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A CLASS OF MAXIMAL OPERATORS
RELATED TO ROUGH SINGULAR INTEGRALS

ON PRODUCT SPACES

H. AL-QASSEM AND Y. PAN

ABSTRACT. This paper is concerned with studying the Lp

boundedness of a class of maximal operators S(γ)
Ω related to

rough singular integrals on product spaces. We obtain appro-
priate Lp bounds for such maximal operators and establish the
optimality of our condition on the kernel for the L2 bound-

edness of S(2)
Ω . Our results improve substantially the main

result obtained by Ding in [8].

1. Introduction and statement of results. Throughout this
paper, we let ξ′ denote ξ/ |ξ| for ξ ∈ Rn\{0} and p′ denote the exponent
conjugate to p, that is, 1/p+1/p′ = 1. Let n,m ≥ 2. Suppose that Sd−1

(d = n or m) is the unit sphere of Rd equipped with the normalized
Lebesgue measure dσ = dσ (x′).

In [7], Chen and Lin studied the Lp boundedness of a class of maximal
operators M(γ)

Ω defined by

M(γ)
Ω f(x) = sup

h

∣∣∣∣
∫
Rn

f(x− y)h(|y|) Ω (y/ |y|) |y|−n
dy

∣∣∣∣ ,
where the supremum is taken over the set {h : ‖h‖Lγ(R+,dr/r) ≤ 1},
γ > 1 and Ω ∈ L1 (Sn−1) is a function satisfying the cancelation
condition

(1.1)
∫
Sn−1

Ω(y′) dσ(y′) = 0.

Chen and Lin in [7] proved the Lp boundedness of the maximal operator
M(γ)

Ω under a smoothness condition on Ω as described in the following
theorem:
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Theorem A [7]. Assume n ≥ 2 and Ω ∈ C(Sn−1) satisfying (1.1).
Then

‖M(γ)
Ω (f)‖Lp(Rn) ≤ Cp ‖f‖Lp(Rn)

for nγ/(nγ − 1) < p < ∞, 1 ≤ γ ≤ 2, and f ∈ Lp. Moreover, the
range of p is the best possible.

On the other hand, the corresponding maximal operator of M(γ)
Ω on

the product space Rn × Rm is defined by

(1.2) S(γ)
Ω f(x, y)

= sup
h∈B(γ)

∣∣∣∣
∫
Rn×Rm

f(x−u, y−v)h(|u| , |v|) Ω (u′, v′) |u|−n |v|−n du dv

∣∣∣∣,
where B(γ) is the set of all radial functions h(s, t) with

‖h‖Lγ(R+×R+,ds dt/(st)) ≤ 1

and Ω is a function on Rn × Rm satisfying the following conditions:

(1.3)

⎧⎪⎪⎨
⎪⎪⎩

∫
Sn−1

Ω(u′, ·) dσ(u′) = 0,∫
Sm−1

Ω(·, v′) dσ(v′) = 0,

Ω ∈ L1(Sn−1 × Sm−1),(1.4)

and

Ω(tx, sy) = Ω(x, y) for any t, s > 0.

Recently, Ding in [8] obtained the following L2 boundedness of S(γ)
Ω

when γ = 2:

Theorem A. Assume that n,m ≥ 2 and Ω satisfies (1.3) (1.4).
Then S(2)

Ω is bounded on L2(Rn×Rm) if Ω ∈ L(logL)2(Sn−1×Sm−1).
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Here, a function Ω belongs to the class L(logL)α(Sn−1 × Sm−1) if

‖Ω‖L(log L)α(Sn−1×Sm−1)

=
∫
Sn−1×Sm−1

|Ω(x, y)| logα(2 + |Ω(x, y)|) dσ(x) dσ(y) <∞.

A question which arises naturally in light of Theorem A is the
following:

Question. Does the Lp boundedness of S(γ)
Ω hold for some p �= 2

under a condition in the form Ω ∈ L(logL)α(Sn−1 × Sm−1), and what
is the best possible value of the exponent α so that the L2 boundedness
of S(γ)

Ω holds.

The main purpose of this paper is to obtain an answer to this question.
In fact, we prove the following:

Theorem 1.1. Assume that n,m ≥ 2 and Ω satisfies (1.3) (1.4).
Then

(a) If Ω ∈ L(logL)2/γ′
(Sn−1 × Sm−1), S(γ)

Ω is bounded on Lp(Rn ×
Rm) for γ′ ≤ p <∞ if 1 < γ ≤ 2; and it is bounded on L∞(Rn×Rm)
if γ = 1;

(b) There exists an Ω which lies in L(logL)1−ε(Sn−1×Sm−1) for all
ε > 0 and satisfies (1.3) such that S(2)

Ω is not bounded on L2(Rn×Rm).

We remark that, for any q > 1, the following inclusions hold and are
proper:

C1(Sn−1 × Sm−1) ⊂ Lq(Sn−1 × Sm−1) ⊂ L(logL)(Sn−1 × Sm−1),

and

L(logL)β(Sn−1 × Sm−1) ⊂ L(logL)α(Sn−1 × Sm−1) for α < β.
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Clearly, part (a) of Theorem 1.1 represents a substantial improvement
in both the range of p and Ω of the main result of Ding [8], while part
(b) shows that the condition Ω ∈ L(logL)2/γ′

(Sn−1×Sm−1) is the best
possible in the case γ = 2.

The method employed in this paper allows us to treat a more general
class of maximal operators than those given by (1.2). To give a full
statement of our results, we let Φ and Ψ be suitable functions defined
on R+. For an Ω satisfying (1.3) (1.4), we define the operator S(γ)

Ω,Φ,Ψ

on Rn × Rm by

(1.5)

(S(γ)
Ω,Φ,Ψf)(x, y) = sup

b∈B

∣∣∣∣
∫
Rn×Rm

f(x− Φ(|u|)u′, y − Φ(|v|)v′)

×b (|u| , |v|) Ω (u′, v′) |u|−n |v|−n du dv
∣∣∣ .

Since S(γ)
Ω,Φ,Ψ = S(γ)

Ω when Φ(t) ≡ Ψ(t) ≡ t, part (a) of Theorem 1.1
is a special case of the following theorem whose proof will be given in
Section 4.

Theorem 1.2. Assume that n,m ≥ 2 and Ω satisfies (1.3) (1.4).
Let S

(γ)
Ω,Φ,Ψ be given as in (1.5) with 1 ≤ γ ≤ 2. Assume that

Φ and Ψ are in C2([0,∞)), convex and increasing functions with
Φ(0) = Ψ(0) = 0.

(a) If Ω ∈ L(logL)2/γ′
(Sn−1×Sm−1), S(γ)

Ω,Φ,Ψ is bounded on Lp(Rn×
Rm) for γ′ ≤ p <∞ if 1 < γ ≤ 2; and it is bounded on L∞(Rn×Rm)
if γ = 1;

(b) If Ω ∈ Lq(Sn−1 × Sm−1), for some q > 1, S(γ)
Ω,Φ,Ψ is bounded on

Lp(Rn×Rm) for max {γ′nδ/(γ′n+ nδ −γ′), γ′mδ/(γ′m+mδ −γ′)} <
p <∞, where δ = max{2, q′}.

Throughout the rest of the paper the letter C will stand for a constant
but not necessarily the same one in each occurrence.
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2. Proof of Theorem 1.1 (b). We follow a similar argument as in
[1]. By duality, the operator S(2)

Ω is simply

S(2)
Ω f(x, y) =

(∫
(0,∞)×(0,∞)

∣∣∣∣
∫
Sn−1×Sm−1

f(x− rξ, y − tη)

× Ω(ξ, η) dσ(ξ) dσ(η)
∣∣∣∣
2
drdt

rt

)1/2

.

It is obvious that S(2)
Ω is bounded on L2(Rn × Rm) if and only if the

multiplier

m(ξ, η) =
(∫

(0,∞)×(0,∞)

∣∣∣∣
∫
Sn−1×Sm−1

e−2πi(tξ′·u+sη′·v)

× Ω (u, v) dσ(u) dσ(v)
∣∣∣∣
2
dtds

ts

)1/2

is an L∞ function, where ξ′ = ξ/ |ξ| and η′ = η/ |η|. It is easy to see
that

(m(ξ, η))2 = lim
M→∞,ε2→0

lim
N→∞,ε1→0

∫
(Sn−1×Sm−1)2

Ω (u, v)Ω (x, y)

×
∫ M

ε2

(
e−2πisη′·(v−y) ds

s

)

×
∫ N

ε1

(
e−2πitξ′·(u−x) dt

t

)
dσ(u) dσ(v) dσ(x) dσ(y).

Notice that

∫ N

ε1

(
e−2πitξ′·(u−x) − cos(2πt)

) dt
t

−→

log |ξ′ · (u−x)|−1 − i
π

2
sgn (ξ′ · (u−x))

as N → ∞ and ε1 → 0, and the integral is bounded uniformly in ε1 and
N,C (1 + |log |ξ′ · (u− x)||). Now, if we choose Ω to be a real-valued
function, by the cancelation conditions on Ω and invoking Lebesgue
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dominated convergence theorem, we obtain

(2.1)

(m(ξ, η))2 =
∫

(Sn−1×Sm−1)2

(
Ω (u, v) Ω (x, y) log |ξ′ · (u−x)|−1

× log |η′ · (v−y)|−1 −
(π2

4
sgn (ξ′ · (u−x))

× sgn (η′ · (v−y))
))

dσ(u) dσ(v) dσ(x) dσ(y).

For simplicity, we shall construct the function Ω only in the case
n = m = 2, and we shall work on [−1, 1]2 instead of S1 ×S1. By (2.1),
we notice that Theorem 1.1 (b) is proved if we can construct an Ω on
[−1, 1]2 with the following properties:

(2.2)
∫ 1

−1

Ω (u, ·) du =
∫ 1

−1

Ω (·, v) dv = 0;

(2.3)
∫

[−1,1]2
|Ω (u, v)| (log(2 + |Ω (u, v)|)) du dv = ∞;

(2.4)
∫

[−1,1]2
|Ω (u, v)| (log(2 + |Ω (u, v)|))1−ε du dv <∞

for each ε > 0;

(2.5) I(1, 1) =
∫

[0,1]2

∫
[0,1]2

Ω (u, v) Ω(x, y)

× F (u, v, x, y) du dv dx dy = ∞;

(2.6) I(1, 2) =
∫

[−1,1]2\[0,1]2

∫
[0,1]2

|Ω (u, v) Ω(x, y)

× F (u, v, x, y)| du dv dx dy <∞;

(2.7) I(2, 1) =
∫

[0,1]2

∫
[−1,1]2\[0,1]2

|Ω (u, v) Ω(x, y)

× F (u, v, x, y)| du dv dx dy <∞;
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(2.8) I(2, 2) =
∫

[−1,1]2\[0,1]2

∫
[−1,1]2\[0,1]2

|Ω (u, v) Ω(x, y)

× F (u, v, x, y)| du dv dx dy <∞,

where
F (u, v, x, y) =

(
log |x− u|−1 ) ( log |y − v|−1 )

.

For k ∈ N, let Ik = [(1/k + 1), (1/k)) and

bk =
∞∑

j=3

k

(j + 1) [log(k + j)]3
.

Now, by definition of bk, we have

bk =
k∑

j=3

k

(j + 1) [log(k + j)]3
+

∞∑
j=k+1

k

(j + 1) [log(k + j)]3

≤ k

(log k)3

( k∑
j=3

1
(j + 1)

)
+ k

( ∞∑
j=k+1

1
(j + 1) (log j)3

)

≤ C
k

(log k)2
.

Define Ω on [−1, 1]2 by

Ω (u, v) =
∞∑

j=3

∞∑
k=3

jk

[log(k+j)]3
χIk×Ij

(u, v)−χ[−1,0](v)
( ∞∑

k=3

bkχIk
(u)
)

− χ[−1,0](u)
( ∞∑

k=3

bkχIk
(v)
)

+ χ[−1,0]2(u, v)
( ∞∑

k=3

bk
k(k+1)

)
,

where χA represents the characteristic function of a set A.

Let us now turn to the proof of (2.2) (2.8). First, the proof of (2.2)
is straightforward. To prove (2.3), it suffices to show that

(2.9)
∫

[0,1]2
|Ω (u, v)| (log(2 + |Ω (u, v)|)) du dv = ∞.
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To see this, notice that∫
[0,1]2

|Ω (u, v)| (log(2 + |Ω (u, v)|)) du dv

=
∞∑

j=3

∞∑
k=3

jk

[log(k + j)]3

∫
Ik×Ij

(log(2 + |Ω (u, v)|)) du dv

≥ C

∞∑
j=3

∞∑
k=3

(log k + log j)
jk [log(k + j)]3

≥ C
∞∑

k=3

∞∑
j=k

(log k + log j)
jk [log(k + j)]3

≥ C

∞∑
k=3

1
k log k

= ∞.

We now prove (2.4). We divide the integral over [−1, 1]2 into four parts:
over [0, 1]2, [−1, 0]×[0, 1], [0, 1]×[−1, 0] and [−1, 0]×[−1, 0]. By similar
calculations as those in the proof of (2.9), we obtain the finiteness of
the integral over [0, 1]2. On the other hand, by definition of Ω, we can
see that the integral over [−1, 0] × [0, 1] equals to

∞∑
k=3

bk(log(2 + bk))1−ε

k(k + 1)
<∞.

Similarly, we can show that the integral over [0, 1] × [−1, 0] is finite.
Finally, since ( ∞∑

k=3

bk
k(k + 1)

)
χ[−1,0] ∈ L∞,

we have that the integral over [−1, 0] × [−1, 0] is finite.

Now, we verify (2.5). Let us first prove I(1, 1) = ∞. By definition of
I(1, 1), we have

I(1, 1)

=
∞∑

j=3

∞∑
k=3

∞∑
s=3

∞∑
l=3

ak,jal,s

∫
Ik×Ij

∫
Il×Is

F (u, v, x, y) dx dy du dv,
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where

ak,j =
jk

[log(k + j)]3
.

Notice that, for each (u, v) ∈ Ik × Ij and (x, y) ∈ Il × Is, F (u, v, x, y) ≥
0. Thus,

I(1, 1) ≥
∞∑

j=3

∞∑
k=3

∞∑
s≥2(j+1)

∞∑
l≥2(k+1)

ak,jal,s

×
∫

Ik×Ij

∫
Il×Is

F (u, v, x, y) dx dy du dv.

Now, for (u, x) ∈ Ik × Il with l ≥ 2(k + 1), we have u ≥ 2x and hence
log |x− u|−1 ≥ log k. Similarly, log |y − v|−1 ≥ log j for (v, y) ∈ Ij × Is
with s ≥ 2(j + 1). Therefore,

I(1, 1) ≥ C

∞∑
j=3

∞∑
s≥2(j+1)

∞∑
k=3

∞∑
l≥2(k+1)

log k log j
lkjs [log(k + j)]3 [log(l + s)]3

≥ C
∞∑

k=3

∞∑
j=3

∞∑
s≥2(j+1)

log k log j
kjs [log(k + j)]3 [log (k + s)]2

≥ C

∞∑
k=3

∞∑
j=3

log k log j
kj [log(k + j)]4

≥ C
∞∑

k=3

∞∑
j≥k

log k log j
kj [log(k + j)]4

≥ C
∞∑

k=3

log k
k

⎛
⎝ ∞∑

j≥k

1
j (log j)3

⎞
⎠

≥ C
∞∑

k=3

1
k log k

= ∞.

Next, we turn to the proof of (2.6). Divide [−1, 1]2\[0, 1]2 into three
parts: [−1, 0] × [0, 1], [0, 1] × [−1, 0] and [−1, 0] × [−1, 0]. We notice
that the integral over [−1, 0] × [0, 1] × [0, 1]2 is dominated from above
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by

(2.10) S =
∞∑

k=3

∞∑
j=3

∞∑
s=3

ak,jbs |I(k)| J (j, s),

where
J (j, s) =

∫
Ij×Is

log |y − v|−1
dv dy,

and

I(k) =
∫

Ik

∫ 0

−1

log |x− u|−1 dx du.

By elementary calculations, it is easy to verify that the follow-
ing inequalities hold for some positive constant C independent of k
and j:

|I(j)| ≤ C
1
j2

;(2.11)

J (j, s) ≤ C
log j
j2s2

if s > 2j;(2.12)

J (j, s) ≤ C
log s
j2s2

if j > 2s;(2.13)

J (j, s) ≤ C
log s
s4

if j/2 ≤ s ≤ 2j.(2.14)

In view of (2.10) (2.11), we have

(2.15) S ≤ S1 + S2 + S3,

where

S1 =
∞∑

k=3

∞∑
j=3

∑
s>2j

js

k [log(k + j)]3 (log s)2
J (j, s),

S2 =
∞∑

k=3

∞∑
s=3

∞∑
j>2s

js

k [log(k + j)]3 (log s)2
J (j, s)

S3 =
∞∑

k=3

∞∑
j=3

∑
j/2≤s≤2j

js

k [log(k + j)]3 (log s)2
J (j, s).
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By (2.12), we have

S1 ≤ C

∞∑
k=3

∞∑
j=3

log j
kj [log(k + j)]3

∑
s>2j

1
s(log s)2

≤ C

∞∑
k=3

∞∑
j=3

1
kj [log(k + j)]3

≤ C

( ∞∑
k=3

1

k [log(k + 3)]3/2

)( ∞∑
j=3

1

j [log(3 + j)]3/2

)
<∞.

The proof of S2 < ∞ follows by (2.13) and the same argument as
proving S1 <∞. To prove the finiteness of S3, we invoke (2.14) to get

S3 ≤ C
∞∑

k=3

∞∑
j=3

j

k [log(k + j)]3

( ∑
j/2≤s≤2j

1
s3 log s

)

≤ C

∞∑
k=3

∞∑
j=3

1
kj [log(k + j)]3 log j

≤ C

( ∞∑
k=3

1
k(log k)2

)( ∞∑
j=3

1
j(log j)2

)
<∞.

Thus, the integral over [−1, 0] × [0, 1] ×[0, 1]2 is finite. Similarly, the
integral over [0, 1] × [−1, 0] ×[0, 1]2 is finite. Also, the integral over
[−1, 0] × [−1, 0] ×[0, 1]2 is bounded from above by

C
∞∑

k=3

∞∑
j=3

ak,j |I(k)I(j)|

≤ C

∞∑
k=3

∞∑
j=3

1
kj [log(k + j)]3

≤ C

( ∞∑
k=3

1

k [log(k + 3)]3/2

)( ∞∑
j=3

1

j [log(3 + j)]3/2

)
<∞,

which ends the proof of (2.6). By following a similar argument as
proving (2.6), we obtain I(2, 1) < ∞. Now, it remains to verify (2.8).
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Divide [−1, 1]2\[0, 1]2 into three parts: [−1, 0] × [0, 1], [0, 1] × [−1, 0]
and [−1, 0] × [−1, 0]. As above, we shall only present the proof of the
finiteness of the integral over [−1, 0] × [0, 1] × [−1, 0] × [0, 1] and over
[−1, 0]× [0, 1]× [0, 1]× [−1, 0] because the proof of the other cases are
similar. We start now by proving the finiteness of the integral over
[−1, 0]× [0, 1]× [−1, 0]× [0, 1]. Notice that the last integral is bounded
from above by

C

∞∑
k=3

∞∑
l=3

kl

(log k)2(log l)2
J (k, l)

(∫ 0

−1

∫ 0

−1

log |y − v|−1 dv dy

)

≤ C

∞∑
k=3

∞∑
l=3

kl

(log k)2(log l)2
J (k, l) = S∗.

As above, split S∗ as

S∗ = S∗
1 + S∗

2 + S∗
3 ,

where

S∗
1 =

∞∑
k=3

∞∑
l>2k

kl

(log k)2(log l)2
J (k, l);

S∗
2 =

∞∑
l=3

∞∑
k>2l

kl

(log k)2(log l)2
J (k, l);

S∗
3 =

∞∑
k=3

∑
k/2≤l≤2k

kl

(log k)2(log l)2
J (k, l).

By (2.12), we have

S∗
1 ≤ C

∞∑
k=3

1
k(log k)

( ∞∑
l>2k

1
l(log l)2

)

≤ C

∞∑
k=3

1
k(log k)2

<∞.

Similarly, by (2.13) S∗
2 <∞. By (2.14),

S∗
3 ≤ C

∞∑
k=3

k

(log k)2
∑

k/2≤l≤2k

1
l3(log l)

≤ C

∞∑
k=3

k

k(log k)3
<∞.
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This finishes the proof of the finiteness of the integral over [−1, 0] ×
[0, 1]× [−1, 0]× [0, 1]. Now, we turn to the proof of the finiteness of the
integral over [−1, 0]× [0, 1]× [0, 1]× [−1, 0]. We notice that the integral
over [−1, 0] × [0, 1] × [0, 1] × [−1, 0] is bounded from above by

C

∞∑
k=3

∞∑
l=3

kl

(log k)2(log l)2
|I(k)I(j)|

≤ C

∞∑
k=3

∞∑
j=3

1
kj(log k)2(log j)2

<∞.

This completes the proof of Theorem 1.1 (b).

3. Some lemmas.

Lemma 3.1. Let μ ∈ N∪{0}, aμ = 2(μ+1) and Ωμ(·, ·) be a function
on Sn−1 × Sm−1 satisfying the conditions:

(i) ‖Ωμ‖L2(Sn−1×Sm−1) ≤ a2
μ,

(ii) ‖Ωμ‖L1(Sn−1×Sm−1) ≤ 1, and

(iii) Ωμ satisfies the cancelation conditions in (1.3) with Ω replaced
by Ωμ. Assume that Φ,Ψ are in C2([0,∞)), convex, and increasing
functions with Φ(0) = Ψ(0) = 0. Let

Iμ,k,j(ξ, η) =
(∫

[ak
μ,ak+1

μ )×[aj
μ,aj+1

μ )

∣∣∣∣
∫
Sn−1×Sm−1

Ωμ(x, y)

× e−i(Φ(t)〈ξ,x〉+Ψ(s)〈η,y〉) dσ(x) dσ(y)
∣∣∣∣
2
dtds

ts

)1/2

.

Then there exist positive constants C and α such that

(3.1) |Iμ,k,j(ξ, η)| ≤ C(μ+ 1);

(3.2) |Iμ,k,j(ξ, η)|
≤ C(μ+ 1) (Φ(ak+1

μ ) |ξ|)α/(μ+1) (Ψ(aj+1
μ ) |η|)α/(μ+1);
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(3.3) |Iμ,k,j(ξ, η)|
≤ C(μ+ 1) (Φ(ak

μ) |ξ|)−α/(μ+1) (Ψ(aj
μ) |η|)−α/(μ+1);

(3.4) |Iμ,k,j(ξ, η)|
≤ C(μ+ 1) (Φ(ak+1

μ ) |ξ|)α/(μ+1) (Ψ(aj
μ
) |η|)−α/(μ+1);

(3.5) |Iμ,k,j(ξ, η)|
≤ C(μ+ 1) (Φ(ak

μ) |ξ|)−α/(μ+1) (Ψ(aj+1
μ ) |η|)α/(μ+1),

where C is a constant independent of k, j, ξ, η and μ.

Proof. First, by condition (ii) on Ωμ it is easy to see that (3.1) holds.
Next, by the cancelation properties of Ωμ and by a simple change of
variables we have

|Iμ,k,j(ξ, η)|2 ≤
∫

[1,aμ)×[1,aμ)

(∫
Sn−1×Sm−1

|Ωμ(x, y)|

× ∣∣e−iΦ(ak
μt)〈ξ,x〉− 1

∣∣ dσ(x) dσ(y)
)2
dtds

ts
.

Since Φ is increasing we get

(3.6) |Iμ,k,j(ξ, η)| ≤ C(μ+ 1) |Φ(ak+1
μ )ξ|.

Similarly,

(3.7) |Iμ,k,j(ξ, η)| ≤ C(μ+ 1) |Ψ(aj+1
μ

)η|.
Now, by Schwarz’s inequality we have∣∣∣∣
∫
Sn−1×Sm−1

Ωμ(x, y)e−i(Φ(t)<ξ,x>+Ψ(s)〈η,y〉) dσ(x) dσ(y)
∣∣∣∣
2

≤
∫
Sm−1

∣∣∣∣
∫
Sn−1

Ωμ(x, y) e−iΦ(ak
μt)〈ξ,x〉 dσ(x)

∣∣∣∣
2

dσ(y)

=
∫
Sm−1

(∫
Sn−1×Sn−1

Ωμ(x, y) Ωμ(u, y)

× e−iΦ(ak
μt)〈ξ,x−u〉 dσ(x) dσ(u)

)
dσ(y).
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Therefore,

(3.8) |Iμ,k,j(ξ, η)|2 ≤
∫
Sm−1

(∫
Sn−1×Sn−1

Ωμ(x, y) Ωμ(u, y)

× Jμ,k(ξ, x, u) dσ(x) dσ(u)
)
dσ(y),

where

Jμ,k(ξ, x, u) =
∫ aμ

1

e−iΦ(ak
μt)〈ξ,x−u〉 dt

t
.

We now show that

(3.9) |Jμ,k(ξ, x, u)| ≤ C(μ+ 1)
∣∣Φ(ak

μ)ξ
∣∣−1/4 |〈ξ′, x− u〉|−1/4

for some positive constant C independent of μ.

The proof of (3.9) follows by a simple application of van der Corput’s
lemma. In fact, we notice first that

Jμ,k(ξ, x, u) =
∫ aμ

1

H ′(t)
dt

t
,

where

H(t) =
∫ t

1

e−iΦ(ak
μw)〈ξ,x−u〉 dw, 1 ≤ t ≤ aμ.

By the assumptions on Φ and the mean value theorem, we have

d

dw

(
Φ(ak

μw)
)

= ak
μ Φ′(ak

μw) ≥ Φ(ak
μw)
w

≥ Φ(ak
μ)
t

for 1 ≤ w ≤ t ≤ aμ.

Thus, by van der Corput’s lemma,

|H(t)| ≤ |Φ(ak
μ)ξ|−1 |〈ξ′, x− u〉|−1

t,

for 1 ≤ t ≤ aμ. Hence by integration by parts,

|Jμ,k(ξ, x, u)| ≤ C(μ+ 1) |Φ(ak
μ)ξ|−1 |〈ξ′, x− u〉|−1

.
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By combining this estimate with the trivial estimate,

|Jμ,k(ξ, x, u)| ≤ (ln 2)(μ+ 1),

we get (3.9). By Schwarz’s inequality, condition (i) on Ωμ and
(3.8) (3.9), we get

|Iμ,k,j(ξ, η)|2 ≤ C(μ+ 1)2 a4
μ |Φ(ak

μ)ξ|−1/4

×
(∫

Sn−1×Sn−1
|〈ξ′, x− u〉|−1/2

dσ(x) dσ(u)
)1/2

.

Since the last integral is finite, we get

(3.10) |Iμ,k,j(ξ, η)| ≤ C(μ+ 1) a2
μ
|Φ(ak

μ)ξ|−1/8.

Similarly,

(3.11) |Iμ,k,j(ξ, η)| ≤ C(μ+ 1) a2
μ
|Ψ(aj

μ)ξ|−1/8.

By (3.1), (3.6) (3.7) and (3.10) (3.11) we obtain (3.2) (3.5). The proof
of the lemma is complete.

By the same argument as in [17, p. 57], we get the following:

Lemma 3.2. Let ϕ be a nonnegative, decreasing function on [0,∞)
with

∫
[0,∞)

ϕ(t) dt = 1. Then∣∣∣∣
∫

[0,∞)

f(x− ty′)ϕ(t) dt
∣∣∣∣ ≤My′f(x),

where

My′f(x) = sup
R∈R

1
R

∫ R

0

|f(x− sy′)| ds

is the Hardy-Littlewood maximal function of f in the direction of y′.

For μ ∈ N ∪ {0} and u′ ∈ Sn−1, let MΦ,μ,u′(f) denote the maximal
function defined by

MΦ,μ,u′f(x) = sup
k∈Z

∣∣∣∣∣
∫ ak+1

μ

ak
μ

f(x− Φ(t)u′)
dt

t

∣∣∣∣∣ .
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Lemma 3.3. Assume that Φ is in C2([0,∞)), convex, and increasing
function with Φ(0) = 0. Then

(3.12) ‖MΦ,μ,u′(f)‖p ≤ Cp(μ+ 1) ‖f‖p

for 1 < p ≤ ∞ and f ∈ Lp.

Proof. By a change of variable we have

MΦ,μ,u′f(x) ≤ sup
k∈Z

(∫ Φ(ak+1
μ )

Φ(ak
μ)

|f(x− tu′)| dt

Φ−1(t) Φ′(Φ−1(t))

)
.

Without loss of generality, we may assume that Φ(t) > 0 for all
t > 0. By Lemma 3.2 and since the function 1/(Φ−1(t)Φ′(Φ−1(t))) is
nonnegative, decreasing and its integral over [Φ(ak

μ), Φ(ak+1
μ )] is equal

to (ln 2)(μ+ 1), we obtain

(3.13) MΦ,μ,u′f(x) ≤ C(μ+ 1)Mu′f(x),

By the Lp boundedness of Mu′f with bound independent of u′ we get
(3.12) and the proof of the lemma is concluded.

For μ ∈ N ∪ {0}, let

Ek,j,μ =
{
(u, v) ∈ Rn × Rm : ak

μ ≤ |u| < ak+1
μ and aj

μ ≤ |v| < aj+1
μ

}
.

For any Ω ∈ L1(Sn−1 × Sm−1), we define the maximal operator

(3.14) λ∗Ω,μf(x, y) = sup
k,j∈Z

|λk,j,Ω,μ ∗ f(x, y)| ,

where

λk,j,Ω,μ ∗ f(x, y)

=
∫

Ek,j,μ

|f(x− Φ(|u|)u′, y − Ψ(|v|)v′)| |Ω(u′, v′)|
|u|n |v|m du dv.

Lemma 3.4. Let Ω ∈ L1(Sn−1 × Sm−1) and let Φ and Ψ be in
C2([0,∞)), convex and increasing functions with Φ(0) = Ψ(0) = 0.
Then

(3.15)
∥∥λ∗Ω,μ(f)

∥∥
p
≤ Cp(μ+ 1)2 ‖Ω‖L1(Sn−1×Sm−1) ‖f‖p
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for 1 < p ≤ ∞ and f ∈ Lp, where Cp is independent of Ω, μ and f .

Proof. Using polar coordinates we get

|λk,j,Ω,μ ∗ f(x, y)| ≤
∫

[ak
μ,ak+1

μ )×[aj
μ,aj+1

μ )

∫
Sn−1×Sm−1

|Ω(u′, v′)|

× |f(x− Φ(t)u′, y − Ψ(s)v′)| dσ(u′) dσ(v′)
dtds

ts
.

Therefore,

λ∗Ω,μf(x, y) ≤ C

∫
Sn−1×Sm−1

|Ω(u′, v′)|

× (MΨ,μ,v′ ◦MΦ,μ,u′) f(x, y) dσ(u′) dσ(v′),

where “◦” denotes the composition of operators. By Lemma 3.3 and
noticing that∥∥λ∗Ω,μ(f)

∥∥
p

≤ C

∫
Sn−1×Sm−1

|Ω(u′, v′)| ‖(MΨ,μ,v′ ◦MΦ,μ,u′) (f)‖p dσ(u′) dσ(v′),

we get (3.15) which ends the proof of the lemma.

Let MS be the spherical maximal operator defined by

MSf(x) = sup
r>0

∫
Sn−1

|f(x− rθ)| dσ(θ).

By applying Stein’s and Bourgain’s results, see [16] and [6], we have

Lemma 3.5. Suppose that n ≥ 2 and p > n′. Then MS(f) is
bounded on Lp(Rn).

We shall need the spherical maximal operator MSP defined on
functions f(x, y) on Rn × Rm by

(3.16)

MSP f(x, y) = sup
r,s>0

∫
Sn−1×Sm−1

|f(x− rθ, y − sυ)| dσ(θ) dσ(υ).
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Define the operators M(1)
S and M(2)

S on functions f on Rn ×Rm by
(M(1)

S f)(x, y) = (M(1)
S )f(·, y)) (x) and (M(2)

S f)(x, y) = (M(2)
S )f (x, ·))

(y). By invoking Lemma 3.5 and the inequality

MSP f(x, y) ≤
(
M(2)

S ◦M(1)
S

)
f(x, y),

we get the following:

Lemma 3.6. Suppose that n,m ≥ 2 and p > max {n′,m′}. Then
MSP (f) is bounded on Lp(Rn × Rm).

4. Proof of Theorem 1.2. We start with proving part (a)
of Theorem 1.2. Assume that Ω satisfies (1.3) and belongs to
L(logL)2/γ′

(Sn−1 × Sm−1) for 1 ≤ γ ≤ 2. Decompose Ω as in [2], (see
also [4]). For μ ∈ N, let Eμ be the set of points (x, y) ∈ Sn−1 × Sm−1

which satisfy 2μ ≤ |Ω (x, y)| < 2μ+1. Also, we let E0 be the set of all
those points (x, y) ∈ Sn−1×Sm−1 which satisfy |Ω (x, y)| < 2. For μ ∈
N∪{0}, set bμ = ΩχEμ

and ωμ = ‖bμ‖1. Set I = {μ ∈ N : ωμ ≥ 2−4μ}
and define the sequence of functions {Ωμ}μ∈I∪{0} by

Ω0(x, y) =
∑

μ∈{0}∪(N−I)

bμ(x, y) −
∑

μ∈{0}∪(N−I)

(∫
Sn−1

bμ(x, y) dσ(x)
)

−
∑

μ∈{0}∪(N−I)

(∫
Sm−1

bμ(x, y) dσ(y)
)

+
∑

μ∈{0}∪(N−I)

∫
Sn−1×Sm−1

bμ(x, y) dσ(x) dσ(y),

and for μ ∈ I,

Ωμ(x, y) = (ωμ)−1

(
bμ(x, y) −

∫
Sn−1

bμ(x, y) dσ(x) −
∫
Sm−1

bμ(x, y) dσ(y)

+
∫
Sn−1×Sm−1

bμ(x, y) dσ(x) dσ(y)
)
.
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Then one can easily verify that the following hold for all μ ∈ I ∪ {0}
and for some positive constant C:

‖Ωμ‖2 ≤ Ca2
μ, ‖Ωμ‖1 ≤ C;(4.1)

∑
μ∈I∪{0}

(μ+ 1)2/γ′
ωμ ≤ C ‖Ω‖L(log L)2/γ′ (Sn−1×Sm−1) ;

(4.2)

∫
Sn−1

Ωμ (u, ·) dσ (u) =
∫
Sm−1

Ωμ (·, v) dσ (v) = 0;(4.3)

Ω =
∑

μ∈I∪{0}
ωμΩμ.(4.4)

By (4.4) we have

(4.5) SΩ,Φ,Ψf(x, y) ≤
∑

μ∈I∪{0}
ωμSΩμ,Φ,Ψf(x, y).

By (4.5) it suffices to show that the inequality

(4.6)∥∥SΩμ,Φ,Ψf
∥∥

p
≤ Cp(μ+1)2/γ′‖f‖p for all γ′ ≤ p <∞ and f ∈ Lp

holds for γ′ ≤ p < ∞ if 1 < γ ≤ 2 and for p = ∞ if γ = 1. To prove
(4.6), we need to consider three cases. We first prove (4.6) for the case
γ = 2.

The case γ = 2. Since Φ is convex and increasing in (0,∞), Φ(t)/t
is also increasing for t > 0. Therefore, for μ ∈ N ∪ {0}, the sequence{
Φ(ak

μ) : k ∈ Z
}

is a lacunary sequence with Φ(ak+1
μ )/Φ(ak

μ) ≥ aμ > 1.
Let {ψk,μ,Φ}∞−∞ be a smooth partition of unity in (0, ∞) adapted to
the interval Ek,μ,Φ = [(Φ(ak+1

μ
))−1, (Φ(ak−1

μ ))−1]. To be precise, we
require the following:

ψk,μ,Φ ∈ C∞, 0 ≤ ψk,μ,Φ ≤ 1,
∑

k

ψk,μ,Φ (t) = 1,

suppψk,μ,Φ ⊆ Ek,μ,Φ,

∣∣∣∣dsψk,μ,Φ (t)
dts

∣∣∣∣ ≤ Cs

ts
,
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where Cs is independent of the lacunary sequence {Φ(ak
μ) : k ∈ Z}.

Define the multiplier operators Sk,j,μ in Rn × Rm by

( ̂Sk,j,μf)(ξ, η) = ψk,μ,Φ(|ξ|)ψj,μ,Ψ(|η|) f̂(ξ, η).

Then for any f ∈ S(Rn × Rm) and l, s ∈ Z we have

f(x, y) =
∑

k,j∈Z

(Sk+l,j+s,μf)(x, y).

By duality we have

S(2)
Ωμ,Φ,Ψf(x, y) =

(∫
(0,∞)×(0,∞)

∣∣Fr,t,Ωμ
f(x, y)

∣∣2 drdt
rt

)1/2

=
( ∑

k,j∈Z

∫
[ak

μ,ak+1
μ )×[aj

μ,aj+1
μ )

∣∣Fr,t,Ωμ
(x, y)

∣∣2 drdt
rt

)1/2

,

where

Fr,t,Ωf(x, y)

=
∫
Sn−1×Sm−1

f(x− Φ(r)ξ, y − Ψ(t) η) Ω(ξ, η) dσ(ξ) dσ(η).

By Minkowski’s inequality it is easy to see that

S(2)
Ωμ,Φ,Ψf(x, y)

≤
( ∑

k,j∈Z

∫
[ak

μ,ak+1
μ )×[aj

μ,aj+1
μ )

∣∣∣∣ ∑
l,s∈Z

Hk+l,j+s,r,t,μ,Ωμ
f(x, y)

∣∣∣∣
2
drdt

rt

)1/2

≤
∑

l,s∈Z

( ∑
k,j∈Z

∫
[ak

μ,ak+1
μ )×[aj

μ,aj+1
μ )

∣∣Hk+l,j+s,r,t,μ,Ωμ
f(x, y)

∣∣2 drdt
rt

)1/2

where

Hl,s,t,r,μ,Ωf(x, y)

=
∫
Sn−1×Sm−1

Ω (ξ, η)(Sl,s,μf)(x− Φ(r)ξ, y − Ψ(t) η) dσ(ξ) dσ(η).
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Now if we let

Tl,s,μ,Ωμ
f(x, y)

=
∑

k,j∈Z

∫
[ak

μ,ak+1
μ )×[aj

μ,aj+1
μ )

∣∣Hk+l,j+s,r,t,μ,Ωμ
f(x, y)

∣∣2 drdt
rt

,

then we have

(4.7) S(2)
Ωμ,Φ,Ψf(x, y) ≤

∑
l,s∈Z

Tl,s,μ,Ωμ
f(x, y).

Therefore, to prove (4.6), it suffices to prove

(4.8)
∥∥Tl,s,μ,Ωμ

(f)
∥∥

p
≤ Cp(μ+ 1) 2−θp|l| 2−θp|s| ‖f‖p

for some positive constants Cp, θp and for all 2 ≤ p <∞.

The proof of (4.8) follows by interpolation between a sharp L2

estimate and a cruder Lp estimate of Tl,s,μ,Ωμ
(f).

First, the L2 boundedness of Tl,s,μ,Ωμ
(f) is provided by a simple

application of Plancherel’s theorem and using Lemma 3.1.∥∥Tl,s,μ,Ωμ
(f)
∥∥2

2

=
∫
Rn×Rm

∑
k,j∈Z

∫
[ak

μ,ak+1
μ )×[aj

μ,aj+1
μ )

∣∣Hk+l,j+s,r,t,μ,Ωμ
f(x, y)

∣∣2 drdt
rt

dx dy

≤
∑

k,j∈Z

∫
Δk+l,j+s

∫
[ak

μ,ak+1
μ )×[aj

μ,aj+1
μ )∣∣∣∣

∫
Sn−1×Sm−1

Ωμ(x, y) e−i(Φ(r)〈ξ,x〉+Ψ(t)〈η,y〉) dσ(x) dσ(y)
∣∣∣∣
2
drdt

rt∣∣f̂(ξ, η)
∣∣2 dξ dη

≤ C(μ+ 1)2 2−2α|l| 2−2α|s| ∑
k,j∈Z

∫
Δk+l,j+s

∣∣f̂(ξ, η)
∣∣2 dξ dη

≤ C(μ+ 1)2 2−2α|l| 2−2α|s| ‖f‖2
2 ,

where

Δk,j = {(ξ, η) ∈ Rn × Rm : (|ξ| , |η|) ∈ Ek,μ,Φ × Ej,μ,Ψ} .
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Therefore, we have

(4.9)
∥∥Tl,s,μ,Ωμ

(f)
∥∥

2
≤ C(μ+ 1)2−α|l|2−α|s| ‖f‖2 .

On the other hand, we need to compute the Lp-norm of Tl,s,μ,Ωμ
(f)

for p > 2. By duality, there is a function g in L(p/2)′(Rn × Rm) with
‖g‖(p/2)′ ≤ 1 such that

∥∥Tl,s,μ,Ωμ
(f)
∥∥2

p

=
∑

k,j∈Z

∫
Rn×Rm

∫
[ak

μ,ak+1
μ )×[aj

μ,aj+1
μ )

∣∣Hk+l,j+s,r,t,μ,Ωμ
f(x, y)

∣∣2 drdt

rt

× |g(x, y)| dx dy
≤ ‖Ωμ‖1

∑
k,j∈Z

∫
Rn×Rm

∫
[ak

μ,ak+1
μ )×[aj

μ,aj+1
μ )

∫
Sn−1×Sm−1

∣∣Ωμ(ξ, η)
∣∣

×|Sk+l,j+s,μ f(x, y)|2|g(x+Φ(r)ξ, y+Ψ(t)η)| dσ(ξ) dσ(η)
drdt

rt
dx dy

≤ C
∑

k,j∈Z

∫
Rn×Rm

|Sk+l,j+s,μ f(x, y)|2 λ∗Ωμ,μ(g̃)(−x,−y) dx dy

≤ C

∥∥∥∥ ∑
l,s∈Z

|Sk+l,j+s,μ f |2
∥∥∥∥

p/2

∥∥λ∗Ωμ,μ(g̃)
∥∥

(p/2)′ ,

where g̃(x, y) = g(−x,−y).
By (4.1), invoking Lemma 3.4 and using the Littlewood-Paley theory

and Theorem 3 along with the remark that follows its statement in [15,
p. 96], we have

(4.10)
∥∥Tl,s,μ,Ωμ

(f)
∥∥

p
≤ Cp(μ+ 1) ‖f‖p for 2 ≤ p <∞.

Now, (4.8) follows by interpolating between (4.9) and (4.10). This
completes the proof of (4.6) in the case γ = 2.
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The case γ = 1. If f ∈ L∞ (Rn× Rm) and h ∈ L1(R+ ×
R+, ds dt/(st)), then
∣∣∣∣
∫ ∞

0

∫ ∞

0

h(t, s)
∫
Sn−1×Sm−1

f(x− Φ(t)u, y − Ψ(s)v)

× Ωμ (u, v) dσ(u) dσ(v)
dtds

ts

∣∣∣∣
≤ C ‖f‖L∞ ‖h‖L1(R+×R+,ds dt/(st))

for every (x, y) ∈ Rn ×Rm. By taking the supremum on both sides of
the above inequality over all radial functions h with

‖h‖L1(R+×R+,ds dt/(st)) ≤ 1

yields
S(1)

Ωμ,Φ,Ψ f(x, y) ≤ C ‖f‖L∞(Rn×Rm)

for almost every (x, y) ∈ Rn × Rm. Hence,

(4.11)
∥∥∥S(1)

Ωμ,Φ,Ψ f
∥∥∥

L∞(Rn×Rm)
≤ C ‖f‖L∞(Rn×Rm) .

The case 1 < γ < 2. We shall use an idea employed in the one-
parameter case in [14]. By duality,

S(γ)
Ωμ,Φ,Ψf(x, y) =

∥∥∥∥
∫
Sn−1×Sm−1

f
(
x− Φ(t)u, y

− Ψ(s)v
)
Ωμ (u, v) dσ(u) dσ(v)

∥∥∥∥
Lγ′ (R+×R+,ds dt/(st))

.

Thus,∥∥∥S(γ)
Ωμ,Φ,Ψf

∥∥∥
Lp(Rn×Rm)

= ‖S(f)‖Lp(Lγ′ (R+×R+,ds dt/(st)),Rn×Rm) ,

where

S : Lp(Rn × Rm) −→ Lp(Lγ′
(R+ × R+, ds dt/(st)),Rn × Rm)
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defined by

S(f)(x, y, t, s)

=
∫
Sn−1×Sm−1

f(x− Φ(t)u, y − Ψ(s)v)Ωμ (u, v) dσ(u) dσ(v).

By (4.6), for γ = 2, and (4.11), we interpret that

‖S(f)‖Lp(L2(R+×R+,ds dt/(st)),Rn×Rm) ≤ C(μ+ 1) ‖f‖Lp(Rn×Rm)

for 2 ≤ p <∞
and

‖S(f)‖L∞(L∞(R+×R+,ds dt/(st)),Rn×Rm) ≤ C ‖f‖L∞(Rn×Rm) .

Applying the real interpolation theorem for Lebesgue mixed normed
spaces to the above results, see [5], we conclude that

‖S(f)‖Lp(Lγ′ (R+×R+,ds dt/(st)),Rn×Rm) ≤ C(μ+ 1)2/γ′ ‖f‖Lp(Rn×Rm)

for γ′ ≤ p <∞,

which in turn implies (4.6) for 1 < γ < 2. The proof of Theorem 1.2 is
complete.

A proof of part (b) of Theorem 1.2 can be constructed by the above
estimates and following the same argument as in [1]. Details are
omitted.

Acknowledgments. The authors wish to thank the referee very
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