S(x1)) > 0
and

(17)
∫

S(x1)

hi1 ◦
(
f +

n∑
j=1

gj

)
dμi1 ≤ 1.

If (17) is satisfied for every index from K1, then x := x1 can be chosen.
If not, then we proceed in this manner with the set K2 of those indices
from K1 for which (17) does not hold. After finite steps we have a
suitable x.

REFERENCES
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