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SOLUTIONS OF HAMMERSTEIN INTEGRAL
EQUATIONS VIA A VARIATIONAL PRINCIPLE

FRANCESCA FARACI AND VITALY MOROZ

ABSTRACT. We study solutions of the nonlinear Hammer-
stein integral equation with changing-sign kernels by using a
variational principle of Ricceri and critical points theory tech-
niques. Combining the effects of a sublinear and superlinear
nonlinear terms we establish new existence and multiplicity
results for the equation. As an application we consider a semi-
linear Dirichlet problem for polyharmonic elliptic operators.

1. Introduction. We study the solvability of the nonlinear Ham-
merstein integral equation

(1) u(x) =
∫

Ω

k(x, y)f(y, u(y)) dy,

where Ω ⊂ RN is a bounded domain, i.e., open connected set, k(x, y) :
Ω×Ω → R is a measurable and symmetric kernel and f(x, u) : Ω×R →
R is a Carathéodory function, that is, f(x, u) is measurable for each
u ∈ R and continuous for almost all x ∈ Ω.

The Hammerstein equation (1) appeared in the earlier 30s as a general
model for study of semi-linear boundary-value problems. The kernel
k(x, y) typically arises as the Green function of a differential opera-
tor. Green functions of specific boundary value problems admit lots of
specific properties like positivity, maximum principles, pointwise esti-
mates, etc., depending on the structure of the differential expression in
the data and boundary conditions. If the kernel k(x, y) is positive, then
methods of positive operators are applicable to study solutions of (1).
The advantage of positivity methods is that in many cases they allow
to obtain not only existence but also rather precise information about a
location of solutions, for example, between explicitly constructed sub-
and super-solutions of the equation, see, e.g., [1, 8].

Another classical method to study equation (1) is variational. If the
kernel k(x, y) is symmetric, one can associate to (1) a functional J on
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a suitable energy space E such that critical points of J correspond to
solutions of (1). Then direct variational methods or methods of critical
points theory could be used to study critical points of J . If in addition,
the kernel k(x, y) is positive, then variational and positivity methods
could be combined together. This provides a powerful tool for the study
of multiple solutions of (1), see, e.g. [3].

In the present paper we study (1) by variational methods, without
assuming positivity of the kernel k(x, y). Examples of changing-sign
kernels arise from higher order elliptic boundary value problems, see
e.g., [4]. Instead of using positivity of the kernel we are going to
apply to (1) a new variational principle of Ricceri [12] which provides
a powerful tool for localization of minima of variational problems. In
some sense such localization information can compensate for the lack of
positivity properties and could be used efficiently, in order to prove the
existence of multiple solutions of (1). In a convenient for our purposes
form the variational principle reads as follows, see [12, Theorem 2.5]
for a more general statement.

Theorem 1. Let E be a Hilbert space and Φ, Ψ : E → R two
sequentially weakly lower semi-continuous functionals. Assume that Ψ
is strongly continuous and coercive on E, that is, lim‖u‖→+∞ Ψ(u) =
+∞. For each ρ > infE Ψ set

(2) ϕ(ρ) := inf
Ψρ

Φ(u) − infclwΨρ Φ
ρ − Ψ(u)

,

where Ψρ := {u ∈ E : Ψ(u) < ρ} and clwΨρ is the closure of Ψρ in the
weak topology of E. Then, for each ρ > infE Ψ and each µ > ϕ(ρ), the
restriction of the functional Φ + µΨ to Ψρ has a global minimum point
in Ψρ.

Theorem 1 implies in particular that if there exists ρ > 0, such that
ϕ(ρ) < 1/2, then the functional J = Ψ/2 + Φ has a local minimum
point v ∈ Ψρ, see [12, Theorem 2.5]. Using such information one
can proceed further, by applying the Mountain Pass theorems to J .
We will use this strategy to study (1) under various assumptions on
f(x, u). In the next section we introduce some notations and describe
a variational setting of the problem. Section 3 is devoted to the proof of
our main existence-localization theorem. In Sections 4 and 5 we apply
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this result to equation (1) with superlinear and combination of sub-
and superlinear nonlinearities. Finally in the last section we describe
applications to a polyharmonic boundary value problem.

2. Variational setting. In this section we define the energy space
E generated by the integral kernel k(x, y) and the energy functional
J for the Hammerstein equation (1). These results are standard, see
e.g., [10]. We present some proofs for completeness. In what follows
Lp = Lp(Ω,R) stands for the Lebesgue space with the usual norm ‖·‖p,
p′ = p/(p − 1) for the index conjugate to p and

(u, v) =
∫

Ω

u(x)v(x) dx

for the standard inner product in L2. By c, c1, . . . we denote various
positive constants whose values are irrelevant.

We write equation (1) in the operator form

u = Kfu,

where
fu = f(·, u)

is a nonlinear superposition operator generated by the function f and
K is a linear integral operator

Ku(x) =
∫

Ω

k(x, y)u(y) dy

generated by the kernel k. Hereafter we assume that

• K is a bounded compact operator from Lp′ into Lp for some
p ∈ (2, +∞),

• K is positive-definite on L2, that is (Ku, u) > 0 for all u ∈ L2,
u �= 0.

By ‖K‖ we denote the norm of K in L2.

Since the kernel k(x, y) is symmetric K is self-adjoint in L2, see cf.,
[15] for regular operators and [14] for the general case. Let L be the left
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inverse to K. It is defined as an unbounded positive definite self-adjoint
operator in L2 with a domain D(L) ⊂ L2 such that

LKx = x for all x ∈ L2.

Define a bilinear form 〈u, v〉 on D(L) by means of the formula

〈u, v〉 = (u,Lv).

It is clear that 〈·, ·〉 is symmetric and

〈u, u〉 ≥ ‖K‖−1‖u‖2
2 for all u ∈ D(L).

Therefore 〈·, ·〉 is a closable form in L2. By E we denote the domain
of the closure of 〈·, ·〉 in L2. Thus E is a Hilbert space with a scalar
product 〈·, ·〉 and the corresponding norm ‖ · ‖ =

√〈·, ·〉. The space E
is said to be the energy space for operator K.

By E′ we denote the dual space to E obtained by the completion
of L2 with respect to the norm ‖x‖� = (x,Kx)1/2. It is easy to see
that the conjugate to E space E� can be identified with the space E′.
Namely for any l ∈ E� there exists y ∈ E′ such that l(x) = (y, x) for all
x ∈ E, moreover, ‖l‖ = ‖y‖�. The energy space E can be represented
as E ∼= K1/2L2

∼= K̃E′, where K1/2 is a square root of K, K̃ is a
closure of K with respect to the ‖ · ‖� and “∼=” means an isomorphism.
Therefore the embeddings

E ⊂ Lp ⊂ L2 ⊂ Lp′ ⊂ E′

are continuous and dense. Since K is compact from Lp′ into Lp the
embedding E ⊂ Lp is compact.

Define the energy functional for Hammerstein equation (1) on the
space E by the formula

J(u) =
1
2
‖u‖2 + Φ(u),

where

Φ(u) = −
∫

Ω

F (x, u(x)) dx and F (x, u) =
∫ u

0

f(x, ξ) dξ.
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In what follows we make the following assumptions on the growth of
the nonlinearity:

(f) there exist r ∈ (1, 2), q ∈ (2, p) and α ∈ Lp/(p−r), β ∈ Lp/(p−q),
γ ∈ Lp′ such that

|f(x, u)| ≤ α(x)|u|r−1 + β(x)|u|q−1 + γ(x).

Lemma 2. Assume (f) holds. Then Φ is well-defined and sequen-
tially weakly continuous on E.

Proof. By (f) and since E ⊂ Lp it is standard to see that the su-
perposition operator F (·, u) maps Lp into L1. Therefore the functional
Φ is well defined on E. We are going to check that Φ is sequentially
weakly continuous on E. Let (un) ⊂ E weakly converge to u ∈ E. Then
(un) is bounded in E. Since the embedding E ⊂ Lp is compact (un)
contains a subsequence, still denoted by (un), which strongly converges
to u in Lp. Therefore there exist h ∈ Lp and a subsequence (unk

) of
(un) such that |unk

(x)| ≤ h(x) and unk
(x) → u(x) a.e. in Ω. Hence

F (x, unk
(x)) → F (x, u(x)) a.e. in Ω.

Moreover, by using (f) we obtain the uniform bound

|F (x, unk
(x))| ≤ H(x)

for some H ∈ L1. Therefore the Lebesgue dominated convergence
theorem implies that Φ(unk

) → Φ(u), as required.

Lemma 3. Assume (f) holds. Then the energy functional J is
continuously differentiable on E with the derivative given by

J ′(u)(h) = (Lu, h) −
∫

Ω

f(x, u(x))h(x)dx for all h ∈ E.

Any critical point of J is a solution to the Hammerstein equation (1).

Proof. To prove the lemma it is enough to show that Φ is continuously
differentiable on E. To do this we prove first that Φ is Gâteaux
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differentiable on Lp. Fix u, h ∈ Lp. Let 0 < τ < 1. By the mean value
theorem there exists a function θ, which can be chosen measurable, see
[15] such that 0 ≤ θ(x) ≤ 1 and

F (x, u(x) + τh(x)) − F (x, u(x)) = f(x, u(x) + τθ(x)h(x))τh(x).

Then

Φ(u + τh) − Φ(u)
τ

= −
∫

Ω

f(x, u(x) + τθ(x)h(x))h(x) dx,

where u+τθh ∈ Lp. By the assumption (f) the superposition operator
f(·, u) continuously maps Lp into Lp′ . Therefore the last integral is
well defined. Moreover

f(x, u(x) + τθ(x)h(x)) −→ f(x, u(x)) a.e. in Ω as τ → 0.

By using (f) again we conclude that

|f(x, u(x) + τθ(x)h(x))| ≤ H(x)

for some H ∈ Lp′ . Thus the Lebesgue dominated convergence theorem
implies that

lim
τ→0

Φ(u + τh) − Φ(u)
τ

= −
∫

Ω

f(x, u(x))h(x) dx.

Since the energy space E is continuously embedded into Lp we see that
Φ is Gâteaux differentiable on E with the derivative given by

Φ′(u)(h) = −
∫

Ω

f(x, u(x))h(x)dx for all h ∈ E.

Finally, from the continuity of the superposition operator f(·, u) from
E into Lp′ we conclude that Φ is continuously (Frechet) differentiable
on E.

3. Existence of a minimum. In this section we apply a varia-
tional principle of Ricceri [12, Theorem 2.5] to the energy functional J
on E. For ρ ≥ 0 define

Λ(ρ) := κr‖α‖p/(p−r)ρ
r−1 + κq‖β‖p/(p−q)ρ

q−1 + κ‖γ‖p′ ,
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where κ > 0 denotes the embedding constant of E into Lp, that is,

κ := sup{‖u‖p : u ∈ E, ‖u‖ ≤ 1}.
Our main existence-localization result reads as follows.

Theorem 4. Assume (f) holds and there exists ρ∗ > 0 such that

(3) Λ(ρ∗) < ρ∗.

Then the functional J has a local minimum u in E such that ‖u‖ < ρ∗.

Proof. We are going to apply Theorem 1 to the functionals Ψ(u) :=
‖u‖2 and Φ(u) on E. Rewriting (2) we deduce from Theorem 1 that,
if there exists ρ > 0 such that

(4) ϕ(ρ2) = inf
Ψρ2

Φ(u) − infclwΨρ2 Φ
ρ2 − Ψ(u)

= inf
‖u‖<ρ

Φ(u) − inf‖u‖≤ρ Φ
ρ2 − ‖u‖2

<
1
2
,

then the energy functional J(u) = ‖u‖2/2 + Φ(u) has a local minimum
u ∈ E such that ‖u‖ < ρ. For ρ > 0 define

φ(ρ) := sup
‖v‖≤ρ

∫
Ω

F (x, v(x)) dx.

Thus (4) is equivalent to

inf
ρ>0

inf
σ<ρ

φ(ρ) − φ(σ)
ρ2 − σ2

<
1
2
,

which is fulfilled if there exists ρ > 0 such that

(5) lim sup
τ→0

φ(ρ + τ) − φ(ρ)
τ

< ρ.

We are going to estimate the lefthand side of (5). As in [2], if ρ > 0,
|τ | < ρ and τ �= 0 then by using (f) we obtain

φ(ρ + τ) − φ(ρ)
τ

≤ 1
|τ | sup

‖v‖≤1

∫
Ω

∣∣∣∣
∫ (ρ+τ)v(x)

ρv(x)

|f(x, u)| du

∣∣∣∣ dx

≤ κr

r
‖α‖p/(p−r)

∣∣∣∣ (ρ + τ)r − ρr

τ

∣∣∣∣
+

κq

q
‖β‖p/(p−q)

∣∣∣∣(ρ + τ)q − ρq

τ

∣∣∣∣ + κ‖γ‖p′.
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Therefore

lim sup
τ→0

φ(ρ+τ) −φ(ρ)
τ

≤ κr‖α‖p/(p−r)ρ
r−1+κq‖β‖p/(p−q)ρ

q−1+κ‖γ‖p′.

Therefore J has a local minimum u ∈ E such that ‖u‖ < ρ∗, provided
that Λ(ρ∗) < ρ∗ for some ρ∗ > 0.

In the next sections we consider concrete examples of nonlinearities
f(x, u) such that explicit estimates on ρ∗ are available and can be used
for proving the existence of multiple solutions of Hammerstein equation
(1).

4. Applications: a nonhomogeneous superlinear problem.
In this section we apply Theorem 4 combined with the Mountain Pass
theorem for the study of solutions of equation (1) with nonhomogeneous
superlinear nonlinearity. First we consider the case

(f1) fλ(x, u) = β(x)g(u) + λγ(x),

where λ > 0 is a real parameter, 0 �= γ ∈ Lp′ , 0 < β ∈ Lp/(p−q) for
some q ∈ (2, p) and g : R → R is a continuous function such that
g(0) = 0 and g satisfies the assumptions:

(g1) |g(u)| ≤ b|u|q−1 for u ∈ R;

(g2) there exist σ > 2, Rσ > 0 such that

0 < σG(u) < g(u)u for |u| ≥ Rσ, where G(u) :=
∫ u

0

g(ξ) dξ.

We denote by Jλ the energy functional which corresponds to fλ(x, u).

Theorem 5. Let (f1), (g1) and (g2) hold. Then there exists λ∗ > 0
such that for each λ ∈ (0, λ∗) equation (1) has at least two solutions
uλ, vλ ∈ E. The solution uλ is a local minimum of Jλ and ‖uλ‖ → 0
as λ → 0.
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Proof. We shall apply Theorem 4 to Jλ in order to prove the existence
of a local minimum of Jλ for small λ > 0. Then we obtain the second
solution by using the Mountain Pass theorem.

Step 1. Jλ has a local minimum. It is clear that (f1) and (g1) implies
(f). Hence, we can use Theorem 4. The function Λ(ρ) becomes in this
case

Λ(ρ) = κqb‖β‖p/(p−q)ρ
q−1 + κλ‖γ‖p′ .

By the direct computations one can see that if

λ∗ = ‖γ‖−1
p′

(
2q−1b‖β‖p/(p−q)κ

2q−2
)−1/(q−2)

, ρ∗(λ) = 2λκ‖γ‖p′

then for each λ ∈ (0, λ∗) one has Λ(ρ∗(λ)) < ρ∗(λ). Then by
Theorem 4 we conclude that Jλ has a local minimum uλ ∈ E such
that ‖uλ‖ < ρ∗(λ).

Step 2. Jλ is unbounded below. The assumption (g2) implies that

G(u) ≥ c1|u|σ − c2

for some c1, c2 > 0. Thus for u ∈ E and τ > 0 we obtain
∫

Ω

Fλ(x, τu) dx =
∫

Ω

β(x)G(τu(x)) dx + λτ

∫
Ω

γ(x)u(x) dx

≥ c1τ
σ

∫
Ω

β(x)|u(x)|σ dx − c2

∫
Ω

β(x) dx

+ λτ

∫
Ω

γ(x)u(x) dx.

Since σ > 2 for a fixed u �= 0 we see that

Jλ(τu) =
τ2

2
‖u‖2 −

∫
Ω

Fλ(x, τu) dx

≤ c3τ
2 − c4τ

σ + c5 − λc6τ → −∞ as τ → ∞.

Step 3. Jλ satisfies the Palais-Smale condition. Let (un) ⊆ E be a
Palais-Smale sequence for Jλ, that is,

Jλ(un) ≤ M, J ′
λ(un) → 0.
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We need to show that (un) contains a convergent subsequence. Fix
ν ∈ N such that for all n > ν and v ∈ E

|J ′
λ(un)(v)| < ‖v‖.

Therefore

σM + ‖un‖ ≥
(

σ

2
− 1

)
‖un‖2 − σ

∫
Ω

Fλ(x, un) dx +
∫

Ω

fλ(x, un)un dx

=
(

σ

2
− 1

)
‖un‖2 +

∫
Ω

β(x) [g(un)un − σG(un)] dx

− λ(σ − 1)
∫

Ω

γ(x)un dx.

By assumption (g2) it follows that for n > ν

∫
Ω

β(x) [σg(un)un − σG(un)] dx ≥ min
|ξ|≤Rσ

[g(ξ)ξ − σG(ξ)] ‖β‖1.

Set m = min|ξ|≤R0 [σG(ξ) − g(ξ)ξ]. Then for n > ν we obtain

(
σ

2
− 1

)
‖un‖2 ≤ (1 + (σ − 1)κλ‖γ‖p′) ‖un‖ + σM + m‖β‖1,

which implies that (un) is bounded in E.

We shall prove that (un) admits a strongly convergent subsequence
in E. Since (un) is bounded in E it contains a subsequence, that we
still denote by (un), which is weakly convergent to some u ∈ E. Choose
a positive number M0 such that ‖un −u‖ < M0 for each n ∈ N. Then,
for any ε > 0, there exists ν0 ∈ N such that for all v ∈ E and n > ν0

we have

|J ′(un)(v)| =
∣∣∣∣12Ψ′(un)(v) + Φ′(un)(v)

∣∣∣∣ <
ε

M0
‖v‖.

Therefore for all n > ν0 we obtain
∣∣∣∣12Ψ′(un)(un − u) + Φ′(un)(un − u)

∣∣∣∣ < ε,
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that is,

lim
∣∣∣∣12Ψ′(un)(un − u) + Φ′(un)(un − u)

∣∣∣∣ = 0.

Since E is compactly embedded in Lp the sequence (un) converges
strongly to u in Lp. Applying the Lebesgue dominated convergence
theorem we conclude that

lim |Φ′(un)(un − u)| = lim
∣∣∣∣
∫

Ω

fλ(x, un) (un − u) dx

∣∣∣∣ = 0.

Therefore,

(6) lim |Ψ′(un)(un − u)| = 0.

Since Ψ′(u) is a linear continuous functional on E we conclude that

(7) lim Ψ′(u)(un − u) = 0.

Then (6) and (7) imply

Ψ′(un)(un − u) − Ψ′(u)(un − u) = 2‖un − u‖2 → 0,

as claimed.

Now all conditions of the Mountain Pass theorem are satisfied, see,
e.g., [5, 11], so we conclude that Jλ has a critical point vλ, which is
different from the local minimum uλ, obtained at Step 1.

Similar arguments can be used in the case

(f2) fλ(x, u) = g(u + λγ(x)),

where λ > 0 is a real parameter, 0 �= γ ∈ L(q−1)p′ and g : R → R is a
continuous function such that g(0) = 0 and g satisfies assumptions (g1),
(g2). Nonlinearities of this kind arise after the reduction of a superlinear
elliptic boundary value problem with nonzero Dirichlet boundary data
to Hammerstein equation (1).

Theorem 6. Assume (f2), (g1) and (g2) hold. Then there exists
λ∗ > 0 such that for each λ ∈ (0, λ∗) equation (1) has at least two
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solutions uλ, vλ ∈ E. The solution uλ is a local minimum of Jλ and
‖uλ‖ → 0 as λ → 0.

Proof. From (f2) and (g1) we deduce that

|fλ(x, u)| ≤ 2q−1b|u|q−1 + 2q−1bλq−1|γ(x)|q−1.

Thus the condition (f) is satisfied. The function Λ(ρ) becomes in this
case

Λ(ρ) = 2q−1κqbρq−1 + 2q−1κbλq−1‖γ‖q−1
(q−1)p′ .

Hence if we set

λ∗ = ‖γ‖−1
(q−1)p′

(
2qbκ2

)−1/(q−2)
,

and
ρ∗(λ) = 2qλq−1κb‖γ‖q−1

(q−1)p′,

then for each λ ∈ (0, λ∗), one has Λ(ρ∗(λ)) < ρ∗(λ). Therefore by
Theorem 4 we conclude that Jλ has a local minimum uλ ∈ E such that
‖uλ‖ < ρ∗(λ).

Existence of a second solution vλ to (1) for λ ∈ (0, λ∗) can be derived
via the Mountains Pass theorem in the same way as in the proof of
Theorem 5. We omit the details here.

5. Applications: a combination of sub and superlinear
terms. In this section we prove the existence of multiple nontrivial
solutions to equation (1) with the nonlinearity which is a combination
of sublinear and superlinear terms. We consider

(f3) fλ(x, u) = β(x)g(u) + λα(x)u|u|r−2,

where λ > 0 is a real parameter, 0 < α ∈ Lp/(p−r) for some r ∈ (1, 2),
β ∈ Lp/(p−q) for some q ∈ (2, p) and g : R → R is a continuous function
such that g(0) = 0 and g satisfies assumptions (g1), (g2). In this case
u = 0 is a trivial solution to (1). We prove the following.

Theorem 7. Assume (f3), (g1) and (g2) hold. Then there exists
λ∗ > 0 such that for each λ ∈ (0, λ∗) equation (1) has at least two
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nontrivial solutions uλ, vλ ∈ E. The solution uλ is a local minimum of
Jλ and ‖uλ‖ → 0 as λ → 0.

Proof. We shall apply Theorem 4 to Jλ in order to prove the existence
of a local minimum uλ of Jλ for small λ > 0. Then we obtain the second
solution vλ by using the Mountain Pass theorem. Note that fλ(x, 0) = 0
and u ≡ 0 is a trivial solution to (1). So we must ensure that uλ and
vλ are different from zero.

Step 1. Jλ has a local minimum. From (f3) and (g1) we deduce that

|fλ(x, u)| ≤ bβ(x)|u|q−1 + λα(x)|u|r−1.

Thus the condition (f) is satisfied. The function Λ(ρ) becomes in this
case

Λ(ρ) = κqb‖β‖p/(p−q)ρ
q−1 + λκr‖α‖p/(p−r)ρ

r−1.

By the direct computations one can see that if we set

λ∗ = (κ2(q − r))−(q−r)/(q−2)‖α‖−1
p/(p−r)(b‖β‖p/(p−q))−(2−r)/(q−2)

× (q − 2)(2 − r)(2−r)/(q−2)

and

ρ∗(λ) =
1
κ

(
λ‖α‖p/(p−r)

b‖β‖p/(p−q)

(2 − r)
(q − 2)

)1/(q−r)

then for each λ ∈ (0, λ∗) one has Λ(ρ∗(λ)) < ρ∗(λ). By Theorem 4 we
conclude that Jλ has a local minimum uλ ∈ E such that ‖uλ‖ < ρ∗(λ).

Step 2. uλ is different from zero. In order to prove that uλ �= 0, we
observe that u = 0 is not a local minimum of Jλ for any λ ∈ (0, λ∗).
Indeed, fix w ∈ E, w �= 0. Let τ ∈ R. Then (g1) implies that

Jλ(τw) ≤ 1
2
τ2‖w‖2+

b

q
|τ |q

∫
Ω

β(x)|w(x)|q dx − λ

r
|τ |r

∫
Ω

α(x)|w(x)|r dx.

Since α(x) > 0 in Ω we conclude that Jλ(τw) < 0 for τ close to zero.
Therefore uλ �= 0.
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Step 3. Jλ has a second critical point vλ �= 0. Let w ∈ E be a critical
point of Jλ. Let c = Jλ(w) and Jc

λ = {u ∈ E : Jλ(u) ≤ c}. By Bρ(w)
we denote the open ball of radius ρ > 0 centered at w. Recall that w is
called a mountain pass type critical point of Jλ if there exists arbitrary
small ρ > 0 such that the set

{Jc
λ ∩ Bρ(w)} \ {w}

is nonempty and not path connected, for topological notions mentioned
in the paper we refer the readers to [13].

Let λ ∈ (0, λ∗). By the previous step Jλ has a local minimum
uλ �= 0. By the arguments similar to those used in the proof of
Theorem 5 one can show that Jλ is unbounded from below and satisfies
the Palais-Smale condition (PS). Thus by a version of the Mountain
Pass theorem, see, e.g., [5], Jλ has a mountain pass type critical point
vλ or the set of critical points of Jλ is infinite. Therefore to prove that
Jλ has at least two nontrivial critical points we need only to show that
u = 0 is not a mountain pass type critical point of Jλ. This will be
proved in the next two lemmas, where we follow the arguments from
[9] with mild modifications.

Lemma 8. There exists ρ > 0 such that

(8)
d

dτ
Jλ(τu)|τ=1 > 0

for any u ∈ Mρ := {u ∈ Bρ(0) : Jλ(u) ≥ 0}.

Proof. By direct computation we have

1
r

d

dτ
Jλ(τu) = τ‖u‖2 −

∫
Ω

β(x)g(τu(x))u(x) dx

− λτr−1

∫
Ω

α(x)|u(x)|r dx

for τ > 0. Hence,

1
r

d

dτ
Jλ(τu)|τ=1 =

(
1
r
− 1

2

)
‖u‖2 + Jλ(u)

+
∫

Ω

β(x)
[
G(u(x)) − 1

r
g(u(x))u(x)

]
dx.
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Thus, by the hypotheses on g, we obtain
∣∣∣∣
∫

Ω

β(x)
[
G(u(x)) − 1

r
g(u(x))u(x)

]
dx

∣∣∣∣
≤

(
1
q

+
1
r

)
bκq‖β‖p/(p−q)‖u‖q.

Hence,

1
r

d

dτ
Jλ(τu)|τ=1 ≥

(
1
r
− 1

2
− bκq‖β‖p/(p−q)‖u‖q−2

)
‖u‖2 + Jλ(u).

Now, if Jλ(u) ≥ 0, it is easily seen that as ‖u‖ tends to zero, the
righthand side of the previous inequality is positive, as we claimed.

Lemma 9. Let ρ > 0 be taken from Lemma 8. Then the set
{J0

λ ∩ Bρ(0)} \ {0} is pathwise connected.

Proof. First, we prove that the set J0
λ ∩ Bρ(0) is starshaped with

respect to the origin. Assume, by contradiction, that there exists
u0 ∈ J0

λ ∩Bρ(0) and τ0 ∈ (0, 1) such that Jλ(τ0u0) > 0. Then from (8)
it follows that

d

dτ
Jλ(τ0u0) > 0.

By the monotonicity arguments this implies that Jλ(τu0) > 0 for all
τ ∈ [τ0, 1]. This contradicts to definition of u0.

Now we prove that {J0
λ ∩ Bρ(0)} \ {0} is a retract of Bρ(0) \ {0}.

From Lemma 8 it follows that for each u ∈ Mρ there exists a positive
solution τ(u) ∈ (0, 1] of the equation

Jλ(τu) = 0.

Since the set J0
λ ∩Bρ is star-shaped with respect to the origin it follows

that such a solution τ(u) is unique. Fix u ∈ Mρ. By (8) we have

d

dτ
Jλ(τ(u)u) > 0.
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Hence the implicit function theorem implies the continuity of the
function τ(u) in a neighborhood of u in Mρ. Therefore τ : Mρ → (0, 1]
is continuous. Let r : Bρ(0) → {J0

λ ∩ Bρ(0)} \ {0} be defined by the
formula

r(u) =
{

τ(u)u, u ∈ Mρ,
u, u ∈ {J0

λ ∩ Bρ(0)} \ {0}.
The continuity of r follows from the continuity of τ . Moreover

r(u) = u for u ∈ {J0
λ ∩ Bρ(0)} \ {0}.

Thus r is a retraction of {Bρ}\{0} into {J0
λ∩Bρ}\{0}. But {Bρ}\{0}

is contractible in itself. By [13] the retract of a contractible in itself set
is also contractible in itself. Therefore {J0

λ ∩ Bρ} \ {0} is contractible
in itself. In particular, {J0

λ ∩ Bρ} \ {0} is pathwise connected. This
concludes the proof of Lemma 9 and Theorem 7.

6. Example: a polyharmonic elliptic problem. As an example
of applications of Theorems 5, 6 and 7 let us consider a semi-linear
polyharmonic problem

(9)
{

(−∆)mu = f(x, u) in Ω,
Dmu = 0 on ∂Ω.

where m ∈ N is an integer, (−∆)m is the m-harmonic Laplace operator,
Dmu := (Dku)k∈Nn , 0 ≤ |k| ≤ m − 1, is the boundary operator,
Ω ⊂ RN is a bounded domain with the boundary ∂Ω of the class
C2m+1 and f(x, u) : Ω × R → R is a Carathéodory function.

The problem (9) is equivalent to Hammerstein equation (1) with the
kernel generated by the Green function for the polyharmonic operator
(−∆)m in Ω with the boundary conditions Dmu = 0 on ∂Ω. It is
known, see, e.g., Sections 3.5 and 4.4.4 of [6], that such Green function
Gm,N (x, y) exists, symmetric and satisfies the estimate

|Gm,N (x, y)| ≤
⎧⎨
⎩

c|x − y|2m−N if m < (N/2),
| log |x − y|| + c if m = (N/2),
c if m > (N/2).

This implies that integral operator K is compact as operator from Lp′

into Lp, where

p <

{
(2N)/(N − 2m) if m < (N/2),
∞ if m ≥ (N/2).
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Moreover, the operator K is positive definite in L2, that is (Ku, u) > 0
for all 0 �= u ∈ L2 [6, Section 4.3]. Notice that the Green function
Gm,N (x, y) changes sign on many model domains, see, e.g., [4]. Thus
the classical positivity methods can not be used to study (9). On the
other hand, the results of the present paper are directly applicable
to (9).
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