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ORTHOGONAL POLYNOMIALS FOR THE
SOLUTION OF SEMI LINEAR TWO-POINT

BOUNDARY VALUE PROBLEMS

OLAF HANSEN

ABSTRACT. We present an integral equation method for
the solution of a class of nonlinear two-point boundary value
problems. The method relies on the use of the Kumar-Sloan
transformation and uses special orthogonal polynomials to
efficiently implement a Galerkin method for the solution of
the resulting nonlinear integral equation. Numerical examples
show the rapid convergence for smooth solutions which is a
consequence of approximation theorems of Jackson.

1. Introduction. In this article we present a numerical method for
the approximate solution of the semi linear two-point boundary value
problem

(1.1)

(
d

dx

)2

u(x) = f(x, u(x)), x ∈ [0, 1],

u(0) = u(1) = 0.

When f(x, u) = f(x), we refer to this problem as the Poisson equation
on [0, 1]. Instead of the homogeneous boundary conditions, we might
also consider nonhomogeneous conditions, but then we can transform
the problem to an equation of the form (1.1) with a new nonlinearity.
In this paper we will assume that f is sufficiently regular and fulfills
certain growth conditions to guarantee that (1.1) has solutions, see [1,
7, 10].

We use the Kumar-Sloan transformation, see [1, 3, 5], to solve (1.1)
and therefore we investigate the numerical solution of the nonlinear
integral equation

(1.2) v(x) = f

(
x,

∫ 1

0

G(x, y) v(y) dy

)
, x ∈ [0, 1],
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where G is the Green function for the Poisson equation on [0, 1]. If v
is a solution of (1.2), then a solution u of (1.1) is given by

(1.3) u(x) =
∫ 1

0

G(x, y) v(y) dy, x ∈ [0, 1].

In their recent articles [1, 3] Atkinson et al. studied the numerical
solution of (1.2) in the two-dimensional case on certain two-dimensional
domains, like the unit circle or a square. Atkinson and Sommariva used
a spectral Galerkin method in [3] to approximate the solution of (1.2).
If the trial space ΠN is given by

(1.4) ΠN := 〈φ0, . . . , φN 〉

where the functions φj are eigenfunctions of the Laplace operator with
Dirichlet boundary conditions

(1.5) Δφj = λjφj , λj > 0,

then the integral in (1.3) is given explicitly and no numerical integration
is necessary. This is one of the major advantages of the spectral
methods. In our one-dimensional example the eigenfunctions are given
by

(1.6) φj(x) = sin(2πjx), j ∈ N.

Although the use of eigenfunctions for the trial space is not so important
in the one-dimensional case because the Green function is not singular,
the explicit formula

(1.7)
∫ 1

0

G(x, y)φj(y) dy =
1

(2πj)2
φj

facilitates any numerical method, for example the Galerkin method.
But the eigenfunctions φj , j ∈ N0, also show a disadvantage of the
spectral method: if the solution v of (1.2) is arbitrarily smooth v ∈
C∞[0, 1], but not periodic, v /∈ C2

p [0, 1], then the rate of convergence
will be slow

(1.8)
∥∥PNv − v

∥∥
L2 = O

(
1
N

)
, N → ∞,
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see also [3]. Here PN denotes the orthogonal projection of L2[0, 1] onto
ΠN and the function space Ck

p [0, 1] is defined as all k times differentiable
functions on [0, 1] where the function and its first k derivatives are
periodic.

Atkinson proposed now the question if one can find trial functions
q̂j which still need no numerical integration for the evaluation of the
integral in (1.2) but for which the convergence would be faster than
(1.8) for nonperiodic functions.

This article shows that this is indeed possible for the one-dimensional
case, and the two-dimensional case will be studied in a future article.
Because we like to apply the ideas of the present article for the two-
dimensional case we consider the equation on the interval [0, 1]. For
the circle in R2 the variable x will be replaced by the radial variable r
where it is natural to consider [0, 1] and not [−1, 1].

In the next section we present the Galerkin method for the approx-
imate solution of (1.2) and in Section 3 we will construct the trial
functions q̂j , j ∈ N. We prove that we get a three term recurrence
relation for the functions q̂j which allows fast numerical evaluation.
In Section 4 we present numerical examples which illustrate the rapid
convergence of our method for smooth nonperiodic functions v.

2. The Galerkin method. To approximate the solution v of
(1.2) we use a Galerkin method with a trial space ΠN := 〈q̂0, . . . , q̂N 〉,
where the functions q̂j are polynomial functions of degree j which will
be constructed in Section 3.

In general the Galerkin method for (1.2) leads to the following system
of equations

(2.1)

N∑
j=0

αj(q̂j , q̂k)2 =
(

f

(
· ,

∫ 1

0

G(· , y)
N∑

j=0

αj q̂j(y) dy

)
, q̂k

)
2,

k = 0, . . . , N.

By (·, ·)2 we denote the standard scalar product in L2[0, 1]. Once the
coefficients (α0, . . . , αN ) which solve (2.1) are known, the approximate
solution vN for v is given by

(2.2) vN :=
N∑

j=0

αj q̂j .
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In [1] an existence result for the finite-dimensional equation (2.1) and
an error estimate for ‖vN − v‖2 has been proved. Our first goal is to
choose q̂j in such a way that

(2.3)
∫ 1

0

G(x, y) q̂j(y) dy

can be calculated explicitly (here G is again the Green function). If we
define

(2.4) q̂j := A p̂j

with a polynomial p̂j of degree j and A the linear operator

(2.5) (Au)(x) :=
(

d

dx

)2

(x(1 − x)u(x)) , u ∈ C2[0, 1],

we get

(2.6)
∫ 1

0

G(x, y) q̂j(y) dy = x(1 − x) p̂j(x), j ∈ N0.

This already shows that the q̂j , j ∈ N0, are a system of linearly
independent functions because their images under the linear mapping
q̂ �→ ∫ 1

0
G(·, y)q̂(y) dy are linearly independent. In the next section, we

show that one can choose p̂j so that

(2.7) (q̂j , q̂k)2 = ckδj,k, j, k ∈ N0,

where ck is a positive constant and δj,k denotes the Kronecker symbol.
Consequently the equation (2.1) is simplified to

(2.8)

0 = αk − 1
ck

(
f

(
x,

N∑
j=0

αjx(1 − x) p̂j(x)
)

, q̂k(x)
)

2

= αk − 1
ck

∫ 1

0

f

(
x,

N∑
j=0

αjx(1 − x) p̂j(x)
)

q̂k(x) dx

k = 0, . . . , N.
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Once we have constructed polynomials p̂j which satisfy (2.7), we need
to solve (2.8) with a solver for nonlinear equation systems, in this paper
we choose Newton’s method. The only integrals that we compute
numerically are those required in (2.8) by the scalar product (·, ·)2.
First we construct the polynomials p̂j .

3. The orthogonal polynomials. We define a new scalar product
(·, ·)A on C2[0, 1] by

(3.1) (f, g)A := (Af, Ag)2, f, g ∈ C2[0, 1].

where the operator A is given by (2.5). That (·, ·)A is a scalar product
relies on the fact that the operator A is linear and that the Dirichlet
problem on [0, 1] is uniquely solvable.

Our first goal is to find a sequence of polynomials pn ∈ Πn which
are A-orthogonal to Πn−1: pn ⊥A Πn−1. Such a sequence could
be determined by the Gram-Schmidt procedure; but, in view of its
numerical instability one typically applies methods which are described
in [4, Section 2.1]. The basis for these methods is the three-term
recurrence relation. But the shift property, see [4, (1.3.1)],

(x · p(x), q(x))A = (p(x), x · q(x))A for all polynomials p, q,

which guarantees the three-term recurrence relation does not hold for
the scalar product (·, ·)A:

(3.2)
(x · x0, x1)A = 4 
= 1 = (x0, x · x1)A,

here p(x) := x0, q(x) := x1.

On the other hand, we know that the Legendre polynomials are
orthogonal with respect to the scalar product (·, ·)2, so it easy to see
that the functions

(3.3) pn(x) :=
1

x(1 − x)

(
d

dx

)n−2

(xn(1 − x)n)

are A-orthogonal: pn ⊥A Πn−1, n ≥ 2. Here it is important that the
function xn(1 − x)n has a zero of multiplicity n at 0 and 1, so the
function pn is a polynomial. Notice that to complete our discussion we
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must define p0 and p1 so that (pn)n∈N0 is a sequence of A-orthogonal
polynomials. As we will show later, this task can be easily established.

Our next goal is to find a three-term recurrence relation for the pn,
even if it is not clear why such a relation should exist. The first step is
to find the leading coefficient of the polynomial pn:

(3.4)

(
d

dx

)n−2

(xn(1 − x)n) =
(

d

dx

)n−2 n∑
j=0

(
n

j

)
(−1)jxn+j

=
n∑

j=0

(
n

j

)
(−1)j (j + n)!

(j + 2)!
xj+2

=⇒ pn(x) =
1

x(1 − x)

(
d

dx

)n−2

(xn(1 − x)n)

= −
n∑

j=0

(
n

j

)
(−1)j (j + n)!

(j + 2)!
xj+1

x − 1

= (−1)n+1 (2n)!
(n + 2)!

xn + · · ·

where we have calculated the first step of synthetic division in the last
equality. By using the Leibniz rule and the binomial theorem, one can
show

(3.5) pn(x) = x(1 − x)
n−2∑
k=0

C
[n]
k xk,

where

C
[n]
k = (−1)k n!

(n+1)(n+2)

n−2∑
j=n−2−k

(
n−2

j

)(
n+2
j+2

)(
j

j − n + 2 + k

)
.

From (3.4) or (3.5), we derive

(3.6) C
[n]
n−2 = (−1)n (2n)!

(n + 2)!
.
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Because the polynomials pj , j ∈ N0, have the precise degree j, we can
write

pn+1(x) = anx · pn(x) +
n∑

j=0

α
[n]
j pj(x)(3.7)

an =
−C

[n+1]
n−1

−C
[n]
n−2

= (−1)n+2 (2n + 2)!
(n + 3)!

(−1)n+1 (n + 2)!
(2n)!

= − (2n + 1)(2n + 2)
n + 3

(3.8)

α
[n]
j = −an

(x · pn, pj)A

(pj , pj)A
, j = 0, . . . , n.(3.9)

But, for j ≤ n − 2, we get
(3.10)

(x · pn, pj)A =
∫ 1

0

(
d

dx

)2(
x

(
d

dx

)n−2

(xn(1 − x)n)
)(

d

dx

)j

× (xj(1 − x)j) dx

=
∫ 1

0

(
2
(

d

dx

)n−1

(xn(1 − x)n)

+ x

(
d

dx

)n

(xn(1 − x)n)
)(

d

dx

)j

(xj(1 − x)j) dx

by parts
= 2(−1)n−1

∫ 1

0

xn(1 − x)n

(
d

dx

)n+j−1

(xj(1 − x)j) dx

+ (−1)n

∫ 1

0

xn(1−x)n

(
d

dx

)n(
x

(
d

dx

)j

(xj(1−x)j)
)

dx

= 0 + 0

because n+ j −1 ≥ 2j +1 > 2j and n ≥ j +2 > j +1. This shows that
in (3.7) α

[n]
j = 0, j = 0, . . . , n − 2, and we have indeed a three-term

recurrence:

(3.11) pn+1(x) = (anx + bn) pn(x) + cnpn−1(x).
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To calculate bn and cn according to formula (3.9), we still have to find
certain scalar products which we calculate in the following:

(3.12)
(pn, pn)A =

∫ 1

0

(
d

dx

)n

(xn(1 − x)n)
(

d

dx

)n

(xn(1 − x)n) dx

by parts
=

(n!)2

2n + 1

(3.13)

(x · pn, pn)A =
∫ 1

0

(
d

dx

)2(
x

(
d

dx

)n−2

(xn(1 − x)n)
)(

d

dx

)n

× (xn(1 − x)n) dx

by parts
=

(n!)2

2(2n + 1)

(3.14)

(x · pn, pn−1)A =
∫ 1

0

(
d

dx

)2(
x

(
d

dx

)n−2

(xn(1 − x)n) :
(

d

dx

)n−1

× (xn−1(1 − x)n−1) dx

by parts
=

(2 − n)(n!)2

2n(2n − 1)(2n + 1)

Now we are able to compute the missing bn and cn in formula (3.11):

(3.15)

bn = − an
(x · pn, pn)A

(pn, pn)A

= − an
(n!)2

2(2n + 1)
2n + 1
(n!)2

= − 1
2

an

=
(2n + 1)(n + 1)

n + 3
and

(3.16)

cn = − an
(xpn, pn−1)A

(pn−1, pn−1)A

=
(2n + 1)(2n + 2)

n + 3
(2 − n)(n!)2

2n(2n − 1)(2n + 1)
2n − 1

((n − 1)!)2

=
(n + 1)(2 − n)n

(n + 3)
.
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Formula (3.11) holds only for n ≥ 3 until now, because the formula
(3.3) is only valid for n ≥ 2. The formulas for an, bn and cn can be
evaluated for all n. So we define p0 and p1 in such a way that (3.11)
holds for n ∈ N0, if we set p−1 = 0:

(3.17)
p0(x) :=

1
2

p1(x) :=
1
3

x − 1
6

⎫⎪⎬
⎪⎭ .

With this definition the formula (3.11) also holds for n = 1, 2. The
formulas (3.8), (3.15), (3.16) together with the recurrence (3.11) allow
the calculation and evaluation of the polynomials pn.

The following figure shows the polynomials p10 and p15. These
graphs also show that the polynomials are growing very fast, so another
normalization is necessary.

If we define

(3.18)

p̂0(x) := 1,
p̂1(x) := x,

p̂n(x) := −1/(C [n]
n−2) pn(x), n ≥ 2,

⎫⎪⎬
⎪⎭

we get a sequence of monic orthogonal polynomials. These are the
polynomials which we introduced in (2.4). Now we see

(3.19)
p̂2(x) = − p2(x)

=
(

x − 1
2

)
p̂1(x) − 1

4
p̂0(x)

and, for n ≥ 2,
(3.20)

p̂n+1 = − 1

C
[n+1]
n−1

pn+1(x)

= − 1

C
[n+1]
n−1

(
anx − 1

2
an

) (
−C

[n]
n−2

)
p̂n(x) +

C
[n−1]
n−3

C
[n+1]
n−1

cnp̂n−1(x)

=
(

x − 1
2

)
p̂n(x) + ĉnp̂n−1(x)
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FIGURE 1. The polynomials p10 (top) and p15 (bottom).
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where

(3.21)

ĉn := cn

C
[n−1]
n−3

C
[n+1]
n−1

=
(n + 1)(2 − n)n

(n + 3)
(−1)n(2n − 2)!

(n + 1)!
(n + 3)!

(−1)n(2n + 2)!

=
(n + 1)(2 − n)n

(n + 3)
(n + 2)(n + 3)

(2n − 1)(2n)(2n + 1)(2n + 2)

=
(2 − n)(2 + n)

4(2n − 1)(2n + 1)

=
4 − n2

4(4n2 − 1)
, n ≥ 2,

(3.22) ĉ1 := − 1
4
.

With this definition (3.20) holds for all n ≥ 1. The following figure
shows the polynomials p̂30(x) and p̂31(x).
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FIGURE 2. The polynomials p̂30 and p̂31.



408 O. HANSEN

Now we have constructed the system of polynomials which satisfies
(2.7) if the polynomials q̂n are given by (2.4):

(3.23)

q̂n(x) := (Ap̂n)(x)

=
1

C
[n]
n−2

(
d

dx

)n

(xn(1 − x)n).

So our trial functions are the shifted Legendre polynomials with a
nonstandard scaling and it is not surprising that we get a three term
recurrence relation for the polynomials q̂n:
(3.24)
q̂0(x) = −2

q̂1(x) = −6
(

x − 1
2

)

q̂n(x) =
(

x − 1
2

)
n+2

n
q̂n−1(x) − (n2−1)(n+2)

4(2n−3)(2n−1)n
q̂n−2(x), n ≥ 2.

The three term recurrence relations (3.24) and (3.20) allow the fast
evaluation of the polynomials in equation (2.8) without needing any
Gram-Schmidt orthogonalization.

Remark. a. Finally we would like to emphasize that the above
construction shows p̂j = Â−1q̂j . Here Â : D(Â) ⊂ C2[0, 1] → L2[0, 1]
is the Friedrich extension of the positive operator A defined in (2.5).
The operator Â−1 is given by the integral in (2.6). This relation
suggests the existence of a three term recurrence and will hopefully
be a starting point for the construction of polynomials with the same
kind of properties in the two-dimensional case.

b. Professor C. Schneider, Johannes Gutenberg-University Mainz,
pointed out to the author that we also have the relation

pn(x) = γn x(1 − x) J
(2,2)
n−2 (x),

where J
(2,2)
n−1 is a Jacobi polynomial and γn a constant, see [6, 8]. This

is an interesting connection, especially because the Jacobi polynomials
are orthogonal with respect to a scalar product which does not include
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any derivatives, see [6, 8]. Again this relation explains the three term
recurrence relation.

4. Numerical examples. In Section 3 we constructed the poly-
nomials p̂j and q̂j , j ∈ N0, for the Galerkin method (2.8). The next
step is to calculate the integrals in (2.8). Here we choose a piecewise
Gaussian quadrature rule. Once N in (2.8) is given we subdivide [0, 1]
in N intervals and in each of these intervals we apply a Gaussian rule
with NG ≥ (N + 1)/2 points. This guarantees that the polynomials
are integrated exactly and the additional subdivision improves the in-
tegration of the nonlinear terms. Because the method converges so fast
we have to calculate the integrals very precisely, otherwise the error
is determined by the quadrature rule and not by the approximation
properties of our trial functions.

Finally, we still have to solve a nonlinear equation system for the
coefficients (α0, . . . , αN ) in (2.8). In our numerical examples we have
not used sophisticated methods since low degree polynomials were able
to approximate the solution up to machine precision. In particular we
used Newton’s method as a nonlinear solver and the above quadrature
rule to approximate the first derivatives of the system (2.8).

We have chosen the following functions for the numerical examples

(4.1)
f1(x, y) := ey

f2(x, y) := 1 + xey

f3(x, y) := 1 + sin(4πxy).

For each example we calculated the numerical solutions vN , for
N = 1, . . . , 30. To estimate the errors we calculated

(4.2)
EN :=

10000
max
j=0

{
|vN (ξj) − v30(ξj)|

}
,

ξj :=
j

10000
, j = 0, . . . , 10000.

Here EN is an approximation for ‖vN −v‖∞. We present the examples
only up to the point where the accuracy reaches 10−14 in the first
example, because this is the accuracy up to which we calculate the
Gauss abscissas and weights for the numerical integration.
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f1(x, y) f2(x, y) f3(x, y)
N EN N EN N EN

1 8.24 × 10−2 1 7.77 × 10−3 1 5.88 × 10−1

2 3.01 × 10−3 2 3.70 × 10−3 2 1.90 × 10−1

3 2.25 × 10−3 3 2.97 × 10−3 3 3.66 × 10−2

4 4.72 × 10−5 4 1.01 × 10−3 4 2.13 × 10−2

5 4.04 × 10−5 5 3.48 × 10−6 5 4.04 × 10−3

6 6.75 × 10−7 6 1.84 × 10−6 6 1.38 × 10−3

7 6.45 × 10−7 7 3.34 × 10−7 7 5.99 × 10−4

8 1.00 × 10−8 8 1.84 × 10−7 8 2.73 × 10−4

9 9.94 × 10−9 9 3.33 × 10−8 9 1.53 × 10−4

10 1.48 × 10−10 10 2.21 × 10−10 10 4.96 × 10−5

11 1.48 × 10−10 11 7.54 × 10−11 11 1.31 × 10−5

12 2.16 × 10−12 12 4.51 × 10−12 12 4.78 × 10−6

13 2.16 × 10−12 13 4.59 × 10−12 13 9.51 × 10−7

14 7.04 × 10−14 14 5.73 × 10−13 14 8.50 × 10−8

The errors in the third example are larger than in the first two
examples because the solution of third example seems to have a slightly
more complicated behavior than the other two functions, see the
following figure. In the third example the error becomes ≈ 10−13 for
N = 24. The error for the first example shows that coefficients for
all p̂j , j odd, are close to zero, because the function v is even with
respect to x = 1/2. Notice that in all cases we seem to get exponential
convergence.

One reason for the rapid convergence is that a solution to (1.2) is in
C∞[0, 1]. This follows from equation (1.2) once we have a continuous
solution v with the help of a bootstrap argument. The Lebesgue
constant Ln(x) for the Legendre polynomials is O(n2), see [6, p. 290].
The theorems of Jackson, see [6, p. 81] or [9, p. 261], imply that the
best approximation P̂Nv, P̂Nv a polynomial of degree N , to a function
v ∈ Ck[0, 1] satisfies

(4.3)
∥∥P̂Nv − v

∥∥
∞ = O

(
1

Nk

)
, N → ∞,
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FIGURE 3. The approximation v10 for the third example.

and this implies

(4.4)
∥∥PNv − v

∥∥
∞ = O

(
1

Nk−2

)
, N → ∞,

where PN is the orthogonal projection. From (4.4) we derive easily

(4.5)
∥∥PNv − v

∥∥
2

= O

(
1

Nk−2

)
, N → ∞.

In their article [1] the authors also assume that the Frechet derivative
DF of the mapping

v �−→ f

(
· ,

∫ 1

0

G(· , x)v(x) dx

)

fulfills

(4.6) 1 
∈ σP (DF (v)) ,

here σP denotes the point spectrum of a linear operator. Now v ∈
C∞[0, 1], (4.5), (4.6), and the error analysis for the Galerkin method
in [1] show

(4.7)
∥∥vN − v

∥∥
2

= O

(
1

Nk−2

)
, N → ∞,
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for all k ∈ N. In [2] one can find error estimates for the maximum
norm for the Galerkin method. Again we need (4.6), the smoothness
of the nonlinearity f , and (4.4).

The above results show that our method converges for solutions v of
(1.2) which are in C∞[0, 1] and it is not necessary that the solution v
is periodic with all its derivatives, see Figure 3.
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8. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publications, vol.
23, AMS, New York, 1939.

9. A.F. Timan, Theory of approximation of functions of a real variable, Dover
Publications, New York, 1994.

10. E. Zeidler, Nonlinear functional analysis and its applications, II/B Nonlinear
Monotone Operators, Springer Verlag, New York, 1990.

Department of Mathematics, California State University San Marcos,
San Marcos 92096, California
E-mail address: ohansen@csusm.edu


