
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 16, Number 2, Summer 2004

ON THE TRACTION PROBLEM FOR THE
LAMÉ SYSTEM ON CURVILINEAR POLYGONS

IRINA MITREA

ABSTRACT. We give a complete description of the spectra
of certain elastostatic and hydrostatic boundary layer poten-
tials in Lp, 1 < p < ∞, on bounded curvilinear polygons. In
particular, our analysis shows that the spectral radii of these
operators on Lp are less than one if p is large enough. This
holds for the case of the boundary layer potential operator
associated to the traction conormal derivative. Such results
are important when dealing with the issue of constructively
solving boundary value problems for the Lamé system of elas-
ticity and for the Stokes system of hydrostatic in domains
with isolated singularities. Our approach is based on Mellin
transform techniques and Calderón-Zygmund theory.

1. Introduction. Quite often, solving a boundary value problem
such as

(1) (BVP)
{Lu = 0 in Ω,
Bu = f on ∂Ω,

for an elliptic operator L with the boundary condition B, reduces to
inverting an operator of the form “identity+K,” where K is a singular
integral operator, on some appropriate Lp boundary function spaces.
In turn, the question of expanding the aforementioned inverse in a
strongly convergent Neumann series comes down to checking whether
ρ(K;Lp), the spectral radius of the operator K on the Lp function
space under discussion, satisfies

(2) ρ(K;Lp) < 1.

We recall here that ρ(K;Lp) := sup{|w|;w ∈ C and wI − K is not
invertible on Lp}, where I stands for the identity operator. This
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abstract scenario applies, for instance, to the case when L = �, the
Laplacian, with Dirichlet or Newmann boundary conditions, as well as
when L = µ�+(λ+µ)� div is the elastostatic operator with Dirichlet
or conormal type boundary conditions.

The smoothness of the underlying domain Ω plays a crucial role since,
in many important instances, it affects the singularity of the kernel
k(X,Y ) of K. This point is most transparent when

(3) k(X,Y ) contains the factor
〈X − Y,N(Y )〉

|X − Y |n , n = dim Ω,

as is the case with, e.g., the so-called double layer potential operator
for the Laplacian. If Ω is a bounded domain with C∞ boundary then
K is a pseudodifferential operator of order −1, see, e.g., Proposition
11.2 in [35, Chapter 7]. Also, if ∂Ω is of class C2 then K becomes a
compact operator on Lp(∂Ω), 1 < p <∞, whenever (3) holds. This, in
turn, greatly facilitates the analysis of (2).

The question (2) has a fundamentally different nature when ∂Ω is
merely Lipschitz, a context in which (2) is sometimes referred to as
the spectral radius conjecture, cf., [4, 18]. This general issue remains
open at the time being, as it has been solved only in some special cases.
Some of the authors that have dealt with this or some closely related
problems are Fabes and collaborators in [13, 16], Shelepov in [33],
Elschner in [10, 12], Rathsfeld in [32], Lewis in [24], Diomeda and
Lisena in [5, 6, 26, 27], Maz’ya and collaborators in [19, 20, 28] and
Duduchava in [7 9].

In the case of a system of PDEs, L, the writing (Lu)i = aij
kl∂k∂lu

j

is not unique and the algebraic structure of K depends on the specific
choice of the tensor (aij

kl)i,j,k,l. A case in point is the Lamé system for
which both, physically relevant, choices

(4) aij
kl := µδijδkl +

(
µ+ λ− µ(µ+ λ)

3µ+ λ

)
δikδjl +

µ(µ+ λ)
3µ+ λ

δilδjk,

and

(5) aij
kl := µδijδkl + λδikδjl + µδilδjk,

will do. The two choices in (4) (5) lead to, respectively, the so-called
pseudostress, Kpseudostress, and traction, Ktraction (elastic) double layer
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potential operators. See Section 3 for a more detailed discussion on
this. In connection with (2), quite recently, in [30] it has been shown
that

(6) ρ(Kpseudostress : (Lp(∂Ω)/R)2) < 1, if 2 ≤ p <∞,

for any curvilinear polygon Ω ⊆ R2. It is therefore natural to make the
following

Conjecture. If Ω ⊆ R2 is a curvilinear polygon, then

(7) ρ(Ktraction : (Lp(∂Ω))2 /Ψ) < 1, for each 2 ≤ p <∞,

where by Ψ we denote the space of vector valued functions ψ on R2

satisfying the three equations ∂iψ
j + ∂jψ

i = 0, i, j = 1, 2, restricted to
∂Ω.

We point out here that the natural spaces to look for spectral
radius estimates (2) are (Lp(∂Ω)/R)2 in the case of Kpseudostress and
(Lp(∂Ω))2 /Ψ forKtraction. We refer the reader to e.g., [3] and Section 6
for more details.

An important technical distinction between (6) and (7) is as follows.
In the case of a polygonal domain Ω ⊂ R2, the integral kernel of
Kpseudostress satisfies (3) and, thus, vanishes whenever X,Y belong to
the same side of ∂Ω. This property no longer holds in the case of
Ktraction which makes the analysis of this latter operator considerably
more difficult and subtle.

One possible line of attack is as follows: (i) prove (7) when p is
sufficiently large, (ii) prove (7) when p = 2; then one can invoke an
interpolation type argument in order to conclude that (7) holds for
2 ≤ p < ∞. In this paper we provide a partial solution to the above
conjecture. Here we are able to prove that (i) is valid in general, i.e.,
there exists p0 > 1 such that (7) holds for p0 < p < ∞, whereas (ii)
holds for a special subclass of curvilinear polygons and elastic media.
More specifically, it is assumed that all angles θ of Ω satisfy

(8) θ ∈
[
3π
4
,
5π
4

]
and

µ

λ+ 2µ
∈
(

0,
31
100

]
.
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See also Theorem 7.1 which is one of the main results of this paper.

The organization of the paper is as follows. In Section 2 we collect
some useful, known results about the Mellin transform and Hardy
kernels. Elastostatic layer potentials are introduced in Section 3.
Section 4 contains the Mellin analysis of their kernels in a plane sector.
In this setting, spectral radius estimates are derived in Section 5. We
also include a more detailed analysis of the spectrum in Section 6. In
Section 7 we consider the case p = 2. Finally, in Section 8 we extend
the scope of our analysis in order to include spectral results for a certain
family of hydrostatic layer potential operators.

2. The Mellin transform and Hardy kernels on (Lp(R+))2.
This section contains some notation and preliminaries on the Mellin
transform together with the rudiments on the spectral analysis for the
algebra of Mellin convolution operators generated by Hardy kernels and
the Hilbert transform on (Lp(R+))2.

Let C∞
0 (R+) be the space of infinitely many times differentiable

functions, compactly supported on [0,∞). The Mellin transform of
a function f ∈ C∞

0 (R+) is defined as

(9) Mf(z) :=
∫ ∞

0

xz−1f(x) dx, z ∈ C.

For any f ∈ C∞
0 (R+), Mf(z) is an entire function and the following

inversion formula holds

(10) f(x) =
1

2πi

∫ 1/p+i∞

1/p−i∞
x−zMf(z) dz,

where the above path integral is taken over the contour z = 1/p + iξ,
−∞ < ξ <∞.

For any α, β ∈ R, α < β, define the strip Γα,β := {z ∈ C ;α < Re z <
β}, and let Γα := {z ∈ C ; Re z = α}. If f is measurable on R+ and the
integral in (9) converges absolutely for all z in some strip Γα,β we shall
call the integral Mf(z) the Mellin transform of the function f . Note
that Mf is a holomorphic function in the strip Γα,β . Next we make
the following definition.

Definition 2.1. Let k(x, y) be a measurable function defined on
R+ × R+. Then k is a Hardy kernel for Lp(R+), 1 < p < ∞, provided



TRACTION PROBLEM 179

that k(x, y) is homogeneous of degree −1, i.e., for any λ > 0 we have
k(λx, λy) = λ−1k(x, y), and there holds

∫ ∞

0

|k(1, y)| y−1/p dy

(
=
∫ ∞

0

|k(x, 1)|x1/p−1 dx

)
<∞.

Also, a matrix k = (kij)i,j=1,2 of measurable functions on R+ × R+

is called a Hardy kernel for (Lp(R+))2, provided that each individual
entry kij is a Hardy kernel for Lp(R+).

Going further, let k = (kij)i,j=1,2 be a Hardy kernel for (Lp(R+))2,

1 < p <∞, and for each �f ∈ (Lp(R+))2 set

(11) K �f(x) :=
∫ ∞

0

k(x, y)�f(y) dy, x ∈ R+.

To state the characterization of the spectrum of operators K as in
(11) on (Lp(R+))2 we need one more piece of notation. Let X be a
Banach space and T : X → X be a linear and continuous operator. We
denote by σ(T ;X ) the spectrum of the operator, i.e.,

(12) σ(T ;X ) := {w ∈ C ; wI − T is not invertible on X}.

Also the spectral radius of T is

(13) ρ(T ;X ) := sup{|w| ; w ∈ σ(T ;X )},

i.e., the radius of the smallest closed circular disk centered at the origin
which contains σ(T,X ). We have

Theorem 2.2 Let K be an element in the algebra of Mellin convolu-
tion operators generated by Hardy kernels and the Hilbert transform for
(Lp(R+))2, 1 < p < ∞. Then K is a bounded operator on (Lp(R+))2

and its spectrum is the closure of the range of the Mellin transform
Mk(1/p+ iξ), i.e., it is the closure in the plane of the set of all points
w ∈ C such that

(14) det(wI −Mk)(1/p+ iξ) = 0 for some ξ ∈ R.
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Above, k is the kernel of the operator K, I is the identity matrix
operator, and Mk := (Mkij)i,j=1,2.

When k is a Hardy kernel for (Lp(R+))2, 1 < p < ∞, and K is as
in (11), then the conclusion of Theorem 2.2 follows in this special case
by adapting the argument in [14] or [1] to the matrix setting described
above. For the definition of the algebra of Mellin convolution operators
generated by Hardy kernels and the Hilbert transform for (Lp(R+))2

and the proof of Theorem 2.2 we refer the reader to the exposition in
Section 3 of [25].

We shall call the matrix Mk the matrix of the Mellin symbols of
the operator K on (Lp(R+))2, 1 < p < ∞. In the notation of
[23, 25, 11], of the algebra of pseudodifferential operators of Mellin
type, the condition (14) reads det Smbl1/p(wI −K)(0, z) = 0 for some
z = 1/p+ iξ, ξ ∈ R.

3. The layer potentials. Consider the system of elastostatic
L�u = 0 in an open subset of R2, given by

(15) L = µ� + (λ+ µ)� div,

where µ and λ are the Lamé moduli such that µ > 0 and λ + µ ≥ 0.
We represent the operator L in the notation

(16) L = A(D) =
(
akl

ij∂i∂j

)
k,l
,

with the coefficient matrix A given by

(17) akl
ij = akl

ij (r) := µ δijδkl + (µ+ λ− r)δikδjl + r δilδjk,

with i, j, k, l = 1, 2, and r ∈ R. The conormal derivative for the
operator L associated to A(r) := (akl

ij (r))i,j,k,l is given by(
∂�u

∂NA(r)

)j

:= Nia
jl
ik(r)∂ku

l = µ
∂uj

∂N
+ (µ+ λ− r)Njdiv �u+ rNi∂ju

i,

j = 1, 2.

The choice r := µ in (17) gives the traction (stress) conormal derivative
which has the form

(18)
∂�u

∂NA(µ)
:= µ(��u+ (��u)t) ·N + λ(div �u)N,
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where the superscript t indicates transposition of matrices and ��u : =(
∂ju

i
)
1≤i,j≤2

. For r ∈ R arbitrary, the conormal derivative associated
to the matrix (17) is

(19)
(

∂�u

∂NA(r)

)j

= µ
∂uj

∂N
+ (µ+ λ− r)Nj div�u+ rNi∂ju

i.

Recall the Kelvin matrix-valued fundamental solution for the system
of elastostatics

(20) Gij(X) =
1

2µ(2µ+ λ)π

[
3µ+ λ

2
δij log|X|2 − (µ+ λ)

XiXj

|X|2

]
,

where X ∈ R2 \ {0} and i, j = 1, 2, see, e.g., (9.2) in [21, Chapter
9]. Denote by Gj the jth column of G = (Gkl)k,l=1,2, with j =
1, 2. A straightforward computation gives that the ith component of
∂Gj/∂NA(r) is

(21)

( ∂Gj

∂NA(r)
(X − ·)

)i

(Q)

= −γ1(r)δij
π

· 〈X −Q,N(Q)〉
|X −Q|2

− γ2(r)
π

· (Xi −Qi)Nj(Q) − (Xj −Qj)Ni(Q)
|X −Q|2

− 2(1 − γ1(r))
π

· 〈X −Q,N(Q)〉(Xi −Qi)(Xj −Qj)
|X −Q|4

where
(22)

γ1(r) =
µ(3µ+ λ) − r(µ+ λ)

2µ(2µ+ λ)
and γ2(r) =

µ(µ+ λ) − r(3µ+ λ)
2µ(2µ+ λ)

.

In the case of the stress conormal derivative, r = µ, we have

(23) γ1(µ) =
µ

λ+ 2µ
and γ2(µ) = − µ

λ+ 2µ
.

Denote by Kr the double layer potential operator associated to the
choice of the coefficient matrix A(r) =

(
akl

ij (r)
)
i,j,k,l

as in (17). We
have

(24)
(
Kr

�f
)i

(P ) := p.v.

∫
∂Ω

kij
r (P,Q)f j(Q) dσ(Q), P ∈ ∂Ω,
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where the integral kernel kr(P,Q) :=
(
kij

r (P,Q)
)
i,j

is given by kr(P,Q)

:=
[
(∂G/∂NA(r))(P − ·)

]t (Q). Using (21) we obtain

(25)

kr(P,Q) =
〈Q−P,N(Q)〉
π|P−Q|2

·
[

1+Λ1(r)
(P1−Q1)

2−(P2−Q2)
2

|P−Q|2 2Λ1(r)
(P1−Q1)(P2−Q2)

|P−Q|2

2Λ1(r)
(P1−Q1)(P2−Q2)

|P−Q|2 1−Λ1(r)
(P1−Q1)

2−(P2−Q2)
2

|P−Q|2

]

+
γ2(r)
π

· (P1 −Q1)N2(Q) − (P2 −Q2)N1(Q)
|P −Q|2

[
0 −1
1 0

]
,

where P = (P1, P2) and Q = (Q1, Q2) and

(26) Λ1(r) := 1 − γ1(r),

with γ1(r) as in (22).

4. The Mellin symbol in a plane sector. In this section we
assume that Ω is the domain consisting of the interior of an angle of
measure θ ∈ (0, 2π). Our main goal is to find an explicit description of
the spectrum of the operator Kr as in (24) on (Lp(∂Ω))2, 1 < p < ∞.
By rotation and translation invariance we assume without loss of
generality that the domain Ω is the region above the graph of

h(x) := cot(θ/2)|x|, x ∈ R.

We set s := |P | and t := |Q|. Denoting by (∂Ω)1 the right ray of the
angle and by (∂Ω)2 the left ray, we distinguish four cases.

Case I. P,Q∈ (∂Ω)1. In this situation we have 〈P − Q,N(Q)〉 = 0,

P = (s sin(θ/2), s cos(θ/2)), and Q =
(
t sin(θ/2), t cos(θ/2)

)
, N(Q) =

(cos(θ/2),− sin(θ/2)), |P − Q|2 = (s − t)2 and (P1 − Q1)N2(Q) −
(P2 −Q2)N1(Q) = −(s− t). Thus kr(P,Q) takes the form

(27) kr(s, t) = −γ2(r)
π

· 1
s− t

·
[

0 −1
1 0

]
,
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and is a matrix multiple of the kernel of the Hilbert transform. The
Mellin symbol of kr is

(28) Mkr(z) := M(kr(·, 1))(z) = γ2(r) ·
cos(πz)
sin(πz)

·
[

0 −1
1 0

]
.

Introduce

(29)
A := (1 − γ1(r))z sin θ, B := sin((π − θ)z),

C := cos((π − θ)z), D := sin(πz), E := cos(πz).

In the new notation (28) gives

(30) Mkr(z) = γ2(r) ·
E

D
·
[

0 −1
1 0

]
.

Case II. P,Q ∈ (∂Ω)2. Straightforward calculations similar to the
ones in the previous case show that now kr(P,Q) takes the form

(31) kr(s, t) =
γ2(r)
π

· 1
s− t

·
[

0 −1
1 0

]
,

and again is a matrix multiple of the kernel of the Hilbert transform.
The Mellin symbol of kr in the notation (29) is given by

(32)
Mkr(z) := M(kr(·, 1))(z) = γ2(r) ·

cos(πz)
sin(πz)

·
[

0 1
−1 0

]

= γ2(r)
E

D
·
[

0 1
−1 0

]
.

Case III. P ∈(∂Ω)1 , Q ∈ (∂Ω)2. We have P =(s sin(θ/2), s cos(θ/2)),
Q = (−t sin(θ/2), t cos(θ/2)), N(Q) = (− cos(θ/2),− sin(θ/2)) and
〈P − Q,N(Q)〉 = −s sin θ. Also |P − Q|2 = s2 − 2st cos θ + t2,
(P1−Q1)N2(Q)−(P2−Q2)N1(Q) = s cos θ−t, (P1−Q1)2−(P2−Q2)2 =
−s2 cos θ + 2st− t2 cos θ and (P1 −Q1)(P2 −Q2) = ((s2 − t2)/2) sin θ.
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Straightforward manipulations show that in this case (25) can be
written in the form
(33)

kr(s, t) =
[
k1(s, t) + k2(s, t) k3(s, t)

k3(s, t) k1(s, t) − k2(s, t)

]
+ k4(s, t)

[
0 −1
1 0

]
,

where

k1(s, t) :=
1
π
· s sin θ
s2 − 2st cos θ + t2

,

k2(s, t) :=
Λ1(r)
π

· s sin θ(−s2 cos θ + 2st− t2 cos θ)
(s2 − 2st cos θ + t2)2

,(34)

and

k3(s, t) :=
Λ1(r)
π

· s(s2 − t2) sin2 θ

(s2 − 2st cos θ + t2)2
,

k4(s, t) := e
γ2(r)
π

· s cos θ − t

s2 − 2st cos θ + t2
.(35)

In particular, kr from (33) is a Hardy kernel. The Mellin transforms
of the kernels introduced in (34) (35) are computed below. We have
Mkj(z) := M(kj(·, 1))(z) for j = 1, . . . , 4, and

(36)

Mk1(z) =
sin((π − θ)z)

sin(πz)
,

Mk2(z) = Λ1(r)
z sin θ cos((π − θ)z)

sin(πz)
,

Mk3(z) = Λ1(r)
z sin θ sin((π − θ)z)

sin(πz)
,

Mk4(z) = −γ2(r)
cos((π − θ)z))

sin(πz)
.

Now, using (29) and (33) (36) we conclude

(37) Mkr(z) := M(kr(·, 1))(z) =
1
D

[
B+AC AB+γ2(r)C

AB−γ2(r)C B−AC

]
.
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Case IV. P ∈ (∂Ω)2, Q ∈ (∂Ω)1. In this setting, via similar
manipulations as the ones we used before, we have

(38)

kr(s, t) =
[
k1(s, t)+k2(s, t) −k3(s, t)

−k3(s, t) k1(s, t)−k2(s, t)

]
+k4(s, t)

[
0 −1
1 0

]
,

where kj , j = 1, . . . , 4, are as in (34) and (35). Again, kr in (38) is a
Hardy kernel. Using (36), we obtain

(39)

Mkr(z) := M(kr(·, 1))(z) =
1
D

[
B+AC −AB+γ2(r)C

−AB−γ2(r)C B−AC

]
.

Now, based on (30), (32), (37) and (39) we write the Mellin transform
of the kernel of the operator wI −Kr, w ∈ C, as the 4 × 4 matrix

(40) M(wI − kr)(z)

=
1
D

⎡
⎢⎣

wD γ2(r)E −B − AC −AB − γ2(r)C

−γ2(r)E wD −AB + γ2(r)C −B + AC

−B − AC AB − γ2(r)C wD −γ2(r)E

AB + γ2(r)C −B + AC γ2(r)E wD

⎤
⎥⎦ .

A straightforward calculation gives

(41)

det (M(wI − kr)(z))

=
1
D4

[(wD −AC)2 − B2 − γ2(r)2C2 + (γ2(r)E +AB)2]

· [(wD +AC)2 −B2 − γ2(r)2C2 + (γ2(r)E −AB)2].

We point out that for Re z �= 0, z = x+ iy, x, y ∈ R, the denominator
D does not vanish for any y ∈ R.

Recall the definition of the spectrum from (12). Appealing to (41) and
Theorem 2.2 and noticing that ±γ2(r) are the roots of the righthand
side of (41) in the limit case z = 1/p± i∞ we conclude the following.

Theorem 4.1. Let Ω be the domain consisting of the interior of an
angle of measure θ ∈ (0, 2π) and recall A,B,C,D,E from (29). The
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spectrum of the operator Kr on (Lp(∂Ω))2, 1 < p <∞, is given by

(42) σ
(
Kr; (Lp(∂Ω))2

)
=
{
w ∈ C; (wD ±AC)2 = Q∓ for some z ∈ 1

p
+ iR

}
∪ {γ2(r),−γ2(r)} ,

where

(43) Q± = B2 + γ2(r)2C2 − (γ2(r)E ±AB)2.

An immediate consequence of Theorem 4.1 is the fact that

(44) σ(Kr; (Lp(∂Ω))2) = Σr
θ(p) :=

4⋃
i=1

Σi(r, θ, p),

with
(45)

Σ1(r, θ, p)(y) :=

√
Q− −AC

D
, Σ2(r, θ, p)(y) :=

−
√
Q− −AC

D
,

Σ3(r, θ, p)(y) :=

√
Q+ +AC

D
, Σ4(r, θ, p)(y) :=

−
√
Q+ +AC

D
,

where A,B,C,D,E are evaluated at z = 1/p + iy, y ∈ R, see (29). A
simple application of L’Hopital’s rule gives

lim
y→±∞ Σj(r, θ, p)(y) = γ2(r), j = 1, 3,

and

lim
y→±∞ Σj(r, θ, p)(y) = −γ2(r), j = 2, 4.(46)

Examples of the curves Σi(r, θ, p) for λ = 0, θ = π/2, p = 10 and r = µ
are included in Figures 1 4. In this case (corresponding to the stress
conormal derivative) we have γ1(µ) = −γ2(µ) = 0.5. Consequently,
the spectrum of the operator Ktraction on

(
L10(∂Ω)

)2 in the case Ω
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FIGURE 1. The curve Σ1(µ, (π/2), 10).
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FIGURE 2. The curve Σ2(µ, (π/2), 10).
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FIGURE 3. The curve Σ3(µ, (π/2), 10).
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FIGURE 4. The curve Σ4(µ, (π/2), 10).
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FIGURE 5. The L10 spectrum of the traction elastostatic double layer
potential operator on angle of measure π/2 for λ = 0.

is the domain consisting of the interior of an angle of measure π/2 is
presented in Figure 5.

5. Spectral results on Lp spaces; the sector case. The main
result of this section is the following. To state it, recall the elastostatic
double layer potential operator Kr from (24), associated to the choice
of the coefficients matrix A(r) given in (17).

Theorem 5.1. Let Ω be the domain consisting of the interior of an
angle of aperture θ ∈ (0, 2π). Then for any r ∈ (−µ, µ] there exists
p(θ, r), depending only on θ and r, such that

(47) ρ(Kr; (Lp(∂Ω))2) < 1, ∀ p ≥ p(θ, r).

In particular

(48) ρ
(
Ktraction; (Lp(∂Ω))2

)
< 1 for p sufficiently large.
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Proof. For i, j = 1, 2 and (γ1, γ2) ∈ R2 let

(49)

kij
γ1,γ2

(P,Q) :=
〈Q− P,N(Q)〉
π|P −Q|2

[
γ1δij + 2(1 − γ1)

(Pi−Qi)(Pj−Qj)
|P −Q|2

]

− γ2

π
· (Pi−Qi)Nj(Q) − (Pj−Qj)Ni(Q)

|P −Q|2 ,

and

(50)
(
Kγ1,γ2

�f
)i

(P ) := p.v.

∫
∂Ω

kij
γ1,γ2

(P,Q)f j(Q) dσ(Q), P ∈ ∂Ω.

In (50) we have �f := (f1, f2). We will show that

(51) σ
(
Kγ1,γ2 ; (L

p(∂Ω))2
)
< 1, (γ1, γ2) ∈ T \ {(1, 1), (1,−1)}

for p large enough, where T is the triangle with vertices (0, 0), (1, 1)
and respectively (1,−1). Since r ∈ (−µ, µ] forces (γ1(r), γ2(r)) ∈
T \ {(1, 1), (1,−1)} and Kr = Kγ1(r),γ2(r) we have that (51) implies
(47). The case of the traction (stress) conormal derivative corresponds
to (γ1, γ2) = (µ/(2µ+ λ),−µ/(2µ+ λ)), that is, (γ1, γ2) belongs to the
side of T joining (0, 0) with (1,−1). Therefore (48) also follows from
(51).

Fix now (γ1, γ2) ∈ T \ {(1, 1), (1,−1)}. In the light of Theorem 4.1
in order to obtain (51) it suffices to show that for p large enough

(52) (wD ±AC)2 −B2 − γ2
2C

2 + (γ2E ∓AB)2 = 0 =⇒ |w| < 1,

where A,B,C,D,E are as in (29) evaluated at z = x + iy for some
y ∈ R and x = 1/p, p ∈ (1,∞). Note that x ∈ [0, 1]. To stress the
dependence of w on x and y we will write w = w(x, y). Consider the
function

(53) F (x, s) := |w(x, 1/s)|.

In this new notation we have to show that there exists ε > 0 such that
for any x ∈ (0, ε) and s ∈ R we have

(54) F (x, s) < 1.
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We proceed in two steps. First we prove that there exist constants
δ > 0 and M > 0 such that

(55) |(∂2F ) (x, s)| < M <∞, ∀x ∈ [0, 1] and ∀ s ∈ [−δ, δ].
In the second step we show that

(56) F (0, s) < 1, ∀ s ∈ R.

This implies |w(0, y)| < 1 where w is a root of (52) for A,B,C,D,E
evaluated at z = iy, y ∈ R which corresponds to p = ∞.

Let us indicate how (55) and (56) give (54) and, consequently,
the conclusion of Theorem 5.1. We have F (x, s) = F (x, 0) +∫ 1

0
(d/dt)[F (x, ts)] dt = F (x, 0) + s

∫ 1

0
(∂2F ) (x, ts) dt. This and (55)

give |F (x, s) − F (x, 0)| ≤ |s|M , for any x ∈ [0, 1] and s ∈ [−δ, δ]. Since
F (x, 0) = |γ2|, a consequence of (46), and |γ2| < 1, by choosing δ small
enough we conclude that F (x, s) < 1 for any x ∈ [0, 1] and s ∈ [−δ, δ].
This means

(57) |w (x, y)| < 1, ∀x ∈ [0, 1] and ∀ y ∈
(
−∞,−1

δ

]
∪
[
1
δ
,∞

)
.

Finally, let us assume by contradiction that (54) is not satisfied.
This implies that there exist two sequences {pk}k, {yk}k ⊂ R with
limk→∞pk = ∞ such that F (xk, 1/yk) = |w(xk, yk)| ≥ 1, where xk :=
1/pk → 0 as k → ∞. Using (57) we can conclude that yk ∈ [−1/δ, 1/δ].
By compactness, and eventually passing to a subsequence, we have that
yk → y0 ∈ R as k → ∞. Taking the limit as k → ∞ in (57) we obtain
F (0, 1/y0) = |w(0, y0)| ≥ 1 and this contradicts (56). Consequently
(54) is satisfied and the conclusion of Theorem 5.1 holds. The proof of
Theorem 5.1 is therefore completed provided we show (55) and (56).

Next we present the proofs of the two steps alluded to above in the
proof of Theorem 5.1.

Proof of Step I. Recall that the main goal of this step is to show that
(55) holds. This follows from a tedious but elementary calculation that
we omit based on the fact that

(58) F (x, s) =

∣∣∣∣∣±
[
B2 + γ2(r)2C2 − (γ2(r)E ±AB)2

]1/2 ±AC

D

∣∣∣∣∣ ,
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where A,B,C,D,E are evaluated at z = x + (i/s). The main idea is
the fact that (∂2F )(x, s) can be written as a sum of factors that can
be estimated by s−m · e(−Cθ/s) for some positive constants m and C
independently of x ∈ [0, 1]. Then (55) follows.

We continue with

Proof of Step II. The main goal of this step is to show that (56) holds.
Equivalently, this is (52) for A,B,C,D,E evaluated at z = iy, for any
y ∈ R. We proceed for now with the analysis under the assumption
y ∈ R \ {0} and treat the case y = 0 at the end. In (52) make z = iy
with y ∈ R\{0}, and divide both sides by −1. We are left with proving
that

(59)
W(θ) :=

{
w ∈ C; (wd± ac)2 = b2 − γ2

2c
2 + (γ2e± ab)2

}
⊆ D1(0) := {w ∈ C ; |w| < 1} ,

where

(60)
a := (1 − γ1)y sin θ, b := sinh((π − θ)y),

c := cosh((π − θ)y), d := sinh(πy), e := cosh(πy).

We point out that since W(θ) = −W(2π − θ) we can assume without
loss of generality for the remaining part of the section that θ ∈ (0, π].
Finally (59) is a consequence of the sequence of lemmas that we present
next.

Lemma 5.2. Let θ ∈ (0, π] and a, c, e be as in (60). Then for any
γ1 ∈ [0, 1] and y ∈ R \ {0} we have

(61) e2 ≥ c2(a2 + 1).

Proof. We write (61) as cosh2(πy) ≥ ((1 − γ1)2y2 sin2 θ + 1)×
cosh2((π− θ)y). Since γ1 ∈ [0, 1], it suffices to show that the inequality
holds for γ1 = 0, i.e., cosh2(πy) ≥ (y2 sin2 θ + 1) cosh2((π − θ)y), or
equivalently,

(62) cosh(2πy) ≥ (y2 sin2 θ + 1) cosh(2(π − θ)y) + 2y2 sin2 θ.
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If θ = π the inequality (62) becomes cosh(2πy) + 2 ≥ 3 and it is
obviously satisfied as cosh(2πy) ≥ 1 for any y ∈ R. We assume from
now on that θ ∈ (0, π).

Using the Taylor series expansion of the function coshx given by

coshx =
∞∑

k=0

x2k

(2k)!

we rewrite (62) as

(63)

∞∑
k=0

(2π)k

(2k)!
y2k ≥ 1 +

(
[2(π−θ)]2

2!
+ 2 sin2 θ

)
y2

+
∞∑

k=2

(
[2(π−θ)]2k

(2k)!
+ sin2 θ

[2(π−θ)]2k−2

(2k − 2)!

)
y2k.

Therefore, in order to prove (62) it suffices to show

(2π)2

2!
≥ [2(π − θ)]2

2!
+ 2 sin2 θ

and

(2π)2k

(2k)!
≥ [2(π − θ)]2k

(2k)!
+ sin2 θ

[2(π − θ)]2k−2

(2k − 2)!
,(64)

for all integers k ≥ 2. The first inequality in (64) follows easily
from straightforward algebraic manipulations that we omit. As for
the second inequality in (64) we rewrite it in the equivalent form

(65) (π − θ)2
[( π

π − θ

)2k

− 1
]
≥ k

(
k − 1

2

)
sin2 θ.

We have

(66)
( π

π−θ
)2k

=
[(

1 +
θ

π−θ
)k
]2

≥
(
k

θ

π−θ + 1
)2

≥ k2 θ2

(π−θ)2 +1,

where the first inequality above follows from (1 + x)n > nx + 1 for
any n ≥ 0 and x ≥ 0. This finally gives (65) and finishes the proof of
Lemma 5.2.
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Notice that the expression b2 − γ2
2c

2 + (γ2e ± ab)2 = γ2
2(e2 − c2) ±

2γ2abe + b2 + a2b2, with a, b, c, d, e as in (60), has the discriminant
4b2[e2 − c2(a2 + 1)] when regarded as quadratic in γ2. Therefore an
immediate corollary of Lemma 5.2 is the following.

Corollary 5.3. Let θ ∈ (0, π], γ1 ∈ [0, 1], γ2 ∈ R and y ∈ R \ {0}.
Then

(67) b2 − γ2
2c

2 + (γ2e± ab)2 ≥ 0.

In particular this implies that the roots w of the equation (wd± ac)2 =
b2 − γ2

2c
2 + (γ2e± ab)2 are real, i.e.,

(68) W(θ) ⊆ R.

We include next two technical results useful in the sequel.

Lemma 5.4. For any θ ∈ (0, π] and y ∈ R \ {0} the following holds:

(69)

sinh2(πy)−sinh2((π−θ)y)−2y sin θ sinh(πy) cosh((π−θ)y)+y2 sin2 θ ≥ 0.

Proof. We have

sinh x =
∞∑

k=1

x2k−1

(2k − 1)!
, coshx =

∞∑
k=1

x2k−2

(2k − 2)!
,

and

sinh2 x =
cosh(2x) − 1

2
=

∞∑
k=1

22k−1 x2k

(2k)!
.

Therefore

(70)

sinh2(πy) =
∞∑

k=1

22k−1 (πy)2k

(2k)!
,

sinh2((π − θ)y) =
∞∑

k=1

22k−1 ((π − θ)y)2k

(2k)!
,

sinh(πy) cosh((π − θ)y) =
∞∑

k=0

c2k+1y
2k+1,
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where

c1 = π, c3 =
π3

3!
+
π(π − θ)2

2!

and

c2k+1 =
π2k+1

(2k + 1)!
+
π2k−1(π − θ)2

(2k − 1)!2!
+ · · · + π(π − θ)2k

(2k)!
(71)

=

[
(2π − θ)2k+1 + θ2k+1

]
2(2k + 1)!

,

for k ≥ 2. The last equality in (71) follows from the binomial formulas
for [π + (π − θ)]2k+1 and [π − (π − θ)]2k+1. Consequently (69) becomes

(72)

∞∑
k=1

22k−1 (πy)2k

(2k)!
−

∞∑
k=1

22k−1 ((π − θ)y)2k

(2k)!

− 2y sin θ
( ∞∑

k=0

c2k+1y
2k+1

)
+ y2 sin2 θ ≥ 0,

with c2k+1 as in (71). In (72) we have

(73)
the coefficient of y2 = π2 − (π − θ)2 − 2π sin θ + sin2 θ,

the coefficient of y2k =
22k−1(π2k − (π − θ)2k)

(2k)!
− 2c2k−1 sin θ,

for k ≥ 2. It is easy to see that the coefficient of y2 can be written
as (θ − sin θ)(2π − θ + sin θ) which is strictly positive for θ ∈ (0, π].
Next, we prove that for any k ≥ 2 the coefficient of y2k is positive. A
moment’s reflection shows that this comes down to showing

(74)
22k−1(π2k − (π − θ)2k)

2k
≥ (sin θ)

[
(2π − θ)2k−1 + θ2k−1

]
.

Rewriting the lefthand side as

(75)
22k−1(π2k− (π−θ)2k)

2k
=

1
4k

[
((2π−θ)+θ)2k − ((2π−θ)−θ)2k

]
,
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and using the binomial formula for the expansion of ((2π − θ) + θ)2k

and respectively ((2π − θ) − θ)2k in terms of 2π − θ and θ we obtain

(76)
((2π − θ) + θ)2k − ((2π − θ) − θ)2k

≥ 2(2k)(2π − θ)2k−1θ + 2(2k)(2π − θ)θ2k−1

≥ 4kθ
[
(2π − θ)2k−1 + θ2k−1

]
,

where the last inequality in (76) follows from the fact that 2π − θ ≥ θ.
Since θ > sin θ for θ ∈ (0, π] and appealing to (75) (76) we conclude
that (74) holds. This finishes the proof of Lemma 5.4.

Lemma 5.5. For any θ ∈ (0, π] and y ∈ R \ {0} the following
inequality holds

(77)
sinh2(πy) − sinh2((π−θ)y) ± 2y sin θ cosh(πy) sinh((π−θ)y)

− y2 sin2 θ > 0.

Proof. First note that the lefthand side of (77) is an even function
in the variable y. Therefore, we can assume without loss of generality
that y > 0. Next, since 2y sin θ cosh(πy) sinh((π− θ)y) ≥ 0 it is enough
to prove (77) with the choice minus in the lefthand side. That is,

(78)
sinh2(πy) − sinh2((π−θ)y) − 2y sin θ cosh(πy) sinh((π−θ)y)

− y2 sin2 θ > 0,

for y > 0 and θ ∈ (0, π]. We have

sinh((π − θ)y) cosh(πy) =
∞∑

k=0

d2k+1y
2k+1,

where

d1 = π − θ, d3 =
(π − θ)3

3!
+

(π − θ)π2

2!
and

d2k+1 =
(π − θ)2k+1

(2k + 1)!
+

(π − θ)2k−1π2

(2k − 1)!2!
+ · · · + (π − θ)π2k

(2k)!
, k ≥ 2.

(79)
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Therefore, based on (70) and (79), an equivalent form of (78) is

(80)
∞∑

k=1

22k−1 (πy)2k − ((π − θ)y)2k

(2k)!
− 2y sin θ

( ∞∑
k=0

d2k+1y
2k+1

)

− y2 sin2 θ ≥ 0,

where d2k+1 are defined above. The coefficients of the powers of y in
the lefthand side of (80) are

(81)
the coefficient of y2 = π2 − (π−θ)2 − 2 sin θ(π−θ) − sin2 θ,

the coefficient of y2k =
22k−1

[
π2k − (π−θ)2k

]
(2k)!

− 2d2k−1 sin θ,

for k ≥ 2. We rewrite the coefficient of y2 in the form π2−(π−θ+sin θ)2.
Since θ > sin θ for θ ∈ (0, π] it follows that π2 − (π − θ + sin θ)2 > 0.
Next, since θ ∈ (0, π] we have d2k+1 ≤ c2k+1 for any natural number k.
Here c2k+1 are as in (71) and d2k+1 are as in (79). Therefore

(82)

22k−1
[
π2k − (π−θ)2k

]
(2k)!

− 2d2k−1 sin θ

≥
22k−1

[
π2k − (π−θ)2k

]
(2k)!

− 2c2k−1 sin θ

≥ 0,

where the last inequality is an equivalent form of (74) and it has been
shown in the proof of Lemma 5.4. This finishes the proof of Lemma 5.5.

We return now to the proof of Step II.

End of proof of Step II. Recall that we are left with showing (59).
That is, for any (γ1, γ2) ∈ T \ {(1, 1), (1,−1)} and θ ∈ (0, π] the roots
w of the equation (wd± ac)2 = b2 − γ2

2c
2 + (γ2e± ab)2 satisfy |w| < 1.

Fix y ∈ R\{0} for the moment (note that in this case we have d �= 0)
and consider the functions

(83) F±(w) := (wd± ac)2 − b2 + γ2
2c

2 − (γ2e± ab)2, w ∈ R \ {0}.
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We have F ′
±(w) = 2(wd± ac) and, therefore, the minimum of F±(w)

is attained when w = ∓ac/d. Next, recall a, c, d from (60) and make
the observation that

(84) |ac| < |d|, for any y ∈ R.

Using the fact that a and d are odd in the variable y and c is even,
in order to prove (84) we can assume without loss of generality that
y > 0. By the mean value theorem there exists ξ ∈ [π − θ, π] such
that sinh(πy)− sinh(π− θ)y = θy cosh(ξy). Since cosh is an increasing
function on (0,∞) we have cosh(ξy) ≥ cosh((π − θ)y). This implies

(85)
sinh(πy) ≥ sinh(πy) − sinh(π − θ)y ≥ θy cosh((π − θ)y)

> y sin θ cos((π − θ)y),

as θ > sin θ for θ ∈ (0, π] and y > 0. This gives (84). Going further, as
consequence of Corollary 5.3 we have

(86) F±

(
∓ ac

d

)
= −

[
b2 − γ2

2c
2 + (γ2e± ab)2

]
≤ 0,

and the roots w of F±(w) = 0 are real. Recall T is the triangle with
vertices (0, 0), (1, 1) and (1,−1). In the new notation our goal is to
show that for (γ1, γ2) ∈ T \ {(1, 1), (1,−1)} all the roots of F±(w) = 0
belong to the interval (−1, 1). Using (84) and (86) it suffices to show

(87) F±(1), F±(−1) > 0.

This is (d ± ac)2 −
[
b2 − γ2

2c
2 + (γ2e± ab)2

]
> 0, and (−d ± ac)2 −[

b2 − γ2
2c

2 + (γ2e± ab)2
]
> 0, for a, b, c, d, e as in (60), y ∈ R \ {0},

θ ∈ (0, π] and (γ1, γ2) ∈ T \ {(1, 1), (1,−1)}. Note that the lefthand
sides of the above inequalities are even functions in y and therefore we
can assume without loss of generality that y > 0. Since when y > 0 we
have that (|γ2| e+ ab)2 ≥ (γ2e− ab)2, it suffices to prove

(88) (d± ac)2 −
[
b2 − γ2

2c
2 + (γ2e+ ab)2

]
> 0,

for (γ1, γ2) ∈ T \ {(1, 1), (1,−1)}, γ1 ≥ γ2 ≥ 0 and y > 0. We will
divide our analysis into two cases.
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Case I. We first treat the situation (γ1, γ2) ∈ T \ {γ1 = 1}. To this
end, fix θ ∈ (0, π], y > 0 and γ1 ∈ [0, 1) and consider

(89)
G±(γ2) := (d± ac)2 −

[
b2 − γ2

2c
2 + (γ2e+ ab)2

]
,

for γ2 ∈ [0, γ1] and y ∈ (0,∞).

We have G′
±(γ2) = 2γ2(c2 − e2) − 2abe and therefore G′

±(γ2) ≤ 0 for
γ2 ∈

(
abe/(c2 − e2),∞

)
, as c2 < e2 for y ∈ R and θ ∈ (0, π]. Also,

[0, γ1] ⊂
(
abe/(c2 − e2),∞

)
which, in turn, implies G±(γ2) ≥ G±(γ1)

for any y > 0, θ ∈ (0, π], γ1 ∈ [0, 1) and γ2 ∈ [0, γ1]. Hence, to have
(88) it suffices

(90) G±(γ1) ≥ 0, θ ∈ (0, π], γ1 ∈ [0, 1),

where G± is as in (89).

It is straightforward to see that e2 − d2 = 1 and c2 − b2 =
1. This allows us to rewrite G±(γ1) as G±(γ1) = (1 − γ2

1)(d2 −
b2) ± 2dac + a2 − 2γ1eab. Recall that a := (1 − γ1)y sin θ =
(1 − γ1)ã, where ã := y sin θ. In this notation G±(γ1) = (1 −
γ1)

[
(1 + γ1)(d2 − b2) ± 2dãc+ (1 − γ1)ã2 ∓ 2γ1ãb

]
. Since γ1 ∈ [0, 1),

the inequality (90) is therefore equivalent to

(91) H±(γ1) := (1 + γ1)(d2−b2) ± 2dãc+ (1 − γ1)ã2 − 2γ1ãb ≥ 0,

for y ∈ R \ {0}, θ ∈ (0, π] and γ1 ∈ [0, 1). Differentiating with respect
to γ1 gives H ′

±(γ1) = d2 − b2 − 2eãb − ã2. Using (60) and ã := y sin θ
we get

(92)
H ′

±(γ1) = sinh2(πy) − sinh2((π−θ)y)
∓ 2y sin θ sinh((π−θ)y) cosh(πy) − y2 sin2 θ ≥ 0,

where the inequality in (92) is a consequence of Lemma 5.5. Next,
H±(0) = d2 − b2 ± 2dãc+ ã2, and using (60) and ã := y sin θ, that is,

(93)
H±(0) = sinh2(πy) − sinh2((π − θ)y)

± 2y sin θ sinh(πy) cosh((π − θ)y) + y2 sin2 θ.

Appealing to Lemma 5.4 we obtain H±(0) ≥ 0 for any y ∈ R \ {0},
θ ∈ (0, π]. Finally, since H± is increasing in γ1, this implies H±(γ1) ≥ 0
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for γ1 ∈ [0, 1). This gives (91) and, in turn, (90). The analysis of Case I
is now complete and the conclusion of Theorem 5.1 holds for θ ∈ (0, π],
y ∈ R \ {0} and (γ1, γ2) ∈ T \ {γ1 = 1}.

Case II. Consider now θ ∈ (0, π], y ∈ R \ {0}, γ1 = 1 and
γ2 ∈ (−1, 1). In this setting we have that a = 0 and (86) becomes
F±(±1) = d2 − b2 − γ2

2c
2 + γ2

2e
2 > 0. This is clearly true as e2 > c2

and d2 > b2. The analysis of this situation is therefore finished.

To complete the proof of Theorem 5.1 we consider now y = 0,
θ ∈ (0, π] and (γ1, γ2) ∈ T \ {(1, 1), (1,−1)}. In this case we write
(52) as

(94)
(
w ± AC

D

)2

−
(
B

D

)2

+ γ2
2

E2 − C2

D2
∓ 2γ2

EAB

D2
+
(
AB

D

)2

.

Taking into account that limy→0AC/D = ((1−γ1)/π)sin θ,limy→0AB/
D = 0, limy→0B/D = (π − θ)/π, limy→0(E2 − C2)/(D2) = ((π−θ)2−
π2)/(π2), and limy→0 EAB/(D2) = ((1− γ1)/(π2))(π− θ) sin θ, in this
case matters reduce to show that the roots w of the equations

(95) F±(w) = 0,

satisfy |w| < 1, where

(96)
F±(w) :=

(
w ± (1 − γ1)

sin θ
π

)2

− (π − θ)2

π2
− γ2

2

π2 − (π − θ)2

π2

± 2γ2(1 − γ1)
(π − θ) sin θ

π2
.

We first claim that the roots w of the equations F±(w) = 0 are real. To
see this it is enough to show that (π−θ)2/(π2)+γ2

2(π2 − (π − θ)2)/(π2)∓
2γ2((1−γ1)/(π2))(π−θ) sin θ ≥ 0. Since γ1 ∈ [0, 1], π2− (π−θ)2 > θ2,
and θ ≥ sin θ, for θ ∈ (0, π], this is a consequence of the fact that

(97)

(π−θ)2
π2

+ γ2
2

π2 − (π−θ)2
π2

− 2|γ2|
(π−θ) sin θ

π2
>

(
π−θ
π

− γ2θ

π

)2

≥ 0.
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The vertices of the parabolas F±(w) are at w0
± = ∓((1−γ1)/π)sin θ ∈

(−1, 1) and based on (97) we have F±(w0
±) < 0. To conclude that the

roots w of F±(w) = 0 belong to the interval (−1, 1), it suffices to show

(98) F±(1) > 0 and F±(−1) > 0.

When γ1 = 1 and γ2 ∈ (−1, 1) we have that F±(1) = ((π2 − (π − θ)2)/
(π2))(1−γ2

2) > 0, which gives (98). Next assume (γ1, γ2) ∈ T \{γ1 = 1}.
Then (98) is 1 ± 2 ((1 − γ1)/π) sin θ + ((1 − γ1)2/(π2)) sin2 θ −
(π−θ)2/(π2)−γ2

2(π2 − (π − θ)2)/(π2)∓2γ2((1−γ1)/(π2))(π−θ) sin θ >
0. Clearly it suffices to assume γ2 ≥ 0 and prove the above inequality
for the choice of minus signs in its lefthand side. That is,

(99)

1 − 2(1 − γ1)
sin θ
π

+ (1 − γ1)2
sin2 θ

π2
− (π−θ)2

π2
− γ2

2

π2 − (π−θ)2
π2

− 2γ2(1 − γ1)
(π−θ) sin θ

π2
> 0.

Differentiating the lefthand side of (99) with respect to γ2 we obtain
−2γ2(π2 − (π − θ)2)/(π2) − 2((1 − γ1)/(π2))(π − θ) sin θ which is ≤ 0,
for γ2 ∈ [0,∞), γ1 ∈ [0, 1], θ ∈ (0, π]. Since we are interested to prove
(99) for pairs (γ1, γ2) ∈ T \ {γ1 = 1} it therefore suffices to assume
γ2 = γ1. Making γ2 = γ1 in (99) and dividing both sides by 1− γ1 > 0
we are left with proving

(100)

T (γ1) := 1 + γ1 +
(1 − γ1) sin2 θ

π2
− 2

sin θ
π

− (1 + γ1)
(π−θ)2
π2

− 2γ1
(π−θ) sin θ

π2
> 0.

We have T (0) = ((θ− sin θ)/π) · ((2π − θ − sin θ)/π) > 0, for θ ∈ (0, π]
as 2π − θ ≥ θ > sin θ in this case. Also a direct calculation gives
T ′(γ1) = ((θ − sin θ)/π) · ((2π − θ + sin θ)/π) > 0, for any θ ∈ (0, π] as
before. Finally this shows that T (γ1) > 0 for any γ1 ∈ [0, 1) which is
(100). As pointed out before this implies (98) and the analysis in the
case y = 0 is therefore complete. This finishes the proof of Theorem 5.1.

We conclude this section with the following.
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Theorem 5.6. Let Ω be the domain consisting of the interior of an
angle of measure θ ∈ (0, 2π) and let r ∈ (−µ, µ]. Then there exists
p(θ, r) > 1, depending only on θ and r, such that

(101)
{
p ∈ (1,∞); ρ

(
Kr; (Lp(∂Ω))2

)
< 1

}
= [p(θ, r),∞).

Before proceeding with the proof of Theorem 5.6, let us record a
useful result in the sequel.

Proposition 5.7. Let X0,X1 be a compatible couple of Banach spaces
and set Xs := [X0,X1]s, s ∈ (0, 1), via complex interpolation. Consider
T a linear and continuous operator on X0 and X1. Then, for any
s ∈ (0, 1) we have

(102) ρ (T ;Xs) < ρ (T ;X0)
1−s

ρ (T ;X1)
s
.

In particular, if ρ (T ;X0) < M and ρ (T ;X1) < M , then ρ (T ;Xs) <
M for all s ∈ [0, 1].

Proof. As a consequence of the Riesz-Thorin interpolation theorem
we have that Tn : Xs → Xs is a well-defined linear and continuous
operator, for any s ∈ [0, 1] and any natural number n. Moreover,
denoting by ‖Tn‖Xs

the norm of the operator Tn on the space Xs, the
following holds

(103) ‖Tn‖Xs
≤ ‖Tn‖1−s

X0
· ‖Tn‖s

X1
,

for any n ∈ N. Taking nth roots in both sides of (103) we obtain
‖Tn‖1/n

Xs
≤ ‖Tn‖(1−t)/n

X0
· ‖Tn‖t/n

X1
. Now, a standard functional analysis

gives ρ(T,Xs) = limn→∞ ‖Tn‖1/n
Xs

, for any s ∈ [0, 1]. Passing to the
limit as n → ∞ in the previous inequality we therefore get (102) and
the proof of Proposition 5.7 is completed.

We return now to the proof of Theorem 5.6.
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Proof of Theorem 5.6. Fix θ ∈ (0, 2π) and r ∈ (−µ, µ]. As
a consequence of Theorem 5.1 and Proposition 5.7 applied for the
operator Kr, the Lp(∂Ω) interpolation scale, and M = 1, it follows
that for any p0 ∈ (1,∞) such that ρ(Kr; (Lp0(∂Ω))2) < 1, we have

(104) [p0,∞) ⊆
{
p ∈ (1,∞); ρ(Kr; (Lp(∂Ω))2) < 1

}
.

This gives (101) and finishes the proof of Theorem 5.6.

6. The spectrum of Kr on curvilinear polygons. In this section
we provide an explicit description for the spectrum of the elastostatic
layer potential operator Kr, r ∈ R on curvilinear polygons. Recall that
Kr defined in (24) is the elastostatic double layer potential operator
associated to choice of coefficient tensor A(r) =

(
akl

ij (r)
)
i,j,k,l

as in
(17). To state our main results in this section let us introduce the
following notation. For 1 ≤ p <∞ consider

(105) Lp
0(∂Ω) :=

{
f ∈ Lp(∂Ω);

∫
∂Ω

f dσ = 0
}
.

Also, let Ψ denote the space of vector valued functions ψ on R2

satisfying the three equations ∂iψ
j + ∂jψ

i = 0, i, j = 1, 2, restricted to
∂Ω. Define

(106) Lp
Ψ(∂Ω) :=

{
f ∈ (Lp(∂Ω))2 ;

∫
∂Ω

f · ψ dσ = 0, for all ψ ∈ Ψ
}
.

Note that Lp
Ψ(∂Ω) is a subspace of (Lp(∂Ω))2 of codimension three.

Using the Hahn-Banach and Riesz representation theorems we obtain
that for any 1 < p < ∞ the dual space of Lp

Ψ(∂Ω) is (Lq(∂Ω))2 /Ψ,
where 1/p+ 1/q = 1.

Theorem 6.1. Let Ω ⊆ R2 be a bounded, simply connected curvi-
linear polygon with angles θi, i = 1, . . . , n, and let p ∈ (1,∞). For
each 1 ≤ i ≤ n consider the curve Σr

θi
(p) as in (44) associated to r, the

angle θi and the integrability exponent p. Set Σ̂r
θi

(p) for the closure of
its interior. Then

(107) σ
(
Kr; (Lp(∂Ω))2

)
=
( ⋃

1≤i≤n

Σ̂r
θi

(p)
)
∪ {λj}j ,
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where {λj}j consists of eigenvalues of the operator Kr on (Lp(∂Ω))2.
Whenever r ∈ (−µ, µ] the set {λj}j ⊂ (−1, 1] has finitely many points.

For w ∈ C, w ∈ ∪1≤i≤nΣr
θi

(p) the operator wI −Kr is not Fredholm
on (Lp(∂Ω))2.

For w ∈ C, w �∈ ∪1≤i≤nΣr
θi

(p) the operator wI −Kr is Fredholm on
(Lp(∂Ω))2 and its index is given by

(108) index
(
wI −Kr; (Lp(∂Ω))2

)
=

n∑
i=1

W
(
w,Σr

θi
(p)
)
,

where W
(
w,Σr

θi
(p)
)

stands for the sum of the winding numbers of the
point w �∈ Σr

θi
(p) with respect to each one of the four closed curves

Σj(r, θi, p) , j = 1, . . . , 4, constituting Σr
θi

(p).

Proof. The proof of Theorem 6.1 follows in a similar manner as the
proof of the spectral structure Theorem 7.1 from [30]. Here we just
sketch the main steps. Using the symbolic calculus of pseudodifferential
operators of Mellin type developed by [25, 23, 1l] one gets

(109) σe

(
Kr; (Lp(∂Ω))2

)
=

⋃
1≤i≤n

Σr
θi

(p),

where Σr
θi

(p) are as in (44) and

(110) σe(Kr; (Lp(∂Ω))2)

:= {w ∈ C ; wI −Kr is not Fredholm on (Lp(∂Ω))2}

is the essential spectrum of Kr on (Lp(∂Ω))2. Also, as a consequence
of Theorem 1 in [23] we have

(111)
⋃

1≤i≤n

Σ̂r
θi

(p) ⊆ σ
(
Kr; (Lp(∂Ω))2

)
,

and the index formula (108) holds (see the proof of Theorem 7.1 in
[30] for more details). Moreover σ

(
Kr; (Lp(∂Ω))2

)
\
(⋃

1≤i≤n Σ̂r
θi

(p)
)

consists of w ∈ C such that wI −Kr is Fredholm with index zero on
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(Lp(∂Ω))2. In particular, any such w has to be an Lp eigenvalue of Kr.
This gives (107).

Recall now the coefficient matrix A(r) :=
(
akl

ij (r)
)
i,j,k,l

, i, j, k, l = 1, 2,
from (17). When r ∈ (−µ, µ) the matrix A(r) is strictly positive
definite, i.e., there exists c > 0 such that

(112) akl
ij (r)ξ

k
i ξ

l
j ≥ c|ξ|2,

for any ξ ∈ R4. In this case, the (Lp(∂Ω))2 eigenvalues of the operator
Kr belong to (−1, 1]. See, e.g., Theorem 3 in [29] for a proof in the
case p = 2. Since Lp(∂Ω) ⊂ L2(∂Ω) for p ≥ 2 the case p ∈ [2,∞) is
completed. We refer the reader to [31] for a proof in the case 1 < p < 2.
In the traction case, when r = µ, the matrix A(µ) is only semi-positive
definite, i.e.,

(113) akl
ij (µ)ξk

i ξ
l
j ≥ 0,

for any ξ ∈ R4. Nonetheless, Theorem 3 in [29] applies and gives that
the (Lp(∂Ω))2 eigenvalues of the operator Ktraction lie in (−1, 1] for
p ≥ 2. For a proof in the case 1 < p < 2 see e.g., [31]. This implies
{λj}j ⊂ (−1, 1] when r ∈ (−µ, µ]. Also

(114) {λj}j ⊆ ∂σ
(
Kr; (Lp(∂Ω))2

)
\ σe

(
Kr; (Lp(∂Ω))2

)
.

Generally, for a linear and continuous operator T : X −→ X , where
X is a Banach space, one has that ∂σ(T ;X ) \ σe(T ;X ) contains only
isolated points, see, e.g., [17, p. 102]. In the case r ∈ (−µ, µ] this gives
that {λj}j ⊂ (−1, 1] consists of isolated points and therefore has finite
cardinality. This completes the proof of Theorem 6.1.

Next, based on the Mellin analysis of the operator Kr for r ∈ (−µ, µ]
in the sector case, we present the corresponding result for Theorem 5.6
when Ω is a curvilinear polygon. Recall the space Ψ introduced at the
beginning of this section.

Theorem 6.2. Let Ω be a curvilinear polygon with angles θ1, . . . , θn.
Then, for any r ∈ (−µ, µ) there exists p(θ1, . . . , θn, r) > 1 depending
only on the angles of Ω and r, such that

(115)
{
p ∈ (1,∞) ; ρ(Kr; (Lp(∂Ω)/R)2) < 1

}
= [p(θ1, . . . , θn, r),∞).
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Also, in the traction case, i.e., r = µ, there exists p(θ1, . . . , θn, µ) > 1
depending only on the angles of Ω and µ, such that

(116)
{
p ∈ (1,∞) ; ρ

(
Ktraction; (Lp(∂Ω))2 /Ψ

)
< 1

}
= [p(θ1, . . . , θn, µ),∞).

Proof. By applying Proposition 5.7 to the operator Kr and the inter-
polation scale (Lp(∂Ω)/R)2, and also to Ktraction and (Lp(∂Ω))2 /Ψ, it
suffices to show that for any r ∈ (−µ, µ) we have

(117)

ρ(Kr; (Lp(∂Ω)/R)2 t) < 1 and ρ(Ktraction; (Lp(∂Ω))2 /Ψ) < 1,

for p large enough.

Fix r ∈ (−µ, µ]. Based on (107) and the fact that {λj}j ⊂ (−1, 1] we
conclude that for p large enough we have

(118) σ
(
Kr; (Lp(∂Ω))2

)
⊂ DR(0) ∪ {1}, for some 0 < R < 1,

where DR(0) is the disk of radius R centered at the origin. This is
because, using Theorem 5.6, for p large enough we have ∪1≤i≤nΣ̂r

θi
(p) ⊆

DR(0) for some R < 1 and i = 1, . . . , n. For the moment fix p ∈ (1,∞)
such that (118) holds. Then, for any w ∈ C, |w| ≥ 1 and w �= 1 we
have wI −Kr : (Lp(∂Ω))2 → (Lp(∂Ω))2 is an invertible operator. Also
I − Kr : (Lp(∂Ω))2 → (Lp(∂Ω))2 is a Fredholm operator with index
zero. Passing to the dual we obtain that wI − K∗

r : (Lq(∂Ω))2 →
(Lq(∂Ω))2 is invertible, where 1/p+ 1/q = 1 and |w| ≥ 1 with w �= 1.
Also I − K∗

r : (Lq(∂Ω))2 → (Lq(∂Ω))2 is a Fredholm operator with
index zero. Reasoning as in the proof of Theorem 1 in [29] where the
case p = q = 2 has been considered, for any r ∈ (−µ, µ) we have that
I −K∗

r : (Lq(∂Ω))2 → (Lq
0(∂Ω))2 is well defined. Also, in the traction

case, i.e., r = µ, the operator I − K∗
traction : (Lq(∂Ω))2 → Lq

Ψ(∂Ω) is
well defined, where L2

Ψ(∂Ω) is as in (106). Based on this, as in the
proof of Theorem 1 in [29], we conclude

(119)
wI −K∗

r : (Lq
0(∂Ω))2 −→ (Lq

0(∂Ω))2 ,
wI −K∗

traction : Lq
Ψ(∂Ω) −→ Lq

Ψ(∂Ω),
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are isomorphisms for all w ∈ C, |w| ≥ 1. In particular, by passing to
the dual, this shows that (117) is satisfied. This completes the proof of
Theorem 6.2.

We conclude this section by presenting some examples for the L10

spectrum of the operator Kstress on a curvilinear polygon of angles π/5
and 9π/10. First we consider a glass elastic medium, i.e., λ = µ =
2.2×105kg/cm2. In this case γ1(µ) = 1/3 and γ2(µ) = −1/3. We have

−1 −0.5 0 0.5 1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

FIGURE 6. The L10 spectrum of the traction elastostatic double layer
potential operator on a curvilinear polygon with angles π/5 and 9π/10 on
glass.

where the ∗ stands for the generic location of the set of eigenvalues
{λj}j as in the statement of Theorem 6.1. Next we consider the case
of a lead material when µ/(2µ+ λ) = 0.1075, which in turn implies
γ1(µ) = −γ2(µ) = 0.1075. We present now the L10 spectrum of the
operator Ktraction on a curvilinear polygon of angles π/5 and 9π/10 in
this case.
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FIGURE 7. The L10 spectrum of the traction elastostatic double layer
potential operator on a curvilinear polygon with angles π/5 and 9π/10 on
lead.

7. The L2 case for the traction layer potential. The goal of
this section is to provide some partial results for the Conjecture (7).
Recall the operator Ktraction = Kγ1,−γ1 with γ1 := µ/(λ+ 2µ) from
(50) and the space Ψ introduced in Section 6. Our main result in this
section is the following.

Theorem 7.1. Let Ω be a curvilinear polygon in R2 with angles in
the interval [3π/4, 5π/4] and assume that the Lamé moduli µ, λ satisfy
µ/(λ+ 2µ) ∈ (0, 31/100]. Then

(120) ρ
(
Ktraction;

(
L2(∂Ω)

)2
/Ψ
)
< 1.

Moreover,

(121) ρ
(
Ktraction; (Lp(∂Ω))2 /Ψ

)
< 1 for all 2 ≤ p <∞.

Before proceeding with the proof of Theorem 7.1 let us point out that
the condition

γ1 :=
µ

λ+ 2µ
∈
(

0,
31
100

]
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is satisfied for the following elastic materials, see [2, p. 129]; here the
Lamé moduli λ and µ are given in 105 kg/cm2.

Elastic material λ µ γ1 Elastic material λ µ γ1

Iron 9.9 7.8 0.3059 Copper 8.7 4.1 0.2426

Bronze 6.2 3.8 0.2754 Aluminum 5.6 2.6 0.2407

Nickel 1.3 0.85 0.2833 Rubber 0.40 0.012 0.0283

We now present the

Proof of Theorem 7.1. First, let us point out that (120) implies (121).
Assume (120) holds. Then

(122) 2 ∈
{
p ∈ (1,∞); ρ

(
Ktraction; (Lp(∂Ω))2 /Ψ

)
< 1

}
,

and (121) follows from Theorem 6.2. Matters can be reduced to the
case Ω is the domain consisting of the interior of an angle of aperture
θ ∈ [3π/4, π]. This is because, once the sector case is settled, we have

(123) Σµ
θ (2) = Σµ

2π−θ(2) ⊆ D1(0) := {w ∈ C ; |w| < 1},

and then (122) follows from Theorem 6.1 and the proof of Theorem 6.2.
In (123), the curves Σµ

θ (2) and Σµ
2π−θ(2) are as in (44) associated

to r := µ, the angles θ, 2π − θ ∈ [3π/4, 5π/4], and the integrability
exponent 2.

In the light of (44) and (45) it suffices to show that for r = µ, i.e. the
traction case, and µ/(λ+ 2µ) ∈ (0, 31/100] we have

(124)

∣∣∣∣∣±
√
Q± ±AC

D

∣∣∣∣∣ < 1,

where Q± are as in (43) and A,B,C,D,E are as in (29) evaluated at
z := (1/2) + iy, for any y ∈ R, θ ∈ [3π/4, π]. In this case, to prove
(124) it suffices to show that the following inequalities hold

(125) |Q±| <
|D|2

4
and |AC|2 < |D|2

4
.
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We prove (125) in the next two lemmas, and this finishes the proof of
Theorem 7.1.

Before going further let us notice that in the case under discussion
(traction, p = 2) the correspondent of (29) is

(126)

A = (1 − γ1)
(

1
2

+ iy

)
sin θ, B = sin

(
(π − θ)

(
1
2

+ iy

))
,

C = cos
(

(π − θ)
(

1
2

+ iy

))
, D = sin

(
π

(
1
2

+ iy

))
,

E = cos
(
π

(
1
2

+ iy

))
, with γ1 :=

µ

λ+ 2µ
∈
(

0,
31
100

]
.

Straightforward calculations give

(127)

|A|2 = (1 − γ1)2(sin2 θ)
(

1
4

+ y2

)
, |D|2 =

1
2

cosh(2πy) +
1
2
,

|E|2 =
1
2

cosh(2πy) − 1
2
, |B|2 =

1
2

cosh(2(π − θ)y) +
1
2

cos θ,

|C|2 =
1
2

cosh(2(π − θ)y) − 1
2

cos θ.

Also, based on (43), we have

(128)

|Q±| =
∣∣B2 + γ2

1C
2 − (−γ1E ±AB)2

∣∣
=
∣∣γ2

1 + (1 − γ2
1)B2 − (γ1E ∓AB)2

∣∣
≤ γ2

1 + (1 − γ2
1)|B|2 + 2γ2

1 |E|2 + 2|A|2|B|2,

where γ1 is as in (126). This is because in the traction case r = µ
and γ1(µ) = −γ2(µ) = γ1. In (128) we used B2 + C2 = 1 and
|γ1E ±AB|2 ≤ 2γ2

1 |E|2 + 2|A|2|B|2. Now we are ready to present

Lemma 7.2. Let A,C,D be as in (126) with θ ∈ [3π/4, π] and
γ1 := µ/(λ+ 2µ) ∈ (0, 1]. Then

(129) |A|2|C|2 < |D|2
4
.
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Proof. Based on (127) and straightforward algebraic manipula-
tions, we rewrite (129) in the sufficient form cosh(2πy) + 1 > 4×
(1 − γ1)2

(
(1/4) + y2

)
(cosh(2(π − θ)y) + 1) sin2 θ. Using

cosh(my) =
∞∑

k=0

m2k

(2k)!
y2k for m = 2π and m = 2(π − θ)

in the above inequality and rearranging terms in increasing powers of
y we have to show

(130) 2 +
∞∑

k=1

(2π)2k

(2k)!
y2k

> 2(1−γ1)2(sin2 θ) + (1−γ1)2 · (sin2 θ)
(

8+
(2(π−θ))2

2!

)
y2

+
∞∑

k=2

(1 − γ1)2 · (sin2 θ)
(

(2(π−θ))2k

(2k)!
+ 4

(2(π−θ))2k−2

(2k − 2)!

)
y2k.

In (130) the constant terms satisfy 2 > 2(sin2 θ)(1− γ1)2 as γ1 ∈ (0, 1].
For the terms in y2 we need

(131) π2 > (1 − γ1)2
(
sin2 θ

) (
(π − θ)2 + 4

)
.

It is easy to see that actually π2 > (sin2 θ)
(
(π − θ)2 + 4

)
for θ ∈

[(3π/4), π] and this gives (131). Finally, for the terms in y2k, k ≥ 2, we
require

(132)
(2π)2k

(2k)!
> (1 − γ1)2(sin2 θ)

(
(2(π − θ))2k

(2k)!
+ 4

(2(π − θ))2k−2

(2k − 2)!

)
,

for θ and γ1 as in the hypothesis. Note that for (132) it suffices to show

(133)
(2π)2k

(2k)!
>

(2(π − θ))2k

(2k)!
+ 4(1 − γ1)2(sin2 θ)

(2(π − θ))2k−2

(2k − 2)!
.

Finally this is true following from (66) in the proof of Lemma 5.2 as
θ2 > 5 > 4(1 − γ1)2 sin2 θ for θ ≥ 3π/4. This finishes the proof of
Lemma 7.2.
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Lemma 7.3. Let A,B,C,D,E be as in (126) with θ ∈ [3π/4, π] and
γ1 ∈ (0, 31/100]. Then

(134)
|D|2

4
> γ2

1 + (1 − γ2
1)|B|2 + 2γ2

1 |E|2 + 2|A|2|B|2.

In particular, for r := µ (the traction case) and Q± as in (43) we have

(135)
|D|2

4
> |Q±|.

Proof. First, let us note that (135) follows from (134) and (128).
Next, multiplying both sides by 4 and using that |E|2 = |D|2 − 1, the
inequality (134) becomes

(136) (1 − 8γ2
1)|D|2 + 8γ2

1 > 4γ2
1 + 4(1 − γ2

1)|B|2 + 8|A|2|B|2.

Using (127) and multiplying both sides by 2 this reads

(137)

(1 − 8γ2
1) cosh(2πy) + 1 >

[
4(1 − γ2

1) + 8(1 − γ1)2
(

1
4

+ y2

)
sin2 θ

]
· (cosh(2(π − θ)y) + cos θ) .

We proceed as before by writing the Taylor expansions of cosh(2πy)
and cosh(2(π−θ)y) about y = 0 and compare the coefficients of y2k for
k ≥ 0 of the right- and lefthand side of (137). For the constant terms
we need

(138) 2 − 8γ2
1 >

[
4(1 − γ2

1) + 2(1 − γ1)2 sin2 θ
]
(1 + cos θ).

For the terms in y2 we have to show

(139)
(1 − 8γ2

1)
(2π)2

2!
>
[
4(1 − γ2

1) + 2(1 − γ1)2 sin2 θ
] (2(π − θ))2

2!
+ 8(1 − γ1)2(sin2 θ)(1 + cos θ).

For the terms in y2k, k ≥ 2, we will prove

(140)
(1 − 8γ2

1)
(2π)2k

(2k)!
>
[
4(1 − γ2

1) + 2(1 − γ1)2 sin2 θ
] (2(π − θ))2k

(2k)!

+ 8(1 − γ1)2(sin2 θ)
(2(π − θ))2k−2

(2k − 2)!
.
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Since θ ∈ [3π/4, π] we have that

1 + cos θ ≤ 2 −
√

2
2

≤ 3
10

and sin2 θ ≤ 1/2. Therefore (138) is implied by 1 − 4γ2
1 > (6/10)×

(1 − γ2
1)+(3/20)(1−γ1)2 which can be seen to hold for γ1 ∈ [0, 31/100]

via straightforward manipulations. Next we claim that for θ ∈ [3π/4, π]
and γ1 ∈ [0, 31/100] we have

(141)

3(1 − 8γ2
1)

4
· (2π)2k

(2k)!
>
[
4(1 − γ2

1) + (1 − γ1)2
] (2(π − θ))2k

(2k)!
,

for k ≥ 1,

1 − 8γ2
1

4
· (2π)2k

(2k)!
≥ 4(1 − γ2

1)
(2(π − θ))2k−2

(2k − 2)!
, for k ≥ 2,

1 − 8γ2
1

4
· (2π)2

2!
> 4(1 − γ2

1) · 3
10
.

Note that since 0 ≤ sin2 θ ≤ 1/2 and 3/10 > 1 + cos θ ≥ 0 the
first inequality for k = 1 and the last inequality in (141) give (140).
Using similar arguments the first and the second inequalities in (141)
give (140). As for (141) straightforward algebraic manipulations show
that the third inequality holds for γ1 ∈ [0, 31/100]. For the first
inequality in (141) notice that it suffices to prove the case k = 1.
In that case, using that for θ ∈ [3π/4, π] we have π/(π − θ) ≥ 4, the
inequality can be easily verified to hold for γ1 ∈ [0, 31/100]. Finally,
the second inequality in (14) can be reduced to verifying the case k = 2
via a simple induction argument. Then, using again π/(π − θ) ≥ 4,
the corresponding inequality for k = 2 can be easily checked for
γ1 ∈ [0, 31/100]. The proof of Lemma 7.3 is completed.

We finish this section with the remark that the proof of Theorem 7.1
also gives

Theorem 7.4. Let Ω be a curvilinear polygon in R2 with angles in
the interval [3π/4, 5π/4] and assume that the Lamé moduli µ, λ satisfy
µ/(λ+ 2µ) ∈ (0, 31/100]. Then

(142) ρ(Kγ1,γ1 ;
(
L2(∂Ω)/R

)2
) < 1.
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Moreover,

(143) ρ(Kγ1,γ1 ; (L
p(∂Ω)/R)2) < 1 for all 2 ≤ p <∞.

This is because throughout the proof of Theorem 7.1 we only made
use of the fact Ktraction = Kγ1,γ2 with |γ2| = γ1.

8. The Stokes system. In this section we prove spectral radius
estimates (2) for a certain family of hydrostatic layer potentials. We
start by considering the linearized, homogeneous, time independent
Navier-Stokes equations, i.e., the Stokes system

(144)
{
��u = �p,
div �u = 0,

in an open set in R2, where �u is the velocity field and p is the pressure
function. If we define the matrix A(r) := (akl

ij (r))i,j,k,l by

(145) akl
ij (r) := δijδkl + r δilδjk, for r ∈ R,

then akl
ij (r)∂i∂ju

l = �uk + r∂k(div �u). Hence, any solution �u, p of
the Stokes system (144) satisfies akl

ij (r)∂i∂ju
l = ∂kp. Let Ω ⊂ R2 be

a Lipschitz domain and denote by N the outward unit normal vector
almost everywhere on ∂Ω. The conormal derivative that corresponds
to the choice of coefficients A(r) := (akl

ij (r))i,j,k,l in (145) is

(146)
(

∂�u

∂NA(r)

)j

:= Nia
jl
ik(r)∂ku

l −Njp, where j = 1, 2.

Going further, denote by G = (Gij)i,j the Kelvin matrix valued
fundamental solution for the system of hydrostatics, see, e.g., [22],

Gij(X) :=
1
2π

(
δij log |X|2 − 2

XiXj

|X|2

)
, X ∈ R2 \ {0}.

Let KS,r be the double layer hydrostatic operator corresponding to the
conormal derivative ∂/∂NA(r) in (146) on the boundary of Ω. Also, set
Gj for the jth column in the fundamental matrix. Then

(147)

(KS,r(�f))i(P ) := p.v.

∫
∂Ω

(
∂Gj

∂NA(r)
(P−·)

)i

(Q)f j(Q) dσ(Q), P ∈ ∂Ω,
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where i = 1, 2. The ith component of (∂Gj/∂NA(r))(P − ·) evaluated
at Q, denoted by kij

S,r(P,Q) is

(148)

kij
S,r(P,Q) = − (1 − r)δij

2π
· 〈X −Q,N(Q)〉

|X −Q|2

− 1 − r

2π
· (Xi −Qi)Nj(Q) − (Xj −Qj)Ni(Q)

|X −Q|2

− 1 + r

π
· 〈X −Q,N(Q)〉(Xi −Qi)(Xj −Qj)

|X −Q|4

Taking into consideration (49) we have that

(149) KS,r = K((1−r)/2,(1−r)/2).

Our first result about the operator KS,r is the following.

Theorem 8.1. Let Ω be the domain consisting of the interior
of an angle of aperture θ. Then for any r ∈ (−1, 1) there exists
p(θ, r) ∈ (1,∞) depending only on θ and r, such that

(150) ρ(KS,r; (Lp(∂Ω))2) < 1 for p ∈ [p(θ, r),∞) .

Proof. This follows from (149) and Theorem 5.1 (more precisely (51))
since for r ∈ (−1, 1) the point ((1 − r)/2, (1 − r)/2) belongs to the side
of the triangle T joining (0, 0) with (1, 1).

Next, we consider the analogue of Theorem 7.1 in this context.

Theorem 8.2. Let Ω be a curvilinear polygon in R2 with angles in
the interval [3π/4, 5π/4]. Then for any r ∈ [38/100, 1) we have

(151) ρ
(
KS,r;

(
L2(∂Ω)

/
R)2

)
< 1.

Moreover,

(152) ρ
(
KS,r; (Lp(∂Ω)/R)2

)
< 1 for all 2 ≤ p <∞.
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Proof. This follows from (149) and (51) in the proof of Theorem 7.4
since (1 − r)/2 ∈ [0, 31/100] for r ∈ [38/100, 1). It is relevant here that
for any r ∈ (−1, 1) the coefficient matrix A(r) given in (145) is strictly
positive definite in the sense of (112).

We point out that the choice r := 1 in (145) gives rise to the stress
conormal derivative ∂/∂NA(1), see (146), occasionally known as the
slip condition when imposed at the boundary. Explicit spectral radius
formulas for the associated boundary double layer potential operator
Kstress := KS,1 in the sector case have been established in [29]. In
particular our analysis there gives

(153) ρ
(
Kstress; (Lp(∂Ω))2 /Ψ

)
< 1,

for any bounded curvilinear polygon in R2, where Ψ is defined at the
beginning of Section 6.

We continue with an explicit description of the spectrum of the hy-
drostatic layer potential operator KS,r, r ∈ R on curvilinear polygons.

Theorem 8.3. Let Ω ⊆ R2 be a bounded, simply connected curvilin-
ear polygon with angles θi, i = 1, . . . , n and let p ∈ (1,∞). For each
1 ≤ i ≤ n consider the curve Σr

θi
(p) as in (44) associated to r, the

angle θi and the integrability exponent p. Set Σ̂r
θi

(p) for the closure of
its interior. Then

(154) σ(KS,r; (Lp(∂Ω))2) =
( ⋃

1≤i≤n

Σ̂r
θi

(p)
)
∪ {λj}j ,

where {λj}j consists of eigenvalues of the operator KS,r on (Lp(∂Ω))2.
Whenever r ∈ (−1, 1] the set {λj}j ⊂ (−1, 1] consists of finitely many
points.

For w ∈ C, w ∈ ∪1≤i≤nΣr
θi

(p) the operator wI−KS,r is not Fredholm
on (Lp(∂Ω))2.

For w ∈ C, w �∈ ∪1≤i≤nΣr
θi

(p) the operator wI−KS,r is Fredholm on
(Lp(∂Ω))2 and its index is given by

(155) index
(
wI −KS,r; (Lp(∂Ω))2

)
=

n∑
i=1

W
(
w,Σr

θi
(p)
)
,



TRACTION PROBLEM 217

where W
(
w,Σr

θi
(p)
)

stands for the sum of the winding numbers of the
point w �∈ Σr

θi
(p) with respect to each one of the four closed curves

Σj(r, θi, p) , j = 1, . . . , 4, constituting Σr
θi

(p).

Proof. The proof of Theorem 8.3 follows in a similar manner as the
proof of Theorem 6.1.

We conclude this section by presenting an example for the L10

spectrum of the operator KS,1/2 on a curvilinear polygon of angles
π/4 and π/7. The value of the essential spectral radius in this case
is 0.9967. Below, the ∗ stands for the generic location of the set of
eigenvalues {λj}j as in the statement of Theorem 8.3. We have:

−1 −0.5 0 0.5 1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

FIGURE 8. The L10 spectrum of the hydrostatic double layer potential
operator KS,1/2 on a curvilinear polygon with angles π/4 and π/7.
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