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SOLVING THE NONLINEAR POISSON EQUATION
ON THE UNIT DISK

KENDALL ATKINSON AND OLAF HANSEN

ABSTRACT. We propose and analyze a numerical method
for solving the nonlinear Poisson equation −Δu = f(·, u) on
the unit disk with zero Dirichlet boundary conditions. The
problem is reformulated as a nonlinear integral equation. We
use a Galerkin method with polynomials as approximations.
The speed of convergence is shown to be very rapid; and ex-
perimentally the maximum error is exponentially decreasing
when it is regarded as a function of the degree of the approx-
imating polynomial.

1. Introduction. In the earlier papers [2, 4] a Galerkin method
was proposed, analyzed, and illustrated for the numerical solution of a
Dirichlet problem for a semi-linear elliptic boundary value problem of
the form

(1)
−ΔU = F (·, U) on Ω,

U = G on ∂Ω,

In this, Ω ⊂ R2 is a simply-connected open domain with a boundary
∂Ω. It was assumed that there is a known conformal mapping from a
standard open domain D to Ω, and then the problem (1) was reduced
to an equivalent problem on D,

(2)
−Δu = f(·, u) on D,

u = g on ∂D.

This equation was then converted to an equivalent, but nonstandard,
integral equation over D. A Galerkin method was used to solve the
integral equation, with the eigenfunctions of the Laplacian operator on
the standard domain D as the basis functions. The method was simple
to program and relatively inexpensive, but it converged slowly with
respect to the dimension of the approximation space being used.
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In this paper assume D is the unit disk in R2; and assume further
that g satisfies the homogeneous boundary condition, g(x) ≡ 0, on
∂D. For this situation we give a numerical method that converges
much more rapidly than the earlier method described above. As in the
earlier papers [2, 4], use a Galerkin method; but now use polynomials
as the approximating functions. The mathematical reformulation we
use for (2) and the numerical method for solving it are described in
Section 2. A theoretical error and convergence analysis is given in
Section 3, and an illustrative numerical example is given in Section 4.
The paper concludes in Section 5 by introducing another basis for the
polynomials overD, a basis that has improved stability properties when
compared with the basis used in Sections 2 and 4.

For nonhomogeneous boundary conditions and for conformal trans-
formations of the unit disk, the reader is referred to the earlier paper
[2]. References to earlier work on the numerical solution of (1) can be
found in the bibliographies of [2, 4].

2. Preliminaries. Let G(x, y; ξ, η) be the Green’s function for the
problem

−Δu = ψ in D,

u = 0 on ∂D,

assuming that ψ is known. Using this Green’s function, the solution u
to (2) satisfies

(3) u(x, y) =
∫

D

G(x, y, ξ, η) f(ξ, η, u(ξ, η)) dξ dη, (x, y) ∈ D.

As in Kumar and Sloan [8], we introduce v(x, y) = f(x, y, u(x, y)). The
function v is a solution of

(4) v(x, y) = f

(
x, y,

∫
D

G(x, y, ξ, η) v(ξ, η) dξ dη
)
, (x, y) ∈ D.

This is the equation that we solve using Galerkin’s method. After
finding v(x, y), we can calculate

(5) u(x, y) =
∫

D

G(x, y, ξ, η) v(ξ, η) dξ dη, (x, y) ∈ D.

This is discussed in more detail later in the paper.
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2.1 Galerkin’s method. Let Πd denote the polynomials in (x, y) of
degree ≤ d, with d a nonnegative integer. The dimension of Πd is

N ≡ Nd =
1
2

(d+ 1) (d+ 2) .

Let {Λn(x, y) : 1 ≤ n ≤ N} be a basis for Πd. Then Galerkin’s method
for solving (4) with Πd as the approximating space is as follows. Find

(6) vd(ξ, η) =
N∑

m=1

αmΛm(x, y)

such that vd(ξ, η) ≈ v(ξ, η). Determine the coefficients {αm} by solving
the nonlinear system

(7)
N∑

m=1

αm (Λm,Λn) −
(
f

(
·, ·,

∫
D

G(·, ·, ξ, η)vd(ξ, η) dξdη
)
,Λn

)
= 0

for n = 1, . . . , N . An approximation of the solution of the original
problem (3) is defined, using (5), as

(8) ud(x, y) =
∫

D

G(x, y, ξ, η) vd(ξ, η) dξ dη, (x, y) ∈ D.

A major advantage of solving (4) as compared to solving (3) can be
seen from this formula. Begin by noting that the system (7) must be
solved by iteration, e.g., using Newton’s method or Broyden’s method,
obtaining a sequence of iterates

v
(k)
d (x, y) =

N∑
m=1

α(k)
m Λm(x, y), k = 0, 1, . . . .

With each iterate, we must calculate the integrals

(9)
∫
G(x, y, ξ, η) v(k)

d (ξ, η) dξ dη

=
N∑

m=1

α(k)
m

∫
D

G(x, y, ξ, η) Λm(ξ, η) dξ dη, (x, y) ∈ D.
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The integrals on the right side do not depend on k, and thus they
need to be calculated only once. In contrast, consider using Galerkin’s
method to solve formula (3). If we apply an iterative method of
solution and obtain a sequence

{
u

(k)
d (ξ, η) : k = 0, 1, . . .

}
, then this

will require calculation of the integral term∫
D

G(x, y, ξ, η) f(ξ, η, u(k)
d (ξ, η)) dξ dη

for each iterate u(k)
d . The lack of linearity with regard to u(k)

d means
that this integral must be recalculated for each value of k, a considerable
increase in computational cost. The improvement in calculational cost
was the primary reason motivating Kumar and Sloan [8] in proposing
the reformulation for Hammerstein nonlinear integral equations in the
manner described above.

Another problem remains, that of evaluating the integrals in (9).
These have a singular integrand due to G being singular,

G(P,Q) =
1
2π

log
|P −Q|

|T (P ) −Q| , P �= Q, Q ∈ D, P ∈ D.

T (P ) denotes the inverse of P with respect to the unit disk,

T (r cos θ, r sin θ) =
1
r
(cos θ, sin θ). r ≤ 1

It would be advantageous to choose the basis functions {Λm(x, y) :
1 ≤ m ≤ N} so as to avoid the need to evaluate numerically the
integrals in (9).

2.2 Choosing a polynomial basis. Begin by considering the mapping
D : Πd → Πd,

(10) Φ(x, y) −→ −Δ
[(

1 − x2 − y2
)
Φ(x, y)

]
, Φ ∈ Πd.

Trivially, the mapping D : Πd → Πd is into.

Note next that this mapping is one-to-one. To see this, assume

−Δ
[(

1 − x2 − y2
)
Φ(x, y)

]
= 0



SOLVING THE NONLINEAR POISSON EQUATION 227

for some Φ ∈ Πd. Let Ψ(x, y) =
(
1 − x2 − y2

)
Φ(x, y), a polynomial of

degree ≤ d+2. Since −ΔΨ = 0, and since Ψ(x, y) ≡ 0 on ∂D, we have
by the uniqueness of the solvability of the Dirichlet problem on D that
Ψ(x, y) ≡ 0 on D. This then implies that Φ(x, y) ≡ 0 on D.

Since the mapping is both one-to-one and into, it follows from Πd

being finite-dimensional that the mapping is onto. We use this to
produce a special basis for Πd.

Let {Φn(x, y) : 1 ≤ n ≤ N} be a basis for Πd, and let

(11)
Ψn(x, y) =

(
1 − x2 − y2

)
Φn(x, y)

Λn(x, y) = −ΔΨn(x, y)

for n = 1, . . . , N . This is the basis we use for the Galerkin method of
(7). With it note that for the Green’s function integrals in (9),

(12)
∫

D

G(x, y, ξ, η) Λm(ξ, η) dξ dη = Ψm(x, y), m = 1, . . . , N.

This avoids the need to do any numerical integration of these integrals,
which results in an enormous savings in computational time. The
nonlinear system (7) becomes

(13)
N∑

m=1

αm (Λm,Λn) −
(
f

(
·, ·,

N∑
m=1

αmΨm

)
,Λn

)
= 0, n = 1, . . . , N.

For the solution of the original problem, we combine (6), (8) and (12),
leading to the definition

ud(x, y) =
N∑

m=1

αmΨm(x, y).

How do we choose the basis {Φn(x, y)}N
m=1 for Πd? We want to have

a basis for which the linearization of the system (7) is well-conditioned.
To this end we have chosen {Φn(x, y)}N

m=1 to be an orthonormal basis of
Πd. For an introduction to this topic, see the important book of Dunkl
and Xu [5]. Unlike the situation for the single variable case, there are



228 K. ATKINSON AND O. HANSEN

many possible orthonormal bases over D. We have chosen one that
is particularly convenient for the computations in (11). These are the
“ridge polynomials” introduced by Logan and Shepp [9] for solving an
image reconstruction problem. We summarize here the results needed
for our work.

Let
Vd = {P ∈ Πd : (P,Q) = 0 ∀Q ∈ Πd−1}

the polynomials of degree d that are orthogonal to all elements of Πd−1.
Then the dimension of Vd is d+ 1; moreover,

(14) Πd = V0 ⊕ V1 ⊕ · · · ⊕ Vd.

It is standard to construct orthonormal bases of each Vn and to then
combine them to form an orthonormal basis of Πd using the latter
decomposition. As an orthonormal basis of Vn, we use

(15)
Φn,k(x, y) =

1√
π
Un (x cos (kh) + y sin (kh)) ,

(x, y) ∈ D, h =
π

n+ 1

for k = 0, 1, . . . , n. The function Un is the Chebyshev polynomial of
the second kind of degree n:

(16)
Un(t) =

sin (n+ 1) θ
sin θ

,

t = cos θ, −1 ≤ t ≤ 1, n = 0, 1, . . . .

The family {Φn,k}n
k=0 is an orthonormal basis of Vn. As a basis of Πd,

we order {Φn,k} lexicographically based on the orderings in (14) and
(15):

{Φn}N
m=1 = {Φ0,0, Φ1,0, Φ1,1, Φ2,0, . . . , Φn,0, . . . ,Φn,n} .

Returning to (11), we have

Ψn,k(x, y) =
(
1 − x2 − y2

)
Φn,k(x, y)

Λn,k(x, y) = −ΔΨn,k(x, y).
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Carrying out the actual computations using (15), we have

(17)
Λn,k(x, y) =

1√
π

[
4Un(t) + 4tU ′

n(t) −
(
1 − x2 − y2

)
U ′′

n (t)
]

t = x cos (kh) + y sin (kh) .

We evaluate Un(t), U ′
n(t), U ′′

n (t) using the standard triple recursion
relations

Un+1(t) = 2tUn(t) − Un−1(t)
U ′

n+1(t) = 2Un(t) + 2tU ′
n(t) − U ′

n−1(t)
U ′′

n+1(t) = 4U ′
n(t) + 2tU ′′

n (t) − U ′′
n−1(t).

To examine the possible ill-conditioning of the basis {Λm}N
m=1, we

give in Table 1 the condition numbers of the Gram matrix

Md = [(Λn,Λm)]Nn,m=1 .

These are increasing but are still small enough as to allow stable
computations in the linearization of the nonlinear system (7).

TABLE 1. Condition numbers of Gram matrix Md.

d order (Md) cond (Md) d order (Md) cond (Md)
1 3 4 11 78 2965
2 6 23 12 91 4050
3 10 54 13 105 5304
4 15 127 14 120 6946
5 21 229 15 136 8807
6 28 415 16 153 11167
7 36 655 17 171 13805
8 45 1034 18 190 17066
9 55 1498 19 210 20672
10 66 2170 20 231 25038
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3. Convergence. Introduce the Nemyckii operator

(18) (F(u))(x, y) = f(x, y, u(x, y)),

and the linear integral operator

(19) (Gv)(x, y) =
∫

D

G(x, y; ξ, η) v(ξ, η) dξ dη.

The equations (3) and (4) are written symbolically as

u = GF(u)(20)
v = F (u)
v = F (Gv) .(21)

Let Pd be the L2(D) orthogonal projection of L2(D) onto Πd. Then
the Galerkin solution vd ∈ Πd of (6) and (7) satisfies the operator
equation

(22) vd = PdF(Gvd).

Also, (8) is written symbolically as

(23) ud = Gvd.

Natural assumptions on F and G are given in [2], together with an
error analysis. In particular, denote an isolated solution of (3) by u∗

and let v∗ = F (u∗). Then for d sufficiently large, say d ≥ d0, the
approximating equation (22) has a solution vd that is unique in some
neighborhood of v∗ that is independent of d. Moreover,

(24) ‖v∗ − vd‖ ≤ (1 + δd) ‖v∗ − Pdv
∗‖, d ≥ d0

with δd → 0.

By the density of the polynomials in L2(D), we know Pdv
∗ → v∗ for

all v∗ ∈ L2(D). Therefore, (24) proves the convergence of vd → v∗ for
all possible cases. Also,

u∗ − ud = G (v∗ − vd)
‖u∗ − ud‖ ≤ ‖G‖ ‖v∗ − vd‖ .
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The norm is the standard L2-norm for L2 (D). This proves the
convergence of ud → u∗ as d → ∞. Additional error analysis results
are given in [2], much of which are based on [3].

3.1 Speed of convergence. The key to obtaining results on the rapid
convergence of {vs} and {ud} is to look at the speed of convergence
for the orthogonal projection operator, Pdw → w, for w ∈ L2(D). For
this, we use results from Ragozin [10, p. 164] as summarized below.

Assume w ∈ Ck(D) with k ≥ 0 an integer. For the norm on Ck(D),
we use the standard definition

‖w‖Ck =
∑

i+j≤k

∥∥∥∥ ∂i+jw

∂xi∂yj

∥∥∥∥
∞
.

In addition, define various moduli of continuity by

ω (w;h) = sup {|w (x1, y1) − w (x2, y2)| : |(x1, y1) − (x2, y2)| ≤ h}

ωk (w;h) =
∑

i+j=k

ω

(
∂i+jw

∂xi∂yj
;h

)
, k ≥ 1

Then there exists a sequence of polynomials pd of degree ≤ d such that

(25) ‖w − pd‖∞ ≤ Bk

dk

[
‖w‖Ck

d
+ ωk

(
w;

1
d

)]
, d ≥ 1

where each constant Bk depends only on k ≥ 0.

Apply (25) to w = v∗, the solution of (18), and let pd denote the
approximation of v∗ that is referenced in (25). Then

‖v∗ − Pdv
∗‖ ≤ ‖v∗ − pd‖

≤
√
π ‖v∗ − pd‖∞ .

If we assume v∗ ∈ Ck(D) for some k ≥ 0, v∗ = f (x, y, u∗(x, y)), then we
can apply (25) to obtain bounds on the rate of convergence of vd → v∗

within L2 (D).
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FIGURE 1. The true solution u =
(
1 − x2 − y2

)
ex cos y .

4. Numerical example. As a test case to examine the rate of
convergence, we solve the problem

(26)
−Δu(x, y) = eu(x,y) + β(x, y), x2 + y2 ≤ 1

u(x, y) = 0, x2 + y2 = 1

with β(x, y) chosen such that the true solution is

(27) u(x, y) =
(
1 − x2 − y2

)
ex cos y, x2 + y2 ≤ 1.

The true solution is illustrated in Figure 1.

In Table 2 we give numerical results for d = 1, . . . , 20. The error
was evaluated using a polar coordinates mesh of approximately 800
points. The linearity of the semi-log graph in Figure 2 illustrates that
the convergence is exponential in d.

Newton’s method was used to solve the nonlinear system (13). For
production code, I would recommend using Broyden’s method, cf. [7] or
a two-grid iterative variant of Newton’s method, cf. [1]. The integrals
in (13) were evaluated numerically using methods from [11].
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FIGURE 2. Error versus d for the example (26) (27).

TABLE 2. Maximum errors in ‘Fourier solution’ ud.

degree N ‖u− ud‖∞ degree N ‖u− ud‖∞
1 3 2.67E−1 11 78 6.01E−7
2 6 4.79E−2 12 91 1.50E−7
3 10 1.31E−2 13 105 3.92E−8
4 15 3.64E−3 14 120 9.92E−9
5 21 1.41E−3 15 136 2.41E−9
6 28 3.80E−4 16 153 5.99E−10
7 36 1.04E−4 17 171 1.43E−10
8 45 3.20E−5 18 190 3.39E−11
9 55 8.04E−6 19 210 8.05E−12
10 66 2.18E−6 20 231 1.86E−12
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5. Construction of an orthogonal basis. In this section we
return to the choice of a basis for the Galerkin method described in
Section 2. If one looks at the system (13) and the basis Φn,k in (15),
where

Φn,k = Φn,0 ◦R[n]
k , Φn,0(x, y) ≡

1√
π
Un(x),

and R[n]
k is the rotation

R
[n]
k :=

(
c
[n]
k s

[n]
k

−s[n]
k c

[n]
k

)
c
[n]
k := cos

(
kπ

n+ 1

)
,

s
[n]
k := sin

(
kπ

n+ 1

)

one is tempted to search for polynomials Φ̂n,k with

(28)
Φ̂n,k = Φ̂n,0 ◦R[n]

k

Λ̂n,k = −Δ((1 − x2 − y2)Φ̂n,k(x, y))
= Φn,k(x, y).

Compared with the basis Φn,k the basis Φ̂n,k has the advantage that
the matrix (Λ̂m, Λ̂n) in (13) is the identity matrix and Λ̂n,k can be
evaluated with the triple recursion for Un. Formula (28) implies that
the polynomials Φ̂n,k are orthonormal with respect to the nonstandard
scalar product

(29) (f, g)C2(D)

:= [Δ((1 − x2 − y2)f(x, y))][Δ((1 − x2 − y2)g(x, y))] dx dy

for f, g ∈ C2(D). In a previous article, see [6], a similar problem in
one dimension was studied. From this investigation we learned that it
might be an advantage to search for Φ̂n,0 as the pre-image of Φn,0:

(30) Φ̂n,0 ≡ (Δ ◦M)−1(−Φn,0)
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where M is the multiplication operator

(Mf)(x, y) ≡ (1 − x2 − y2)f(x, y).

To study the mapping Δ ◦M we introduce the following subspaces

Πe
2m :=

{
m∑

i=0

i∑
k=0

ai−k,kx
2(i−k)y2k | aj,k ∈ R

}
⊂ Π2m

Πo
2m+1 :=

{
m∑

i=0

i∑
k=0

ai−k,kx
2(i−k)+1y2k | aj,k ∈ R

}
⊂ Π2m+1.

Then we have the following mapping properties

Πe
2m

M−→ Πe
2m+2

Δ−→ Πe
2m

Πo
2m+1

M−→ Πo
2m+3

Δ−→ Πo
2m+1.

In the following we describe the construction of Φ̂n,0 for even n = 2m,
and we will only state the result for odd n.

Note that the mapping

M : Πe
2m −→ Πe

2m+2

is one-to-one but not onto. The operator Δ : Πe
2m+2 → Πe

2m has the
null space

N2m+2 ≡ * span {k0(x, y), . . . , km+1(x, y)} ⊂ Πe
2m+2

kj(x, y) =
j∑

l=0

κj
lx

2(j−l)y2l ∈ Πe
2j , κj

l = (−1)l

(
2j
2l

)
.

To solve (30) we notice first that the function Φn,0 does not depend on
y and is an element of Πe

2m,

−Φn,0(x, y) =
m∑

j=0

rjx
2j ≡ − 1√

π
Un(x).
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Each polynomial q(x, y) of the following form

q(x, y) :=
m+1∑
j=1

qjx
2j +

m+1∑
j=0

αjkj(x, y)

qj :=
rj−1

(2j)(2j − 1)
, j = 1, . . . ,m, αj ∈ R

will solve the equation
Δq = −Φn,0.

But we have to choose the coefficients αj in such a way that we can
solve

(31) MΦ̂n,0 = q.

The structure of the multiplication operator M is so simple that we
can solve (31) recursively. We decompose the polynomial Φ̂n,0 into its
homogeneous components

Φ̂n,0(x, y) =
m∑

i=0

pi(x, y), pi(x, y) =
i∑

k=0

pi−k,kx
2(i−k)y2k

and solve the following system of equations

(32)

(M − I)pm = qm+1x
2(m+1) + αm+1km+1

(M − I)pm−1 = −pm + qmx
2m + αmkm

(M − I)pm−2 = −pm−1 + qm−1x
2m−2 + αm−1km−1

... =
...

(M − I)p0 = −p1 + q1x
2 + α1k1

Now we get

(Δ ◦M)Φ̂n,0 = Δ
( m∑

i=0

Mpi

)
= Δ

(
pm + qm+1x

2(m+1) + αm+1km+1

+
m−1∑
i=0

(pi − pi+1 + qi+1x
2(i+1) + αi+1ki+1)

)
= Δq, we use Δp0 = 0
= Φn,0.
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To demonstrate that we can solve (32) by back substitution, we choose
an arbitrary equation j < m

(I −M)pj = pj+1 − qj+1x
2(j+1) − αj+1kj+1

(in the case j = m the term pj+1 on the righthand side is not present)
and rewrite this as an equation for the coefficients of pj :⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1

1 1

1
. . .
. . . . . .

1
1 1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pj,0

pj−1,1

pj−2,2

...

...

...
p0,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pj+1,0 − qj+1

pj,1

pj−1,2

...

...

...

...
p0,j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− αj+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κj+1
0

κj+1
1

κj+1
2
...
...
...
...

κj+1
j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the coefficients pj−i,i, i = 0(1)j, and αj+1 are unknown. We
rewrite this equation system⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 κj+1
0

1 1 κj+1
1

1 1 κj+1
2

1
. . .

...
. . . . . .

...

1
...

1 1 κj+1
l

1 κj+1
j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pj,0

pj−1,1

pj−2,2

...

...

...
p0,j

αj+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pj+1,0 − qj+1

pj,1

pj−1,2

...

...

...

...
p0,j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and eliminate the sub diagonal elements to get⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 κj+1
0

1 κj+1
1

1 κj+1
2

. . .
...

. . .
...

1
...

1 κj+1
j

κj+1
j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pj,0

pj−1,1

pj−2,2

...

...

...
p0,j

αj+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γj+1
0

γj+1
1

γj+1
2
...
...
...
...

γj+1
j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

κj+1
l =

l∑
k=0

(−1)kκj+1
l−k

γj+1
l =

[ l∑
k=0

(−1)l+kpj+1−k,k

]
+ (−1)l+1qj+1

for l = 0, . . . , j + 1. Again the term in square brackets is omitted in
the case j = m. We remark that the term κj+1

j+1 is not equal to zero

κj+1
j+1 =

j+1∑
k=0

(−1)k(−1)j+1−k

(
2(j + 1)

2(j + 1 − k)

)
= (−1)j+122j+1 �= 0.

This shows that we can calculate the coefficients of Φ̂n,0 with the
following algorithm

γj+1
l =

[ l∑
k=0

(−1)l+kpj+1−k,k

]
+ (−1)l+1qj+1, l = 0, . . . , j + 1

κj+1
l = (−1)l

l∑
k=0

(
2(j + 1)
2(l − k)

)
, l = 0, . . . , j + 1

αj+1 = (−1)j+1
γj+1

j+1

22j+1
,

pj−l,l = γj+1
l − κj+1

l αj+1, l = 0, . . . , j,
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for j = m,m− 1, . . . , 0. The term in square brackets is omitted in the
case j = m and the complexity of the above algorithm is O(m3). The
solution Φ̂n,0 of (28) is given by

Φ̂n,0(x, y) =
m∑

i=0

i∑
k=0

pi−k,kx
2(i−k)y2k.

If n = 2m+ 1 is odd we can calculate the coefficients of Φ̂n,0 with the
following algorithm

γj+1
l =

[ l∑
k=0

(−1)l+kpj+1−k,k

]
+ (−1)l+1qj+1, l = 0, . . . , j + 1

κj+1
l = (−1)l

l∑
k=0

(
2(j + 1) + 1

2(l − k)

)
, l = 0, . . . , j + 1

αj+1 = (−1)j+1
γj+1

j+1

22j+2
,

pj−l,l = γj+1
l − κj+1

l αj+1, l = 0, . . . , j,

for j = m,m− 1, . . . , 0. Here Φ̂n,0 is given by

Φ̂n,0(x, y) =
m∑

i=0

i∑
k=0

pi−k,kx
2(i−k)+1y2k.

For the odd case the coefficients qj are defined with the help of the
coefficients rj of the Chebyshev polynomials of odd degree:

qj =
rj−1

(2j + 1)(2j)
, j = 1, . . . ,m

− 1√
π

(x)Un(x) =
m∑

j=0

rjx
2j+1.

An implementation of the Kumar-Sloan algorithm with the above
polynomials Φ̂n,k shows the same results as in Table 2. But, as we
mentioned at the beginning of Section 5, no inversion of the Gram
matrix is necessary and the evaluation of Λ̂n,k is straightforward.
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Concluding remarks. Another approach to constructing polyno-
mials that are orthogonal using the Sobolev-type inner product of (29)
is given in [12]. It leads to a set of orthogonal polynomials different
from those given in Section 5; and his results are given for the unit ball
in Rd with arbitrary d ≥ 2.

For an illustration of solving the original problem (1) on a region
other than the unit disk, namely, an ellipse, see the original paper
[2]. To solve (2), or (1), with nonzero boundary conditions requires
either solving a boundary integral equation for Laplace’s equation or
the interpolation over D of the nonzero boundary condition by some
smooth function u0 followed by a change in the function f and the
definition of the unknown solution u being sought.
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