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EXPLICIT SOLUTION OF A
DIRICHLET-NEUMANN WEDGE

DIFFRACTION PROBLEM WITH A STRIP

L.P. CASTRO, F.-O. SPECK AND F.S. TEIXEIRA

ABSTRACT. A rectangular wedge diffraction problem with
a strip is studied from an operator theoretical point of view.
The problem is formulated as a boundary-value problem with
first and second kind conditions for the Helmholtz equation
on the exterior of the wedge. The proposed operator approach
and the use of certain representation formulas lead to an equa-
tion characterized by a Wiener-Hopf-Hankel operator with os-
cillating Fourier symbols. As a consequence of the construc-
tion of some operator matrix identities, the latter operator is
related to a matrix Wiener-Hopf operator. In a first stage,
these relations allow a detailed study of the Fourier symbol of
the Wiener-Hopf operator that was derived from the present
problem. Secondly, by factorization of a semi-almost periodic
matrix function and a combination of operator relations, the
inverses of the Wiener-Hopf and Wiener-Hopf-Hankel oper-
ators are represented in explicit form. Those results can be
extended to the problem formulated in a scale of Bessel poten-
tial spaces. This leads to the well-posedness of the proposed
problem as well as its closed form solution in a convenient
space setting.

1. Introduction. Since the pioneering work of Sommerfeld [19]
about a canonical boundary value problem for time-harmonic waves
governed by the Helmholtz equation, several different approaches have
been considered in the applied mathematics literature studying canon-
ical problems of plane wave diffraction. The probably best known
and efficient methods to study such kind of problems are the classical
Wiener-Hopf technique and the Maliushinets method [6, 17]. Despite
these advances, some of those investigations still have gaps in their pre-
sentation. For instance, the pertinent question of what are the most
appropriate spaces to consider such problems is a good example for
justifying innovative, and sometimes incompatible, approaches.
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We will consider here a Sommerfeld type problem where the geometry
comprises a rectangular wedge formed by a half-plane and a strip.

Unlike other works, we want to understand better what are the
operators behind such a problem. Thus, one of the main purposes of the
present work is the use of an operator theoretical machinery that will
translate the problem to the study of properties of well-known types of
operators.

In particular, this will lead us to operators of Wiener-Hopf and
Wiener-Hopf-Hankel type with semi-almost periodic Fourier symbol
matrices. For practical reasons, we start with a formulation in terms of
Bessel potential spaces that allow a certain freedom in the smoothness
orders.

The methods involved combine algebraic, operator and function the-
oretic features in a constructive way. In fact, for instance, several
explicit ∆-relations after extension [3] and toplinear [10, Chapter IV]
equivalence (after extension) relations [1, 4], between corresponding
operators, will be presented. These will allow a transparent transfer of
properties between the operators obtained and, therefore, lead us to a
complete solution of the problem including regularity results.

2. Formulation of the problem. We shall consider the following
diffraction problem in the context of Bessel potential spaces Hs(Ω),
where s is a real number and Ω is a special Lipschitz domain [21] of
Rn, n = 1, 2. A Bessel potential space can be defined as the linear
space of distributions, φ = rRn→Ω ϕ, that are obtained by restriction
to Ω of the elements in the space

Hs(Rn) =
{
ϕ ∈ S′(Rn) : ‖ϕ‖Hs(Rn)

= ‖F−1(1 + |ξ|2)s/2Fϕ‖L2(Rn) < +∞
}
,

where F denotes the Fourier transformation. Moreover, the Hs(Ω)
space endowed with the norm

‖φ‖Hs(Ω) = inf
{
‖ϕ‖Hs(Rn) : ϕ ∈ Hs(Rn), rRn→Ω ϕ = φ

}
becomes a Banach space. For Ω ⊂ Rn we will denote by H̃s(Ω) the
closed subspace of Hs(Rn) of distributions with support contained in
Ω.
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In what follows we shall work with functions u± ∈ Hs(Ω±) which are
weak solutions, in the sense of the Schwartz distribution space S′(Ω±),
of the Helmholtz equation in the first quadrant Ω+ or in the interior
of its complement Ω−, respectively. We need the Cauchy data on the
banks of the common boundary defined by

ul,r
0 =

[
u|R2

l,r
(x1, ·)

]
|x1=∓0

, u±1 =
[
∂u

∂x2
(·, x2)

]
|x2=±0

in a classical way for u± ∈ D(Ω±), e.g. It turns out that the correspond-
ing trace operators given by u± �→ u±0 , u± �→ u±1 have continuous ex-
tensions as operators from the solution space of the Helmholtz equation
equipped with theHs(Ω±) norm onto the trace spacesHs−1/2(R+) and
Hs−3/2(R+), respectively, where R+ is a copy of the closure of a bank
of Γ1 = {(0, x2) : x2 > 0} or Γ2∪Γ3 = {(x1, 0) : 0 < x1 < a}∪{(x1, 0) :
x1 ≥ a}, 0 < a < +∞. This fact is not a consequence of the trace
theorem but of the representation formulas presented later, and it will
make the following formulation mathematically consistent.

Problem P. Find u ∈ L2(R2) with u|Ω±∈ Hs(Ω±) being solutions
of the Helmholtz equation

(2.1)
(
∂2

∂x2
1

+
∂2

∂x2
2

+ k2

)
u = 0 in Ω±

and such that

ur
0 = ul

0 = f+ on Γ1(2.2)
u+

1 = u−1 = −ga on Γ2(2.3)

where s − 1/2 ∈]0, 1[, k ∈ C, 	(k) > 0 and f+ ∈ Hs−1/2(R+),
ga ∈ Hs−3/2(]0, a[) are given distributions.

Although Problem P does not belong to the class of diffraction
problems that were recognized to be solvable by the Wiener-Hopf
technique [24, Chapter 8] or other analytical methods [6], a convenient
interpretation of this problem will allow a reduction to a Wiener-Hopf-
Hankel equation. It is known already that certain rectangular wedge
diffraction problems without a strip reduce to the solution of Wiener-
Hopf-Hankel equations [12 13, 16, 22].
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FIGURE 1.1. The boundary in Problem P.

In this sense, Problem P represents a prototype of a class of diffrac-
tion problems which cannot be treated “directly” by the Wiener-Hopf
technique but can be reduced to the inversion of matrix Wiener-Hopf
operators in a more sophisticated way based upon a modified approach
via operator relations.

3. Reduction to a Wiener-Hopf-Hankel equation. Through-
out the paper, we always assume that s ∈]1/2, 3/2[. This includes the
usual case of the “energy space”, s = 1, and some regularity results (as
well as the possibility of normalization).

Within this context, we will often use the even and odd extension
operators, respectively defined by

le : Hs−1/2(R±) −→ Hs−1/2(R)

leϕ(ξ) =

{
ϕ(ξ), ξ ∈ R±

ϕ(−ξ), ξ ∈ R∓

and
lo : Hs−3/2(R±) → Hs−3/2(R)

loϕ(ξ) =

{
ϕ(ξ), ξ ∈ R±

−ϕ(−ξ), ξ ∈ R∓
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(in a distributional sense in this last case).

Lemma 3.1. The above even and odd operators, le and lo, are well-
defined and bounded in the corresponding spaces.

Proof. We will give a direct proof only for the operator(s)

le : Hs−1/2(R±) −→ Hs−1/2(R);

the case of lo follows by duality arguments analogous to the case s = 1
[14].

First, although we do not directly need the result for s = 1/2 and
s = 3/2, these limit cases will be helpful in our proof. For ϕ ∈ L2(R+),
it is clear that

‖(leϕ)|R∓‖L2(R∓)
= ‖ϕ‖L2(R±)

and therefore
‖leϕ‖L2(R) = 2‖ϕ‖L2(R±).

For H1, we take into account the well known fact [23] that if σ ∈ N
then

Hσ(R) = W σ
2 (R)

are the classical Sobolev spaces, equipped with the equivalent norm that
incorporates the derivatives of the functions

‖ψ‖W σ
2 (R) =

( ∑
j≤σ

‖Djψ‖2

L2(R)

)1/2

.

Consequently, if ϕ ∈ H1(R±), one has for x ∈ R∓ that Dleϕ(x) =
−Dϕ(−x) and

‖Dleϕ|R∓‖L2(R∓)
= ‖Dϕ‖L2(R±).

Hence, le : Hσ(R±) → Hσ(R) is bounded for σ = 0, 1.

For 0 < σ < 1, with the knowledge of the limit cases, we will
make use of the complex interpolation methods introduced by Lions,
Krĕın and Calderón, see, e.g., [23]. Among other properties, these



364 L.P. CASTRO, F.-O. SPECK AND F.S. TEIXEIRA

allow us to rewrite our spaces by the use of the interpolation couples{
H1(R±), L2(R±)

}
and

{
H1(R), L2(R)

}
:

Hσ(R±) =
[
H1(R±), L2(R±)

]
1−σ

(3.1)

Hσ(R) =
[
H1(R), L2(R)

]
1−σ

.(3.2)

Thus, because we already obtained the boundedness of the le operator
for the limit cases le : L2(R±) → L2(R), le : H1(R±) → H1(R), from
the identities (3.1) and (3.2), we derive that le is also a bounded oper-
ator when acting between the corresponding intermediate interpolated
spaces in the left-hand side of (3.1) and (3.2). More precisely, there is
a positive constant Cσ such that

‖le‖L(Hσ(R±),Hσ(R)) ≤ Cσ ‖le‖σ
L(L2(R±),L2(R)) ‖l

e‖1−σ
L(H1(R±),H1(R)).

Remark 3.2. From the above proof we also have that for the limit
case, e.g., for le : Hσ(R±) → Hσ(R) with σ = 0, 1, the corresponding
operators are still bounded (with ‖leϕ‖ = 2‖ϕ‖). We do not pay special
attention to these, and other, cases in the statement of Lemma 3.1
because we are only interested in the above values of indices s due to
the nature of our problem.

The proof of Lemma 3.1 can be also based on the study of extension
operators of Fichtenholz-Hestenes type, see [23, Section 2.9].

Theorem 3.3 (Representation formulas). An element u ∈ L2(R2)
with u|Ω± ∈ Hs(Ω±) is a solution of Problem P if and only if it is
represented by
(3.3)
u(x1, x2) = F−1

ξ→x2
exp[x1t(ξ)] (F(lef+ + f)) (ξ), x1 < 0, x2 ∈ R

(3.4)
u(x1, x2) = F−1

ξ→x2
exp[−x1t(ξ)] (F lef+) (ξ)

+ F−1
ξ→x1

t−1(ξ) exp[−x2t(ξ)] (F log+) (ξ), x1 > 0, x2 > 0

(3.5)
u(x1, x2) = F−1

ξ→x2
exp[−x1t(ξ)]

(
F(lef+ + lef|R−)

)
(ξ)

−F−1
ξ→x1

t−1(ξ) exp[x2t(ξ)] (F log+) (ξ), x1 > 0, x2 < 0,
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where t(ξ) = (ξ2 − k2)1/2 denotes the usual square root function with
branch cuts along ξ = ±k ± iη, η ≥ 0; f ∈ H̃s−1/2(R−) and
g+ = lga ∈ Hs−3/2(R+) is an extension of the datum ga given in
Problem P.

Proof. Let us assume that we have a solution of Problem P . From
(2.2), it is clear that u(0, x2) = f+(x2) for x2 > 0. Moreover,

(3.6)
∂u

∂x2
(x1, 0) = −g+(x1), x1 > 0,

for g+ = lga ∈ Hs−3/2(R+). Therefore (3.3) and (3.4) are obtained,
cf., [15, 20]. In addition,

u(0, x2) = (lef+ + f) (x2), x2 < 0
=

(
lef+ + lef|R−

)
(x2), x2 < 0

lead us to (3.5).

Conversely, a substitution process shows that u given by (3.3), (3.4)
and (3.5) is a solution of Problem P .

Now we will work out transmission conditions given implicitly in the
formulation of Problem P . They reflect the fact that the traces on Γ3

of u in the first and fourth quadrants coincide as well as the normal
derivatives of u on the two banks of the half-line x2 < 0, x1 = 0. We
obtain from (3.3) and (3.5), respectively,

− ∂u

∂x1
(0, x2) = −F−1

ξ→x2
t(ξ)F (lef+ + f) (ξ), x2 < 0, x1 = 0

(3.7)

− ∂u

∂x1
(0, x2) = F−1

ξ→x2
t(ξ)F

(
lef+ + lerR→R−f

)
(ξ)

(3.8)

+ i(2π)−1
∫
R

ξt−1(ξ) exp[x2t(ξ)]F log+(ξ)dξ,

x2 < 0, x1 = 0



366 L.P. CASTRO, F.-O. SPECK AND F.S. TEIXEIRA

On the other hand, for x1 > a and x2 = 0, we derive

(3.9) (2π)−1
∫
R

exp[−x1t(ξ)] (F lef) (ξ) dξ + F−1t−1F log+(ξ)

= (2π)−1
∫
R

exp[−x1t(ξ)]
(
F(lef+ + lerR→R−f)

)
(ξ) dξ

−F−1t−1F log+(ξ),

cf., (3.4) and (3.5).

From (3.7) and (3.8), we have

(3.10)

F−1t · F
(
2lef+ + lerR−→R−f + f

)
(ξ) + C1l

og+(ξ) = 0, ξ ∈ R−

where t· denotes the multiplication operator due to the function t and

C1 : Hs−3/2(R) → Hs−3/2(R−)

C1ϕ(x) = i(2π)−1
∫
R

ξt−1(ξ) exp[xt(ξ)]Fϕ(ξ) dξ, x < 0.

On ]a,+∞[, from (3.9), we obtain

(3.11) 2F−1t−1 · F log+ = C2l
erR→R−f

with

C2 : Hs−1/2(R) → Hs−1/2(R+)

C2ϕ(x) = (2π)−1
∫
R

exp[−xt(ξ)]Fϕ(ξ) dξ, x > 0.

Substituting ξ by −ξ in (3.10), we have

C3l
og+(ξ) + F−1t · F

(
2lef+ + lerR→R−f + f

)
(−ξ) = 0, ξ > 0,

where

C3 : Hs−3/2(R) → Hs−3/2(R+)

C3ϕ(y) = i(2π)−1
∫
R

ξt−1(ξ) exp[−yt(ξ)]Fϕ(ξ) dξ, y > 0.
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Using the reflection operator Jψ(ξ) = ψ(−ξ), we get

F−1t · F
(
2lef+ + lerR−→R−f + Jf

)
(ξ) + C3l

og+(ξ) = 0, ξ > 0

and therefore the following equations are valid on R+

(3.12)

lerR→R−f + Jf = −2lef+ −F−1t−1 · F leC3l
og+

rR→R−f = −2rR→R− l
ef+ − rR→R−F−1t−1 · F leC3l

og+

lerR→R−f = −2lef+ −F−1t−1 · F leC3l
og+.

Finally, from (3.11) and (3.12), on ]a,+∞[ we obtain

(3.13) 2F−1t−1 · F log+ = C2

(
−2lef+ −F−1t−1 · F leC3l

og+
)
.

Lemma 3.4. The following operator identification holds

C2F−1t−1 · F leC3l
o = −2rR→R+F−1t−1 · FJl0,

as operators acting from rR→R+H̃
s−3/2(R+) to Hs−1/2(R+) and where

l0 denotes the zero extension operator from the positive half-line to the
full line in corresponding spaces.

Proof. For s = 1, the result was announced in [12] within the
framework of similar identities for so-called operators around the corner
(the notation changed for convenience; for s = 1, our operators C1, C2,
C3 here correspond with rR→R+Jl

oC1, C0, C1 in [12], respectively).
Here, the knowledge of Lemma 3.1 leads us to the present statement
by using the same arguments as in Theorem 5.2 and Theorem 6.2 of
[12] and performing corresponding restrictions or continuous extensions
depending on the scales s ∈]1, 3/2[ or s ∈]1/2, 1[, respectively.

Theorem 3.5. Problem P is uniquely solvable if and only if the
equation

(3.14) Hϕ = h
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is uniquely solvable, where H denotes the Wiener-Hopf-Hankel operator
defined by

(3.15) H = rR→R+F−1τ−a

(
t−1 · −2t−1 · J

)
τa · F :

H̃s−3/2(R+) → Hs−1/2(R+),

with τc(ξ) = exp[icξ], ξ ∈ R.

Proof. Choosing a particular known extension lga ∈ Hs−3/2(R+) of
ga, we are able to use the representation

(3.16) g+ = lga + ψ,

for some ψ ∈ rR→R+H̃
s−3/2(]a,+∞[). Therefore, from (3.13) and

(3.16), one obtains

(3.17)

2rR→R+F−1τ−at
−1 · F loψ + rR→R+F−1τ−a · F lC2F−1t−1 · F leC3l

oψ

= 2h,

where

h = −rR→R+F−1τ−at
−1 · F lolga − rR→R+F−1τ−a · F lC2l

ef+

(3.18)

− 1
2
rR→R+F−1τ−a · F lC2F−1t−1 · F leC3l

olga,

for some extension l : Hs−1/2(R+) → Hs−1/2(R) whose particular
choice does not change the identity (3.17).

By Lemma 3.4 and the identity loψ = (I − J)l0ψ, we have, equiva-
lently to (3.17),

(3.19) HF−1τ−a · F l0ψ = h.

Therefore, if ϕ is a solution of (3.14) for h defined by (3.18), then

ψ = rR→R+F−1τa · Fϕ

will define the value of g+, as in (3.16), and for f ∈ H̃s−1/2(R−)
resulting from (3.12), the representation formulas (3.3)–(3.5) give us
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the solution of Problem P . Conversely, by the identity (3.6), a solution
u of Problem P will provide us with the value of g+ and, therefore,
for each particular extension lga, we will obtain an element ψ so that
(3.16) holds. This leads us to a solution ϕ = F−1τ−a · F l0ψ of (3.14),
for h in (3.18).

Remark 3.6. Note that (3.15) is in fact a Wiener-Hopf-Hankel
operator because one can rewrite

H = rR→R+(A+BJ)|H̃s−3/2(R+),

where

A = F−1t−1 · F ,

B = −2F−1τ−2a t
−1 · F ∈ L

(
Hs−3/2(R), Hs−1/2(R)

)
.

In particular, from Theorem 3.5 and its proof, we have:

Corollary 3.7. If for some extension lga ∈ Hs−3/2(R+) of ga, ϕ
is a solution of equation (3.14), for h given as in (3.18) and where
f+ and ga are the data exhibited in Problem P, then the element u in
(3.3) (3.5), for

(3.20) g+ = lga + rR→R+F−1τa · Fϕ,
(3.21) f = l0

(
−2rR→R− l

ef+ − rR→R−F−1t−1 · F leC3l
og+

)
,

is a solution of Problem P.

Remark 3.8. If we associate [15, 20] an operator

L : D(L) −→ Hs−1/2(R+) ×Hs−3/2(]0, a[)

to our Problem P in such a way that the action of this operator will be
defined by the transformation given by the nonhomogeneous conditions
(2.2) (2.3) and where D(L) is the subspace of Hs(Ω+)×Hs(Ω−) whose
elements fulfill the Helmholtz equation (2.1), then the above identities
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(and, in particular, Theorem 3.5) can be translated by a toplinear
equivalence after extension operator relation [1, 4, 10]. That means
that we have an identity of the following type between the operators L
and H: [

L 0
0 IZ1

]
= E

[
H 0
0 IZ2

]
F,

for certain Banach spaces Z1 and Z2 and invertible bounded linear
operators E and F .

A general framework devoted to the identification of toplinear ex-
tensions between convolution type operators and operators associated
to canonical wedge diffraction problems will be part of a forthcoming
paper.

4. A Wiener-Hopf operator related to H. Here we will work
with other operators that allow us to transfer regularity properties
for H. For this purpose, let us first introduce the following auxiliary
notation.

Definition 4.1 [3]. Let T : X1 → X2 and W : Y1 → Y2 be bounded
linear operators acting between Banach spaces. We shall say that T is
∆-related after extension to W if there are a bounded linear operator
acting between Banach spaces T∆ : X1∆ → X2∆, an additional Banach
space Z and invertible bounded linear operators

E =
[
E11 E12

E21 E22

]
: Y2 ⊕ Z → X2 ⊕X2∆,(4.1)

F =
[
F11 F12

F21 F22

]
: X1 ⊕X1∆ → Y1 ⊕ Z,(4.2)

such that

(4.3)
[
T 0
0 T∆

]
= E

[
W 0
0 IZ

]
F.

Theorem 4.1. The operator H is ∆-related after extension to the
Wiener-Hopf operator

(4.4) W = rR→R+F−1ΦW · F : [L2
+(R)]

2 → [L2(R+)]
2
,
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where

ΦW =

[
3λs−1/2

− t−1λ
−s+3/2
+ 2λs−1/2

− τ−2a (λ̃−)
−s+1/2

2(λ̃+)
s−3/2

τ2a λ
−s+3/2
+ (λ̃+)

s−3/2
t(λ̃−)

−s+1/2

]
,

with λ±(ξ) = ξ ± i and (λ̃±)(ξ) = λ±(−ξ), ξ ∈ R.

Proof. Let P± = l0rR→R± : L2(R) → L2
±(R) be the complementary

projectors onto the subspaces of L2(R) functions supported on R+ and
R−, respectively.

In a first step we will perform a lifting [23] of H to L2 spaces. This
can be done with the help of convenient Bessel potential operators. Let
us consider

E1 = rR→R+F−1λ
−s+1/2
− · F : L2

+(R) → Hs−1/2(R+)

and

F1 = P+F−1λ
s−3/2
+ · F : H̃s−3/2(R+) → L2

+(R).

These operators are bounded with respective inverses

E−1
1 = P+F−1λ

s−1/2
− · F l : Hs−1/2(R+) → L2

+(R),

and

F−1
1 = P+F−1λ

−s+3/2
+ · F : L2

+(R) → H̃s−3/2(R+),

where l : Hs−1/2(R+) → Hs−1/2(R) is an operator of extension to the
full line which particular choice does not change the definition of E−1

1

(one can choose, e.g., le).

Due to the structure of the above operators E1 and F1, we obtain

(4.5) H = E1H1F1,

where we are already dealing with a Wiener-Hopf-Hankel operator
acting between L2 spaces

H1 = P+F−1 (Φ1 · +Φ2 · J)F : L2
+(R) → L2

+(R),
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with

Φ1 = λ
s−1/2
− t−1λ

−s+3/2
+ ,(4.6)

Φ2 = −2λs−1/2
− τ−2at

−1(λ̃+)
−s+3/2

,(4.7)

where λ̃+ = Jλ+. In particular, the identity (4.5) shows that H and
H1 are toplinear equivalent.

Now we will extend H1 to L2(R), by the use of the identity operator
IL2

−(R) in L2
−(R) and, next, we double the space by use of the coupling

operator

H2 = F−1 (Φ1 · −Φ2 · J)FP+ + P− : L2(R) → L2(R).

(note the different sign in front of Φ2). Therefore, we arrive at the
paired operator

W0 =
[
F−1Φ1 · F 0
F−1Φ̃2 · F 1

]
P+ +

[
1 F−1Φ2 · F
0 F−1Φ̃1 · F

]
P− :[

L2(R)
]2 −→

[
L2(R)

]2

(putting Φ̃j(ξ) = Φj(−ξ)) that appears in the identity

(4.8)
[
H1P+ + P− 0

0 H2

]
= E2W0F2,

where E2 and F2 are bounded invertible operators defined by

E2 =
1
2

[
IL2(R) J
IL2(R) −J

]
,

F2 =
[
IL2(R) IL2(R)

J −J

]
×

[
IL2(R) − P−F−1 (Φ1 · +Φ2 · J)FP+ 0

0 IL2(R)

]
.

One can rewrite W0 in the form

(4.9) W0 =
[

1 F−1Φ2 · F
0 F−1Φ̃1 · F

] (
F−1Φ3 · FP+ + P−

)
=

[
1 F−1Φ2 · F
0 F−1Φ̃1 · F

] (
P+F−1Φ3 · FP+ + P−

)
(
I[L2(R)]2 + P−F−1Φ3 · FP+

)
,
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where the last factor is invertible by I[L2(R)]2 − P−F−1Φ3 · FP+ and

Φ3 =

⎡⎣Φ1 − Φ2

(
Φ̃1

)−1

Φ̃2 −Φ2

(
Φ̃1

)−1

(
Φ̃1

)−1

Φ̃2

(
Φ̃1

)−1

⎤⎦
=

⎡⎣ −3Φ1 −Φ2

(
Φ̃1

)−1

(
Φ̃1

)−1

Φ̃2

(
Φ̃1

)−1

⎤⎦ .
The identity (4.9) tells us that W0 is toplinear equivalent after

extension to

(4.10) rR→R+F−1Φ3 · F :
[
L2

+(R)
]2 →

[
L2(R+)

]2
.

Thus, noticing that this last operator (4.10) coincides with the
operator W of (4.4) up to a sign in the first column, we have a ∆-
relation after extension in the form of (4.3) with T = H, W given by
(4.4) and

T∆ =
[
IL2

−(R) 0
0 H2

]
.

In the last result we already reached the goal of this section: we ob-
tained a Wiener-Hopf operator that is explicitly related to H. This
will allow us several conclusions about the transfer of regularity prop-
erties [3]. The next corollary provides an example of these conclusions.

Corollary 4.2. If the Wiener-Hopf operator W is (left, right)
invertible, or Fredholm, then the Wiener-Hopf-Hankel operator H is
also (left, right) invertible, or a Fredholm operator, respectively. In
these cases

dim kerH ≤ dim kerW
codim imH ≤ codim imW .

Proof. The statement is a direct consequence of Theorem 4.1 and of
the structure of ∆-relations after extension, cf., Definition 4.1 and, in
particular, the form of the identity (4.3).
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5. Analyzing the symbol of W. After the last section, we are in
a position to study the Fourier symbols of the constructed operators.
For that we will concentrate, in the first place, on the Wiener-Hopf
operators related (in the above sense) to our problem.

In what follows, similarly as in the representation formulas of Theo-
rem 3.3, we are taking branch cuts as straight lines from i to i∞ and
−i to −i∞ for

λ
−s+1/2
− (ξ) = (ξ − i)−s+1/2

, λ
s−3/2
+ (ξ) = (ξ + i)s−3/2

with −3π/2 < arg(ξ − i) ≤ π/2, −π/2 < arg(ξ + i) ≤ 3π/2 and
according to

(
λ̃+

)s−3/2

= (−1)s−3/2
λ

s−3/2
− ,

(
λ̃−

)−s+1/2

= (−1)−s+1/2
λ
−s+1/2
+ .

We start by observing that the Fourier symbol ΦW of W can be, in
a sense, simplified. Due to the fact that we are dealing with a wave
number k so that 	(k) > 0, W has the same regularity properties [3]
as the operator

(5.1) Wi,s = rR→R+F−1ΦWi,s · F : [L2
+(R)]

2 −→ [L2(R+)]
2

where

(5.2) ΦWi,s = ζs−1
i

[
3 2(−1)−s+1/2ζ

1/2
k τ−2a

2(−1)s−1/2ζ
−1/2
k τ2a 1

]
,

with ζµ(ξ) = (ξ − µ)/(ξ + µ), ξ ∈ R and 	(µ) > 0. In fact, we have
the following more general result.

Proposition 5.1. The Wiener-Hopf operators W and Wi,s are
toplinear equivalent.

Proof. We will use the notation λk±(ξ) = ξ ± k, ξ ∈ R. Considering
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the bounded invertible operators

E3 = rR→R+F−1

[
λ

1/2
k− λ

−1/2
− 0

0 −λ−1/2
k− λ

1/2
−

]
· F l0 : [L2(R+)]

2 → [L2(R+)]
2
,

F3 = P+F−1

[
λ

1/2
k+ λ

−1/2
+ 0

0 λ
−1/2
k+ λ

1/2
+

]
· F : [L2

+(R)]
2 → [L2

+(R)]
2
,

we obtain Wi,s = E3WF3, due to the above choice of the corresponding
branch cuts and to the lifting properties of the present Bessel potential
operators E3 and F3, see, e.g., [23, Section 2.3.10].

In particular, from the relations constructed in the proofs of Theo-
rem 4.1 and Proposition 5.1, we derive that H is ∆-related after exten-
sion to Wi,s in the following explicit way (that will be of fundamental
importance for the results in Section 6):

(5.3)

⎡⎣H 0 0
0 IL2

−(R) 0
0 0 H2

⎤⎦ = E4

[Wi,s 0
0 I[L2

−(R)]2

]
F4

where

E4 =
1
2

⎡⎣E1 0 0
0 IL2

−(R) 0
0 0 IL2(R)

⎤⎦ ⎡⎣P+ 0
P− 0
0 IL2(R)

⎤⎦
[
IL2(R) F−1Φ2 · F + JF−1Φ̃1 · F
IL2(R) F−1Φ2 · F − JF−1Φ̃1 · F

]
[
P+ 0 P− 0
0 P+ 0 P−

]
[

diag [−l0rR→R+F−1λ
− 1

2
k− λ

1
2
− ·F l0, −l0rR→R+F−1λ

1
2
k−λ

− 1
2

− ·F l0] 0
0 I[L2

−(R)]2

]
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with l0 : L2(R+) → L2
+(R) standing again for the zero extension

operator and

F4

=
[

diag [−l0rR→R+F−1λ
−1/2
k+

λ
1/2
+ ·F , l0rR→R+F−1λ

1
2
k+

λ
− 1

2
+ ·F ] 0

0 I[L2
−(R)]2

]
⎡⎢⎣
P+ 0
0 P+

P− 0
0 P−

⎤⎥⎦
[

IL2(R) − 3l0rR→R−F−1Φ1 ·F l0rR→R+

l0rR→R−F−1
(
Φ̃1

)−1

Φ̃2 ·F l0rR→R+

−l0rR→R−F−1Φ2

(
Φ̃1

)−1

·F l0rR→R+

IL2(R) + l0rR→R−F−1
(
Φ̃1

)−1

·F l0rR→R+

⎤⎦
[
IL2(R) − l0rR→R−F−1 (Φ1 · +Φ2 · J)F l0rR→R+ IL2(R)

J − Jl0rR→R−F−1 (Φ1 · +Φ2 · J)F l0rR→R+ −J

]
[
P+ P− 0
0 0 IL2(R)

]⎡⎣F1 0 0
0 IL2

−(R) 0
0 0 IL2(R)

⎤⎦ .
Please observe that from the form of the last two formulas, presented for
defining E4 and F4, we directly derive that, in fact, these are invertible
bounded operators.

The following facts are immediate consequences of (5.3), cf., [3].

Proposition 5.2. Let us consider our Wiener-Hopf-Hankel and
Wiener-Hopf operators H and Wi,s, see (3.15) and (5.1), respectively,
as well as the additional Wiener-Hopf-Hankel operator

(5.4) H3 = rR→R+F−1 (Φ1 · −Φ2 · J)F : L2
+(R) → L2(R+),

for Φ1 and Φ2 introduced in (4.6) and (4.7).

(i) The operators H and H3 are both (left, right, generalized) invert-
ible if and only if Wi,s is (left, right, generalized) invertible.
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(ii) H and H3 are both Fredholm operators if and only if Wi,s is also
a Fredholm operator.

(iii) If Wi,s is a Fredholm operator, then the Fredholm indices of these
three operators satisfy the identity

IndH = IndWi,s − IndH3.

Remark 5.3. Similar results were obtained already for a more re-
stricted class of Fourier symbols and assuming the generalized invert-
ibility of corresponding Wiener-Hopf operators, cf., Theorem 3.2 of
[11]. For different Fourier symbols and also based on certain opera-
tor matrix identities, the Fredholm property of corresponding Wiener-
Hopf-Hankel operators was discussed in the recent works [7, 8].

We observe that ΦWi,s belongs to the C∗−algebra of the semi-almost
periodic (SAP) two by two matrix functions on the real line, see [18],
i.e., ΦWi,s belongs to the smallest closed subalgebra of [L∞(R)]2×2

that contains the, classical, algebra of, two by two, almost periodic
elements and the (two by two) continuous matrices with possible jumps
at infinity.

Thus we can choose a continuous function on the real line, say γ, so
that γ(−∞) = 0, γ(+∞) = 1 and

ΦWi,s = (1 − γ)
(
ΦWi,s

)
l
+ γ

(
ΦWi,s

)
r
+

(
ΦWi,s

)
0

where
(
ΦWi,s

)
l

and
(
ΦWi,s

)
r

are matrices with almost periodic ele-
ments, uniquely determined by ΦWi,s ,

(
ΦWi,s

)
l
=

[
3 2(−1)−s+1/2

τ−2a

2(−1)s−1/2
τ2a 1

]
(
ΦWi,s

)
r

= exp[2πi(s− 1)]
[

3 −2(−1)−s+1/2
τ−2a

−2(−1)s−1/2
τ2a 1

]

and
(
ΦWi,s

)
0

is a continuous two by two matrix function with zero limit
at infinity.
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Definition 5.1 (See, e.g., [9]). An invertible almost periodic matrix
function Φ ∈ G[AP ]2×2 admits a right canonical AP-factorization if

Φ = Φ−Φ+,

where Φ± ∈ G[AP±]
2×2

, with AP± denoting the intersection of AP
with the non-tangential limits of functions in H∞(C±) (the set of all
bounded and analytic functions in C±).

Proposition 5.4. The matrices
(
ΦWi,s

)
l
and

(
ΦWi,s

)
r

admit right
canonical AP-factorizations given by(

ΦWi,s

)
l
=

[
i 2(−1)−s+1/2

τ−2a

0 1

] [
i 0

2(−1)s−1/2τ2a 1

]
(
ΦWi,s

)
r

= exp[2πi(s− 1)]

×
[
i −2(−1)−s+1/2

τ−2a

0 1

] [
i 0

−2(−1)s−1/2
τ2a 1

]
.

Proof. The result follows from a direct computation of the matrix
products; the factor properties are evident.

The preceding result, based on a certain symmetry of the matricial
structure of our operators and on its behavior at infinity, yields explicit
representations of the inverses of the two (limit) operators correspond-
ing to +/− infinity (in terms of the factors) and it allows the following
main result for the full operator (5.1):

Theorem 5.5. The operator Wi,s, defined in (5.1), is a Fredholm
operator with zero Fredholm index.

Proof. Taking profit of the above factorizations, namely those in
Proposition 5.4, we can apply Theorem 3.2 of [9], see also [2], and ob-
tain the statement. For that it remains to compute the geometric mean
values of the matrices

(
ΦWi,s

)
l
and

(
ΦWi,s

)
r
, denoted respectively by

d
[(

ΦWi,s

)
l

]
and d

[(
ΦWi,s

)
r

]
, see [9] for the definitions, and evaluate

the eigenvalues α1 = α2 = exp[2πi(s− 1)] of the matrix

M =
(
d

[(
ΦWi,s

)
l

])−1
d

[(
ΦWi,s

)
r

]
.
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The latter can be computed also with the use of the mean values
of the factors of the elements

(
ΦWi,s

)
l

and
(
ΦWi,s

)
r
, presented in

Proposition 5.4.

The Fredholm index is obtained from the formula, see [9],

IndWi,s = −ind (detWi,s) −
1
2π

2∑
j=1

argαj ,

if we choose argαj ∈ (−π, π).

Remark 5.6. For the particular case of s = 1, our operator Wi,1 has
the same regularity properties as the operator

W1 = rR→R+F−1ΦW1 · F l0 : [L2(R+)]
2 → [L2(R+)]

2

where

ΦW1 =
[

3 −2i ζ1/2
i τ−2a

2i ζ−1/2
i τ2a 1

]
Moreover, W1 is a self-adjoint operator. This immediately yields

IndW1 = dim kerW1 − dim kerW∗
1 = 0

and corroborates what was stated above (for the case s = 1).

Corollary 5.7. The Wiener-Hopf-Hankel operator H is a Fredholm
operator and its Fredholm index fulfills the identity

IndH + IndH3 = 0,

where H3 is the operator presented in (5.4).

Proof. The statement is a direct consequence of Proposition 5.2 and
Theorem 5.5.

6. Invertibility of the related operators and explicit solution
of the problem. Besides the Fredholm property presented in the
last section by the help of our operator relations and the theory of
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semi-almost periodic matrix functions, we now prove the invertibility
of the above operators. This will lead us to the closed form solution of
the problem through the constructed operator relations.

We begin by noticing that the elements τ−2aζ
1/2
k and τ2aζ

−1/2
k are

semi-almost periodic functions with negative, respectively positive,
Bohr almost periodic indices at infinity [2, 18]. In addition, one can
factorize ΦWi,s , see (5.2), in the following way

(6.1)
ΦWi,s =

[
1 2(−1)−s+1/2

ζ
1/2
k τ−2a

0 1

] [
ζs−1
i 0
0 ζs−1

i

]
×

[
−1 0

2(−1)s−1/2
ζ
−1/2
k τ2a 1

]
.

Since the middle matrix function on the right-hand side of (6.1)
admits a canonical generalized factorization, we obtain a canonical
generalized SAP-factorization [2, 4] of ΦWi,s in the form

(6.2)

ΦWi,s =
([

1 2(−1)−s+1/2
ζ
1/2
k τ−2a

0 1

] [
λs−1
− 0
0 λs−1

−

])
×

([
λ−s+1

+ 0
0 λ−s+1

+

] [
−1 0

2(−1)s−1/2
ζ
−1/2
k τ2a 1

])
=

(
ΦWi,s

)
−

(
ΦWi,s

)
+
.

Please observe that although ζ
±1/2
k are not holomorphically ex-

tendible into the upper or lower half-planes, when they are multiplied
with the remaining exponential functions τ∓2a we end up with the
appropriate properties for the factors of the above generalized SAP-
factorization. This is due to the fact that, as mentioned above, those
functions have negative and positive Bohr almost periodic indices, re-
spectively, cf., e.g., Theorem 1 in [18].

Formula (6.2) immediately allows the inversion of Wi,s in the follow-
ing explicit form.

Theorem 6.1. The operator Wi,s, see (5.1), is invertible by

W−1
i,s = P+F−1

(
ΦWi,s

)−1

+
· FP+F−1

(
ΦWi,s

)−1

− · F l0 :

[L2(R+)]
2 → [L2

+(R)]
2
.
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We are now in a position to provide the explicit solution of ProblemP .

Theorem 6.2. Problem P is well-posed and its solution is given
by (3.3) (3.5), where g+ and f are obtained from (3.20) (3.21), ϕ is
determined by

ϕ = H−1h

= R

(
F−1

4

[W−1
i,s 0
0 I[L2

−(R)]2

]
E−1

4

)
h,

and where h is given by (3.18) and R denotes the restriction to the first
block of the (inverse of the) matrix in the left-hand side of (5.3).

Proof. The statement is a combination of Theorem 3.5, Corollary 3.7,
the operator relations presented in Section 4, the identity (5.3) and
Theorem 6.1.

7. Final remarks and conclusions. We note that arguments of
strong ellipticity like those used in [5] cannot be applied for the present
case essentially because the “middle factors” are not of this kind even
when we choose convenient symmetric lateral factors.

We also observe that procedures for obtaining explicit factorizations,
like (6.2), of semi-almost periodic matrix functions are still unknown
for most classes of matrix functions. In fact, nowadays the research
on factorization theory of almost periodic matrix functions is a field of
research by itself and a considerable amount of problems on this area
are still open, see [2].

In our case, this kind of factorization together with all the presented
operator relations allowed the solution of the Problem P in closed
analytic form for the above considered spaces. In particular, due
to the continuity of the used operators, we notice that the obtained
solution shows continuous dependence on the given data. Such results
are also relevant for a qualitative study of the possible solutions in
dependence of the smoothness space orders [13] as well as for numerical
treatments of solutions, of corresponding noncanonical problems, near
geometrically critical points.
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2. A. Böttcher, Yu.I. Karlovich and I.M. Spitkovsky, Convolution operators
and factorization of almost periodic matrix functions, Oper. Theory Adv. Appl.,
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