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THE CONSERVED PENROSE-FIFE PHASE FIELD
MODEL WITH SPECIAL HEAT FLUX

LAWS AND MEMORY EFFECTS

ELISABETTA ROCCA

ABSTRACT. In this paper a phase-field model of Penrose-
Fife type is considered for diffusive phase transitions with
conserved order parameter. Different motivations lead to
investigate the case when the heat flux is the superposition
of two different contributions; one part is the gradient of a
function of the absolute temperature ϑ, behaving like 1/ϑ
as ϑ approaches to 0 and like −ϑ as ϑ ↗ +∞, while the
other is given by the Gurtin-Pipkin law introduced in the
theory of materials with thermal memory. An existence
result for a related initial-boundary value problem is proven.
Strengthening some assumptions on the data, the uniqueness
of the solution is also achieved.

1. Introduction. This note is concerned with the study of the
following initial-boundary value problem in the cylindrical domainQ :=
Ω × (0, T ), where Ω ⊂ RN (N ≤ 3) is a bounded connected domain
with a smooth boundary Γ and T > 0. Find a pair (ϑ, χ) : Q → R2

satisfying

∂t

(
ϑ+ λχ

) −∆
(
ψ(ϑ) + k ∗ α(ϑ)) = g in Q,(1.1)

− ∂ν

(
ψ(ϑ) + k ∗ α(ϑ)) = γ(ψ(ϑ) + k ∗ α(ϑ)− h)(1.2)

on Σ := Γ× (0, T ),
ϑ(·, 0) = ϑ0 in Ω,(1.3)

∂tχ−∆
(
−∆χ+ ξ + σ′(χ) +

λ

ϑ

)
= 0 in Q,(1.4)

ξ ∈ β(χ), in Q,(1.5)

∂νχ = 0, ∂ν

(
−∆χ+ ξ + σ′(χ) +

λ

ϑ

)
= 0 on Σ,(1.6)

χ(·, 0) = χ0 in Ω,(1.7)
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with ∂t = ∂/∂t, the symbol ∆ denoting the Laplacian with respect to
the space variables, and ∂ν denoting the outward normal derivative on
Γ.

In (1.1) there is a memory term given by the convolution product
with respect to time, that is,

(1.8) (a ∗ b)(t) :=
∫ t

0

a(s)b(t− s) ds, t ∈ [0, T ],

where a and b may also depend on the space variables.

The system given by the partial differential equations (1.1) and (1.4)
provides a quite general version of the phase-field model proposed by
Penrose and Fife in [28, 29] for the kinetics of phase transitions.

This model describes the evolution of a material, with constant
latent heat of fusion-solidification process, being λ, exhibiting two
different phases (e.g., solid-liquid in melting phenomena), in terms of
the absolute temperature ϑ : Q → (0,+∞) and the order parameter
χ : Q → R (representing, for instance, the fraction of one of the
phases). The data g and h stand for the heat supply and the outer
temperature; the function σ comes from the smooth part of the free
energy, while the multi-valued map β is derived from its nonsmooth
but convex part (usually β is the inverse of the Heaviside graph). To
be more precise, the sum β+σ′ stands for the derivative of the double-
well part of a Ginzburg-Landau free energy potential (see e.g. [4, 29]).

We may observe that we have coupled the second equation, which
rules the evolution of the order parameter χ, with Neumann ho-
mogeneous boundary condition on χ and on the chemical potential
w := −∆χ+ ξ + σ′(χ) + (λ/ϑ), but we can study an analogous system
in the case of the Dirichlet homogeneous or Neumann nonhomogeneous
boundary condition for w. This seems indeed to be of some physical
interest. In any case, we have to take the “natural” homogeneous
Neumann boundary condition for the concentration χ (see [27] for a
justification).

Finally, k : [0, T ]→ R is an integration kernel, α : (0,+∞)→ R is a
concave function, which will be specified in the sequel, ψ is linked to α
as detailed below, and γ is a positive constant coefficient.
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The term −∆(
ψ(ϑ) + k ∗ α(ϑ)) in (1.1) represents the divergence of

the heat flux, which is given by

(1.9) q = −∇(
ψ(ϑ) + k ∗ α(ϑ)).

Several papers have been devoted to the investigation of variants of
(1.1) (1.7), under the common position that

(1.10) q = −∇
(
−C1

ϑ

)
,

where C1 is a positive constant (see e.g. [18, 20, 21, 23]). It is worth
mentioning that the non-conserved phase-field model with (1.10) as
heat flux law (which basically differs from (1.1), and (1.4) because
of a second order dynamics for χ) has been deeply investigated (see
e.g. [10, 16, 22, 25, 32]). However, the law (1.10) that turns out
to be satisfactory for low and intermediate temperatures and offers
some advantages from the mathematical point of view, does not look
acceptable for high temperatures because it does not provide any
coerciveness as ϑ becomes larger and larger. These considerations
suggest to replace (1.10) by

(1.11) q = −∇
(
− C1

ϑ
+ C2ϑ

)
,

for some C2 > 0. Concerning this case, for the non-conserved model,
an existence result is given in [8], where, more generally, the heat flux
is given by

(1.12) q = −∇α(ϑ),

where α is a nonlinear function chosen in such a way that the system
given by (1.1) and (1.4) is still consistent with the second principle of
thermodynamics.

In [9] a more particular case is considered and a uniqueness result
is proven, still permitting α to belong to a wide class of nonlinearities
that includes (1.11) and other important cases.

In [30] existence and uniqueness of solution are proven, again in the
non-conservative case, under the same assumptions on α of [9], but
with the constitutive law (1.9), with α = ψ.
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The first work that couples the Penrose-Fife model with memory
effects is [11], where the above-named inconveniences given by (1.10)
are overcome by considering the following law

(1.13) q = −∇
(
− C1

ϑ
+ k ∗ ϑ

)
.

In our paper we use the constitutive law (1.9) in the case of a conserved
order parameter, with a special α, namely

α(ϑ) = − C1

ϑ
+ C2ϑ,

for every ϑ in (0,+∞) and for some positive constants C1 and C2.
Moreover ψ : (0,+∞)→ R is a maximal monotone function such that
the compositions ψ ◦ α−1 and α ◦ ψ−1 are two Lipschitz continuous
functions.

For a justification of (1.8) and for other related works where memory
effects are concerned, we refer to [3, 5, 7, 12 15, 19].

In our paper we are going to prove the existence of a weak solution
to (1.1) (1.7), making use of an implicit time discretization procedure.
More regularity on the data is required in order to prove the uniqueness
of the solution.

To simplify the treatment of this problem, in the sequel we will
suppose ψ = α, but all the estimates may be repeated in the more
general case of different ψ and α, with the necessary constraint recalled
above.

Let us remark that the existence and uniqueness of the solution for
the system (1.1) (1.7) with possibly nonconstant latent heat of fusion-
solidification process or with more general structure hypotheses on α
are still open problems.

2. Main results. Consider the initial-boundary value problem
(1.1) (1.7). We make the following general assumptions on the data of
the system

(A1) β is the subdifferential of a nonnegative, proper, convex, and
l.s.c. function β̂ : R → [0,+∞] satisfying β̂(0) = 0, and D(β) denotes
its domain,
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(A2) σ ∈ C2(R), σ′′ ∈ L∞(R),

(A3) λ ∈ R,

(A4) α : (0,+∞)→ R, and α(r) = −(C1/r) + C2r, for some positive

constants C1, C2 and ∀ r ∈ (0,+∞),

(A5) k ∈W 1,1(0, T ),

(A6) g ∈ L2(0, T ;L2(Ω)), h ∈ L2(0, T ;H1/2(Γ)),

(A7) ϑ0 ∈ L2(Ω), ϑ0 > 0 almost everywhere in Ω,

u0 := α(ϑ0) ∈ L2(Ω),

(A8) χ0 ∈ H1(Ω), β̂(χ0) ∈ L1(Ω).

Let us now remark on some properties of α such as the one in (A4)
that will be useful in the sequel

α′ ≥ C2 > 0;(2.1)
lim
r↘0

r2α′(r) = C1;(2.2)

lim
r↘0

α(r) = −∞ and lim
r→+∞α(r) = +∞.(2.3)

Moreover, since α is invertible, we can set

(2.4) ρ := α−1 : R → (0,+∞),

that is increasing and Lipschitz continuous, because (2.1) gives ρ′ ≤
1/C2.

Finally, we may observe that the following implications hold

α(ϑ0) ∈ L2(Ω) =⇒ 1
ϑ0

∈ L2(Ω) =⇒ 1
ϑ0

∈ L1(Ω) =⇒ ln(ϑ0) ∈ L1(Ω);

u0 ∈ L2(Ω) =⇒ υ̂(u0) ∈ L1(Ω),

where υ̂ : R → R is such that υ̂(s) = − ∫ s

0
dτ/ρ(τ ), s ∈ R.

Now let us give a variational formulation of (1.1) (1.7). To this
end, we denote by (·, ·) both the scalar product in H := L2(Ω) and
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in (L2(Ω))N , also denoted by H, and by | · | the corresponding norm.
For the sake of convenience, V := H1(Ω) will be endowed with the
inner product ((·, ·)), defined by

(2.5) ((v1, v2)) :=
∫

Ω

∇v1∇v2 + γ
∫

Γ

v1v2, ∀ v1, v2 ∈ V,

where γ is the positive constant appearing in the boundary condition
(1.2). Define W := H2(Ω), and let us also indicate by 〈·, ·〉 the duality
pairing between V ′ and V . We identify H with a subspace of V ′, as
usual, so that 〈u, v〉 = (u, v) for all u ∈ H and for all v ∈ V .
Next, we define the Riesz isomorphism J : V → V ′, and the scalar

product in V ′, respectively, by

〈Jv1, v2〉 := ((v1, v2)), ∀ v1, v2 ∈ V,(2.6)
((w1, w2))∗ := 〈w1, J

−1w2〉, ∀w1, w2 ∈ V ′.(2.7)

Let us observe that the norm in V related to the inner product defined
above (which will be indicated as ‖ · ‖ ) is equivalent to the usual norm
in V . Similar considerations holds also for V ′, and we term ‖ · ‖∗ the
norm in V ′ related to the inner product (2.7).

Remark 2.1. Let us observe that the special form of α, given in (A4)
and (2.4), leads to the following inequalities that will be useful in the
sequel

•
∫

Ω

ρ(u)u =
∫

Ω

ρ(u)
(
− C1

ρ(u)
+ C2ρ(u)

)
= −C1|Ω|+ C2|ρ(u)|2,

•
(
ρ(u)− ρ(v)

)
(u− v) = (ϑ′ − ϑ′′)

(
α(ϑ′)− α(ϑ′′)

)
= C2(ϑ′ − ϑ′′)2 + C1

(ϑ′ − ϑ′′)2
ϑ′ϑ′′

,

•
∫

Ω

(
ρ(u)− ρ(v)

)
u ≥ C2

∫
Ω

(
ϑ′ − ϑ′′

)
ϑ′ − C1

∫
Ω

ln(ϑ′) + C1

∫
Ω

ln(ϑ′′),

•
∫

Ω

(
ρ(u)− ρ(v)

)(
u− C2ρ(u)

)
=

∫
Ω

(
ϑ′ − ϑ′′

)(
− C1

ϑ′

)

≥ −C1

∫
Ω

ln(ϑ′) + C1

∫
Ω

ln(ϑ′′),
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• ((u, u− C2ρ(u))) ≥
∫

Ω

∇
(
− C1

ϑ′
+ C2ϑ

′
)
∇

(
− C1

ϑ′

)

+ γ
∫

Γ

(
− C1

ϑ′
+ C2ϑ

′
)(

− C1

ϑ′

)
≥ − γC1C2|Γ|, ∀u, v, ϑ′, ϑ′′ ∈ V,

where ϑ′ := ρ(u) and ϑ′′ := ρ(v).

Let us now introduce the following spaces

V =
{
v ∈ V, such that

∫
Ω

v = 0
}
,

H =
{
v ∈ H, such that

∫
Ω

v = 0
}
,

W =
{
v ∈W, such that ∂νv = 0 on Γ and

∫
Ω

v = 0
}
.

We may define now the operator N : H → W that maps v ∈ H into
the unique function Nv ∈ W such that

−∆(Nv)=v a.e. in Ω, and ∂ν(Nv)=0 a.e. on Γ,
∫

Ω

Nv=0.

Note that any solution φ to

(2.8) −∆φ = v a.e. in Ω and ∂νφ = 0 a.e. on Γ,

corresponding to a v ∈ H, can be written as φ = Nv + µ, where µ is
the mean-value of φ.

The operator N is an isomorphism and it may be extended to a new
operator (always called N ) from V ′ := {v ∈ V ′ : 〈v, 1〉 = 0} to V (note
the space V ′ may not be identified with the dual space of V), such that

(2.9) Nv ∈ V ,
∫

Ω

∇(Nv)∇z = 〈v, z〉 ∀ z ∈ V .

We note that N is also an isomorphism from V ′ to V , so that, for
v ∈ V ′, the norm

(2.10)
(∫

Ω

|∇(Nv)|2)1/2

= 〈v,Nv〉1/2
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is equivalent to the norm ‖v‖∗ and we will use this norm, when it is
convenient.

Finally, let f ∈ L2(0, T ;V ′) be defined by

(2.11)

〈f(t), v〉 :=
∫

Ω

g(t)v + γ
∫

Γ

h(t)v, ∀ v ∈ V, and for a.e. t ∈ (0, T ).

Remark 2.2. Suppose now, as we noted in the introduction, α = ψ in
(1.1) (1.2). Thanks to (A4), if we set u := α(ϑ), it is possible to write
the term λ/ϑ in (1.4) in the form (λ/C1)

(
u−C2ρ(u)

)
. Indeed, the role

played by (A4) is fundamental in view of the resolution of (1.1) (1.7)
and, in the following variational formulation, it is convenient to write
the equations in terms of u rather than of ϑ.

Then our problem can be stated as follows.

Problem (P). Find a pair (ϑ, χ) and (w, ξ) such that

ϑ ∈ L2(0, T ;V ) ∩ C0([0, T ];H), ϑ > 0 a.e. in Q;
(2.12)

u := α(ϑ) ∈ L2(0, T ;V ), k ∗ u ∈ L2(0, T ;V );
(2.13)

χ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ),
(2.14)

χ ∈ D(β) a.e. in Q;

ξ ∈ L2(0, T ;H);
(2.15)

w ∈ L2(0, T ;V );
(2.16)

ξ ∈ β(χ) a.e. in Q;
(2.17)

∂t

(
ρ(u)+λχ

)
+Ju+J(k ∗ u) = f in V ′,

(2.18)

a.e. in (0, T );
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〈∂tχ, v〉+
∫

Ω

∇w∇v = 0 ∀ v ∈ V, a.e. in (0, T );

(2.19)

〈w, v〉 =
∫

Ω

∇χ∇v+
〈
ξ+σ′(χ)− λ

C1

(
u−C2ρ(u)

)
, v

〉
,

(2.20)

∀ v ∈ V, a.e. in (0, T );

ϑ(·, 0) = ϑ0, χ(·, 0) = χ0, a.e. in Ω.
(2.21)

Let us now state our main results, which will be proven in the
following sections.

Theorem 2.1. Suppose that (A1) (A8) are satisfied and assume that
the mean value of χ0 is an interior point of D(β), i.e.,

(2.22) m0 :=
1
|Ω| 〈χ

0, 1〉 ∈ int (D(β)).

Then, Problem (P) admits at least one solution.

Concerning the uniqueness of solution, we have the following result.

Theorem 2.2. Suppose that (A1) (A8) and (2.22) are satisfied.
Assume in addition that

f ∈W 1,1(0, T ;V ′),(A9)

u0 ∈ V,(A10)

χ0 ∈ H3(Ω), ∂νχ
0 = 0(A11)

on Γ, ∃ ξ0 ∈ V s.t. ξ0 ∈ β(χ0) a.e. in Ω,

then there exists a solution (ϑ, χ), (w, ξ) to Problem (P) satisfying the
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further regularity

ϑ ∈ H1(0, T ;H),
(2.23)

u := α(ϑ) ∈ L∞(0, T ;V ),
(2.24)

χ ∈W 1,∞(0, T ;V ′) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ),
(2.25)

ξ ∈ L∞(0, T ;H),
(2.26)

w ∈ L∞(0, T ;V ),
(2.27)

and the components ϑ and χ of such a solution are unique.

Remark 2.3. Let us observe that (A6) and (A9) are satisfied if
g ∈ W 1,1(0, T ;H) and h ∈ L2(0, T ;H1/2(Ω)) ∩W 1,1(0, T ;H−1/2(Γ)).
Moreover (A10) yields ϑ0=ρ(u0)∈V , because ρ is Lipschitz continuous.

To conclude this section, let us recall these two formulas concerning
the convolution product which hold whenever they make sense, namely
the identity

(a ∗ b)′ = a(0)b+ a′ ∗ b,(2.28)
a ∗ b = 1 ∗ (a ∗ b)′,(2.29)

and the Young theorem

(2.30) ‖a ∗ b‖Lr(0,T ;X) ≤ ‖a‖Lp(0,T )‖b‖Lq(0,T ;X),

with 1 ≤ p, q, r ≤ ∞, 1/r = (1/p) + (1/q) − 1, where X is a normed
space.

Moreover, we account for the compact embedding of V into L4(Ω)
and H, which implies (see e.g. [26, p. 102])

|v|2 + ‖v‖2
L4(Ω) ≤ ζ‖v‖2 + Cζ‖v‖2

∗ ∀ v ∈ V,(2.31)

|v|2 ≤ ‖v‖ ‖v‖∗, ∀ v ∈ V,(2.32)
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for any ζ > 0 and some constant Cζ > 0.

Let us recall that, as Ω is a smooth bounded domain in RN , N ≤ 3,
there holds

(2.33) ‖v‖Lp(Ω) ≤ C‖v‖, ∀ v ∈ V, 1 ≤ p ≤ 6,

for some constant C depending only on Ω and p.

We widely use also the elementary inequality

(2.34) ab ≤ ηa2 + 1
4η
b2, ∀ a, b ∈ R ∀ η > 0.

Let us note that we denote several constants by the same symbol C in
the sequel. Their values might be different from each other even in the
same formula, but they are allowed to depend only on the quantities
specified in the statements.

3. Time discretization. In this section we present an implicit time
discretization scheme for (2.12) (2.21). As a first step, we prepare some
results in the direction of a discrete convolution procedure.

We start by fixing a partition of the time interval [0, T ]. To this
end, we choose a constant time step τ := T/n, n ∈ N. Let us assume
τ ≤ 1. Our next aim is to introduce a discrete version of the convolution
product in (0, t), for t ∈ (0, T ). Hence, we recall (cf., e.g., [33]) the
following:

Definition 3.1. Let a = {a}n
i=1 ∈ En and b = {bi}n

i=1 ∈ En,
where E stands for a real linear space. Then we define the vector
{(a ∗τ b)i}n

i=0 ∈ En+1 as

(3.1) (a ∗τ b) :=



0 if i = 0

τ
i∑

j=1

ai−j+1bj if i = 1, . . . , n.

We note that an equivalent definition is the one that calls (a∗τ b)i :=
τ

∑i
j=1 ai−j+1bj for any i = 0, . . . , n, with the convention, widely used

in the sequel, that it is equal to zero when the sum is done on an empty
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set of indices. We stress also that, in the definition of (a ∗τ b)i only the
values {aj}i

j=1 and {bj}i
j=1 are involved.

Other properties of our discrete convolution product with respect to
the time step τ are

(a ∗τ b) = (b ∗τ a),(3.2)
((a ∗τ b) ∗τ c) = (a ∗τ (b ∗τ c)).(3.3)

Let us now introduce some convenient notations.

For the (n + 1)-tuple {zi}n
i=0 ∈ En+1, let the functions zτ , zτ :

(0, T )→ E be specified by

(3.4) zτ (t) := zi, zτ (t) := αi(t)zi + (1− αi(t))zi−1,

where αi(t) := (t− (i− 1)τ )/τ , for t ∈ ((i− 1)τ, iτ ], i = 1, . . . , n. Let
us also set

(3.5) δzi :=
zi − zi−1

τ
, for i = 1, . . . , n.

Owing to the previous notation, it is not difficult to check the following
equality

(3.6) (a ∗τ b)τ (t) = (aτ ∗ bτ )(iτ), for t ∈ ((i− 1)τ, iτ ],

and i = 1, . . . , n.

For the sake of reproducing a discrete version of relation (2.28), it
suffices to observe that, given {ai}n

i=0 ∈ Rn+1 and {bi}n
i=1 ∈ En, we

have

(3.7)

δ(a ∗τ b)i =
i∑

j=1

ai−j+1bj −
i−1∑
j=1

ai−jbj = a1bi +
i−1∑
j=1

δai−j+1bj

= a1bi + (δa ∗τ b)i −τδa1bi = a0bi + (δa ∗τ b)i,

for i = 1, . . . , n.

Finally, we state a discrete Young lemma.
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Lemma 3.1. Let {ai}n
i=1 ∈ Rn and {bi}n

i=1 ∈ En, where E denotes
a linear space endowed with the norm ‖ · ‖E. Then the following
inequalities hold

n∑
i=1

τ‖(a ∗τ b)i‖E ≤
( n∑

i=1

τ |ai|
)( n∑

i=1

τ‖bi‖E

)
,

(3.8)

( n∑
i=1

τ‖(a ∗τ b)i‖2
E

)1/2

≤
( n∑

i=1

τ |ai|
)( n∑

i=1

τ‖bi‖2
E

)1/2

,

(3.9)

‖(a ∗τ b)i‖2
E ≤

n∑
j=1

τ |ai|2
i∑

j=1

τ‖bj‖2
E , for i = 1, . . . , n.

(3.10)

For a proof of the two first inequalities, see, e.g., [33]. Instead, (3.10)
follows from definition (3.1) and elementary properties of the sums.

Let us note that, given a real vector {ki}n
i=0 and a vector

{σi}n
i=1 ∈ En, where E stands for a normed space, and according to

the definitions (3.1), (3.4) (3.5), we have that

(3.11) kτ ∗ στ is a piecewise linear continuous function.

Indeed, in view of (3.4) it is a standard matter to check that

(kτ ∗ στ )(t) = αi(t)(k ∗τ σ)i + (1− αi(t))(k ∗τ σ)i−1,

for t ∈ ((i− 1)τ, iτ ], and i = 1, . . . , n.

Now it is worth introducing our approximation of equations (2.18)
(2.21). Let us set

(3.12) ki := k(iτ), for i = 0, . . . , n,

whence we may say that, thanks to (A5), we have

(3.13) ‖δkτ‖L1(0,T ) =
n∑

i=1

τ |δki| ≤ ‖k′‖L1(0,T ),
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where k′ stands for the time derivative of k and

‖k − kτ‖L1(0,T ) ≤ τVar[0,T ];R[k],

where Var[0,T ];R[k] denotes the total variation on the interval [0, T ] in
R of the function k (see e.g. [2]).

Moreover, let us recall [33, Proposition 4.4] and state it for the
reader’s convenience.

Lemma 3.2. Let (A5) hold and {σi}n
i=1 ∈ En where E denotes a

linear space endowed with the norm ‖ · ‖E. Moreover, let {ki}n
i=0, στ ,

and {(k ∗τ σ)i}n
i=1 be defined as in (3.12), (3.4) and (3.1), respectively.

Then, it holds

‖(k ∗τ σ)τ − k ∗ στ‖L1(0,T ;E)

≤ τ(2Var[0,T ];R[k] + ‖k‖L∞(0,T )

)‖στ‖L1(0,T ;E).

Regarding f , we set

(3.15) fi :=
1
τ

∫ iτ

(i−1)τ

f(t) dt ∈ V ′, for i = 1 . . . , n.

Note that

(3.16) ‖fτ‖L2(0,T ;V ′) ≤ ‖f‖L2(0,T ;V ′).

Then, the approximation scheme may be formulated by making use of
an auxiliary unknown ξi = βτ (χi), where

(3.17)

βτ , for τ >0, is the Yosida approximation of β, with constant τ1/4,

so that βτ is Lipschitz continuous with constant τ−1/4.

Then, the approximated problem takes the form

(3.18 )

τ1/4 ui−ui−1

τ
+
ρ(ui)−ρ(ui−1)

τ
+ λ

χi−χi−1

τ
+Jui +J(k ∗τ u)i = fi,

in V ′, for i = 1, . . . , n;
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〈χi − χi−1

τ
, v

〉
+

∫
Ω

∇wi∇v = 0,(3.19)

∀ v ∈ V, for i = 1, . . . , n;

〈wi, v〉 =
∫

Ω

∇χi∇v +
∫

Ω

ξiv +
∫

Ω

σ′(χi)v − λ

C1

∫
Ω

(
ui−C2ρ(ui)

)
v,

(3.20)

∀ v ∈ V, for i = 1, . . . , n;

ξi = βτ (χi), for i = 1, . . . , n;(3.21)

u0 = u0, χ0 = χ0.(3.22)

Next we state and prove an existence and uniqueness result for the
solution to scheme (3.18) (3.22).

Theorem 3.1. Let assumptions (A1) (A8) and (3.15) hold, and let
the time step τ be small enough. Then a unique quadruplet of vectors
{ϑi, χi, wi, ξi}n

i=0 ∈ H4(n+1) exist, which fulfill relations (3.18) (3.22).

In order to give a proof of this theorem, let us introduce some
notations. Let

gi :=
1
τ

∫ iτ

(i−1)τ

g(t) dt ∈ H, for i = 1, . . . , n;

(3.23)

hi :=
1
τ

∫ iτ

(i−1)τ

h(t) dt ∈ H1/2(Γ), for i = 1, . . . , n,

(3.24)

where g and h are the same as in (A6).

Let us now rewrite equation (3.18) in the following form

Ai(ui) = −λχi, a.e. in Ω, ∀ i = 1, . . . , n,

where the operator Ai, for i = 1, . . . , n, is defined as follows

Ai(u) = τ1/4u+ ρ(u)− τ∆u− τ2k1∆u− τ2∆si
− τgi − τ1/4ui−1 − ρ(ui−1)− λχi−1,
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for all u ∈ D(Ai), where si =
∑i−1

j=1 ki−j+1uj , and

(3.25)
D(Ai) = {u ∈W : − ∂ν(u+τk1u) = γ(u+τk1u−h∗i ), a.e. on Γ},

with h∗i = hi − τ
γ
∂νsi − τsi.

Note that we will prove in the sequel that A−1
i is a well-defined and

Lipschitz continuous operator (see Remarks 3.1 3.2). So we can say
that (3.18) is satisfied if and only if

ui = A−1
i (−λχi), ∀ i = 1, . . . , n.

Now, multiplying (3.19) by τ , using (3.20) and applying to the resulting
equation the operator N defined in (2.9), we obtain that (3.18) (3.22)
are satisfied if and only if we find χi ∈ H such that

N (χi−χi−1)− τ∆χi+ τβτ (χi)+ τGi(χi)+ τEi(χi) = τµi(χi),
(3.26)

a.e. in Ω and ∀ i = 1, . . . , n;

∂νχi = 0,
∫

Ω

χi =
∫

Ω

χi−1, ∀ i = 1, . . . , n;(3.27)

µi(χ) :=
1
|Ω|

∫
Ω

(
βτ (χ) + Ei(χ) +Gi(χ)

)
dx, ∀ i = 1, . . . , n,

(3.28)

where the constants C1, C2 and λ are the same as in (A3) (A4),

(3.29) Ei(χ) = − λ

C1
A−1

i (−λχ), ∀χ ∈ H,

and Gi : H → H is the Lipschitz mapping

Gi(χ) =
C2

C1
λρ(A−1

i (−λχ)) + σ′(χ), ∀χ ∈ H.

Suppose now that

(3.30) τk1 > − 1,



THE CONSERVED PHASE FIELD MODEL 441

note that it is always true for τ sufficiently small.

Now we can see that Ai is a maximal monotone operator. Indeed, Ai

is the subdifferential of a convex function φ : H → (−∞,+∞], defined
by conditions

φ(u) =




ρ̂(u) +
τ1/4

2

∫
Ω

|u|2 dx

+
τ + τ2k1

2

(∫
Ω

|∇u|2 dx+ γ
∫

Γ

u2 dσ
)

−
∫

Ω

g∗i u dx− γ
∫

Γ

h∗i u dσ if u ∈ V

+∞ otherwise,

where ρ̂ : R → R is defined by ρ̂(s) =
∫ s

0
ρ(r) dr, for all s ∈ R and

g∗i = τ
2si + τgi + τ1/4ui−1 + ρ(ui−1) + λχi−1.

Note that h∗i has been defined in (3.25). Note also that this map φ
is convex thanks to the hypothesis (3.30).

Let us now give one preliminary lemma and some remarks that are
needed to prove Theorem 3.1. Henceforth, let C denote any constant
dependent on the data, but not on the time step τ . Of course, C may
vary from line to line. Symbols like Cε denote constants which may
also depend on ε.

Lemma 3.3. The operator Ai is coercive in H, i.e.,

(3.31) lim
|u|→+∞

∫
Ω
(Aiu)u dx

|u| = +∞;

moreover, it is also injective.

Proof. Let u ∈ D(Ai) be arbitrary. Applying (3.1), the definition
of Ai and the hypothesis (3.30), using also (2.34), the first equality in
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Remark 2.1 and (A6), we can see that∫
Ω

(Aiu)u dx = τ1/4|u|2 − C1|Ω|+ C2|ρ(u)|2

+ τ (|∇u|2 + τk1|∇u|2)
+ τ

∫
Γ

[
γ(u2 + τk1u2)− γ(1 + τk1)hiu

]
dσ

−
∫

Ω

(λχi−1 + ρ(ui−1)

+ τ2∆si + τgi + τ1/4ui−1)u dx
≥ (τ + τ2k1)|∇u|2 + τγ(1 + τk1)‖u‖2

L2(Γ)

− τγ
2
(1 + τk1)‖hi‖2

L2(Γ)

− τγ
2
(1 + τk1)‖u‖2

L2(Γ) − C1|Ω|
− |ρ(ui−1) + τgi + λχi−1 + τ2∆si + τ1/4ui−1||u|.

It follows that∫
Ω

(Aiu)u dx ≥ τ

2
(
1 + τk1

)‖u‖2 − C(1 + |u|), ∀u ∈ D(Ai),

which implies (3.31).

To prove now the injectivity of Ai, let us assume u, v ∈ D(Ai), with
Aiu = Aiv. Then, applying the second equality in Remark 2.1, (3.21)
and (3.30), we get

(3.32)

0 =
∫

Ω

(Aiu−Aiv)(u− v) dx

≥ τ1/4

∫
Ω

|u− v|2 dx

+ C1

∫
Ω

(
ρ(u)− ρ(v))2

ρ(u)ρ(v)
dx+ C2

∫
Ω

(
ρ(u)− ρ(v))2

dx

+ τ
(
1 + τk1

)(|∇(u− v)|2 + γ ∫
Γ

(u− v)2 dσ
)
.

Now, thanks to the definition of D(Ai), we immediately get u = v, and
the proof of Lemma 3.3 is completed.
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Now let us give some remarks that will be useful in the sequel.

Remark 3.1. With the previous considerations, we have obtained that
Ai is a maximal-monotone, one-to-one, coercive operator. Hence, also
Ei is a maximal monotone operator from H to H.

Remark 3.2. The operator Ei, defined in (3.29) is also Lipschitz
continuous (of constant (λ2/C1τ

1/4)). Indeed, for all u, v ∈ H such
that u = Ei(x) and v = Ei(y), with x, y ∈ H, applying (3.32), we have

C1|u− v||x− y| ≥ C1〈u− v, x− y〉
= − C1

λ

〈
u− v,Ai

(
− C1

λ
u

)
−Ai

(
− C1

λ
v

)〉

≥ τ1/4 C
2
1

λ2
|u− v|2.

Note that in the previous inequality the choice (3.25) for the domain
D(Ai) is crucial.

Moreover, also the above defined function Gi is Lipschitz, with
constant (C/τ1/4) + Cσ′ , where Cσ′ is the Lipschitz constant of σ′.

Remark 3.3. The operator N : H → H defined in (2.9) is obviously a
monotone and continuous operator. Consequently, also the operator

Ni : {u ∈ H : u− χi−1 ∈ H} −→ W

u �−→ N (u− χi−1)

is continuous and monotone.

Now we are ready to give the

Proof of Theorem 3.1. Let Li be the operator defined as

Li(u) = Ni(u)− τ∆u+ τEi(u), with domain
D(Li) = D(Ni) ∩ {v ∈W such that ∂νv = 0 on Γ}.
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Since the operator Ni − τ∆ is maximal monotone in D(Li), thanks to
Lemma 3.3, Remark 3.1 and [1, p. 46], we can say that Li is a maximal
monotone operator.

Moreover, applying [1, p. 48], the operator Li is surjective in H
because it is coercive on H. Indeed, applying the Poincaré inequality,
(2.10), (2.31) and using the monotonicity of Ei, we get

〈Li(u)− Li(v), u− v〉 = 〈N (u− v), u− v〉+ τ 〈Ei(u)− Ei(v), u− v〉
− τ 〈−∆(u− v), u− v〉

≥ ‖u− v‖2
∗ + Cτ‖u− v‖2

≥ Cτ1/2|u− v|2, ∀u, v ∈ D(Li),

whence the coerciveness and the injectivity of Li follows immediately.
So, the operator L−1

i : H → H is well defined. Now, we can see that it is
Lipschitz continuous of constant Cτ−1/2. Indeed, for all x, y ∈ D(Li), if
u = Li(x), v = Li(y), using the Poincaré inequality (note that x−y is a
zero mean-valued function), (2.10), (2.32), (2.34), and the monotonicity
of Ei, we have

|u− v||x− y| ≥ (u− v, x− y) = (Ni(x)−Ni(y), x− y)
− τ (−∆x+∆y, x− y) + τ (Ei(x)− Ei(y), x− y)

≥ ‖x− y‖2
∗ + Cτ‖x− y‖2

≥ 2Cτ1/2|x− y|2,
whence it comes immediately that L−1

i is Lipschitz continuous, with
constant C/τ1/2.

Now it is possible to define the operator S : H → H, which maps χ
into the unique solution S(χ) ∈ H to the equation

Li

(
S(χ)

) � τµi(χ)− τ
(
βτ (χ) +Gi(χ)

)
,

where µi is the function defined in (3.28). In order to apply the
contraction mapping principle to S, we let χ1, χ2 ∈ H. Then, by virtue
of the previous considerations and the Lipschitz continuity of Gi, µi,
and of βτ (defined in (3.17)) we have

|S(χ1)− S(χ2)| ≤ Cτ1/2
(
|µi(χ1)− µi(χ2)|+ |βτ (χ1)− βτ (χ2)|

+ |Gi(χ1)−Gi(χ2)|
)

≤ Cτ1/4|χ1 − χ2|+ Cσ′τ1/2|χ1 − χ2| ≤ CS|χ1 − χ2|,
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with 0 < CS < 1, for τ sufficiently small. Thus, S turns out to be
a contraction mapping on H, whence Theorem 3.1 follows from the
contraction mapping principle.

Now, for the sake of clarity, and due to the last Theorem 3.1, we may
rewrite (3.18) (3.22) as follows

τ1/4∂tuτ + ∂tρ(uτ ) + λ∂tχτ + Juτ + J(k ∗τ u)τ = fτ ,(3.33)
in V ′, a.e. in (0, T );

〈∂tχτ , v〉+
∫

Ω

∇wτ∇v = 0, ∀ v ∈ V, a.e. in (0, T );(3.34)

〈wτ , v〉 =
∫

Ω

∇χτ∇v +
∫

Ω

ξτv

+
∫

Ω

σ′(χτ )v − λ

C1

∫
Ω

(
uτ − C2ρ(uτ )

)
v,(3.35)

∀ v ∈ V, a.e. in (0, T );
ξτ = βτ (χτ ), uτ (0) = u0, χτ (0) = χ0 a.e. in Ω,(3.36)

where the notations (3.4) are taken into account.

4. Existence. This section concludes the proof of Theorem 2.1. Let
us first give a lemma that will be useful in the sequel.

Lemma 4.1.Given a, b > 0, a positive constant C exists such that

a

2
s2 + b| ln s| ≤ as2 − b ln s+ C, ∀ s > 0,(4.1)

a

2
s2 + b|υ̂(s)| ≤ as2 + bυ̂(s) + C, ∀ s ∈ R,(4.2)

where υ̂ : R → R is such that υ̂(s) = − ∫ s

0
dτ/ρ(τ ), s ∈ R.

Proof. The first inequality is obvious; the second is due to the
properties of the function ρ, cf. (2.4). Indeed, taking (A4) into account,
we have that ρ(s) = (s+

√
s2 + 4C1C2/2C2), and so υ := −1/ρ is of

the form −C ′/
(
s +

√
s2 + C ′′) for some positive constants C ′, C ′′. So

it follows immediately that the function υ̂ defined above satisfies (4.2).
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Now, in view of giving some boundedness estimates, uniform with
respect to τ , let us state a discrete integration by parts formula (whose
proof is obvious): let {ai}n

i=0 ∈ Rn+1 and {bi}n
i=1 ∈ Rn; then, the

following equality holds

(4.3)
n∑

i=1

(ai − ai−1)bi = anbn − a0b1 −
n−1∑
i=1

ai(bi+1 − bi).

First estimate. Multiplying equation (3.18) by a positive constant ε
and then testing it by τui, one can get

ετ1/4

∫
Ω

(ui − ui−1)ui + ε
∫

Ω

(
ρ(ui)− ρ(ui−1)

)
ui

+ ελ〈χi−χi−1, ui〉+ ετ‖ui‖2 = ε τ 〈fi, ui〉−ετ (((k ∗τ u)i, ui)).

We can observe that, by the third inequality in Remark 2.1, we have
that
(4.5)

ε

∫
Ω

(
ρ(ui)− ρ(ui−1)

)
ui ≥ εC2

∫
Ω

(
ρ(ui)− ρ(ui−1)

)
ρ(ui)

− εC1

∫
Ω

ln(ρ(ui)) + εC1

∫
Ω

ln(ρ(ui−1)).

Now, using (2.34), the Schwarz inequality, and (3.5), we get

(4.6) −λετ 〈δχi, ui〉 ≤ ελ2

4ζ
τ‖δχi‖2

∗ + εζτ‖ui‖2, ∀ ζ > 0.

Moreover, thanks to (3.10), (2.34) and the Schwarz inequality, we can
also say that

(4.7) −ετ (((k ∗τ u)i, ui)) ≤ ετ4‖ui‖2 + ετ
n∑

j=1

τ |kj |2
i∑

j=1

τ‖uj‖2.
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Now, taking (4.7) (4.7) into account, summing up (4.4) for i =
1, . . . ,m, and using Lemma 4.1, we have

ετ1/4

2

m∑
i=1

|ui−ui−1|2 + ετ
1/4

2
|um|2 + C2ε

2

m∑
i=1

|ρ(ui)−ρ(ui−1)|2

+
C2ε

4
|ρ(um)|2 + εC1‖ ln(ρ(um))‖L1(Ω) +

ε

4

m∑
i=1

τ‖ui‖2

≤ Cε+ ετ
1/4

2
|u0|2 + C2ε

4
|ρ(u0)|2 + εC1‖ ln(ρ(u0))‖L1(Ω)

+
ε

2

m∑
i=1

τ‖fi‖2
∗ +

ελ2

4ζ

m∑
i=1

τ‖δχi‖2
∗ + εζ

m∑
i=1

τ‖ui‖2

+ ετ
m∑

i=1

( n∑
j=1

τ |kj |2
i∑

j=1

τ‖uj‖2

)
,

∀m = 1, . . . , n, and ∀ ζ > 0.

Second estimate. Testing (3.18) by τ
(
ui − C2ρ(ui)

)
, we can get

τ1/4〈ui − ui−1, ui − C2ρ(ui)〉+ 〈ρ(ui)− ρ(ui−1), ui − C2ρ(ui)

+λ〈χi − χi−1, ui − C2ρ(ui)〉+ τ ((ui, ui − C2ρ(ui)))

+τ (((k ∗τ u)i, ui − C2ρ(ui))) = τ 〈fi, ui − C2ρ(ui)〉.
First, thanks to (2.4), the function υ := −1/ρ : R → [0,+∞) is the
subdifferential of a convex function υ̂ : R → R, cf. Lemma 4.1, so that

(4.10)

τ1/4〈ui − ui−1, ui − C2ρ(ui)〉 = τ1/4
〈
ui − ui−1,− C1

ρ(ui)

〉
≥ C1τ

1/4

∫
Ω

υ̂(ui)− C1τ
1/4

∫
Ω

υ̂(ui−1).

Then, thanks to the fourth inequality in Remark 2.1, we have

(4.11)
〈ρ(ui)− ρ(ui−1), ui − C2ρ(ui)〉

≥ −C1

∫
Ω

ln(ρ(ui)) + C1

∫
Ω

ln(ρ(ui−1)),
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and, by the fifth inequality in Remark 2.1, we get

(4.12) − τ ((ui, ui − C2ρ(ui))) ≤ τ γ C1C2|Γ|.

Now, by (2.4), using the Schwarz inequality and (2.34), we can obtain

(4.13)

τ 〈fi, ui − C2ρ(ui)〉 ≤ τ‖fi‖∗‖ui − C2ρ(ui)‖
≤ τCε,ζ‖fi‖2

∗ + τεζ‖ui − C2ρ(ui)‖2

≤ τCε,ζ‖fi‖2
∗ + 2εζτ (‖ui‖2 + C2

2 |ρ(0)|2),
∀ ζ > 0, and for some Cε,ζ > 0.

Moreover, taking (2.4) into account and using (3.10) with the Schwarz
inequality and (2.34), we have

− τ (((k ∗τ u)i, ui − C2ρ(ui)))

≤ 2ετζ(‖ui‖2 + C2
2 |ρ(0)|2) +

τCε

4ζ

n∑
j=1

τ |kj |2
i∑

j=1

τ‖uj‖2,

∀ ζ > 0 and for some Cε > 0.

Now, thanks to (4.11) (4.14), summing up (4.9) for i = 1, . . . ,m, and
applying Lemma 4.1, we get

(4.15)

λ
m∑

i=1

〈χi − χi−1, ui − C2ρ(ui)〉+ C1τ
1/4‖υ̂(um)‖L1(Ω)

+ C1‖ ln(ρ(um))‖L1(Ω) − ε′
( ∫

Ω

|ρ(um)|2 + τ1/4

∫
Ω

|um|2
)

≤ C(1+ τ1/4) +mτγC1C2|Γ|+ 4mC2
2 |ρ(0)|2τεζ+ C1τ

1/4‖υ̂(u0)‖L1(Ω)

+ C1‖ ln(ρ(u0))‖L1(Ω) − ε′
( ∫

Ω

|ρ(u0)|2 +
∫

Ω

τ1/4|u0|2
)

+ Cε,ζ

m∑
i=1

τ‖fi‖2
∗+ 4εζ

m∑
i=1

τ‖ui‖2+
Cετ

4ζ

m∑
i=1

( n∑
j=1

τ |kj |2
i∑

j=1

τ‖uj‖2

)
,

∀m = 1, . . . , n, ∀ ζ, ε′ > 0, and for some Cε,ζ , Cε > 0.
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Third estimate. Multiplying equations (3.19) and (3.20) by C1,
testing the former by N (χi − χi−1) (indeed, taking v = 1 in (3.19),
we see that (χi − χi−1) satisfies the null-average condition) and the
latter by −(χi−χi−1), summing up, using (2.10), and taking (A1) into
account, we get

(4.16)

C1τ‖δχi‖2
∗ +

C1

2

∫
Ω

|∇χi −∇χi−1|2 + C1

2

∫
Ω

|∇χi|2

− C1

2

∫
Ω

|∇χi−1|2 − λ
∫

Ω

ui(χi−χi−1) + C2λ

∫
Ω

ρ(ui)(χi−χi−1)

+ C1‖β̂τ (χi)‖L1(Ω) − C1‖β̂τ (χi−1)‖L1(Ω) ≤ − τ
∫

Ω

σ′(χi)δχi.

Now, thanks to (A2), using the Schwarz inequality and (2.34), we can
see that
(4.17)

− τ
∫

Ω

σ′(χi)δχi ≤ τ C1

4
‖δχi‖2

∗ +
τ

C1
‖σ′(χi)‖2

≤ τ C1

4
‖δχi‖2

∗ + 2τ (|Ω|+ γ|Γ|)|σ′(0)|2 + 2τ
C2

σ′

C1
‖χi‖2.

Summing up (4.16) for i = 1, . . . ,m, using (4.17), adding to both sides

C1γ

2
‖χm‖2

L2(Γ) =
C1γ

2
‖χ0‖2

L2(Γ) + C1γτ
m∑

i=1

∫
Γ

δχi χi

in order to recover the full V norm on the lefthand side, using also the
Schwarz inequality and (2.34), we can get

(4.18)

3C1

8

m∑
i=1

τ‖δχi‖2
∗ + C

m∑
i=1

‖χi − χi−1‖2 +
C1

2
‖χm‖2

− λ
m∑

i=1

∫
Ω

ui(χi − χi−1) + C2λ
m∑

i=1

∫
Ω

ρ(ui)(χi − χi−1)

+ C1‖β̂τ (χm)‖L1(Ω)

≤ 2m(|Ω|+ γ|Γ|) |σ′(0)|2τ + C1‖β̂τ (χ0)‖L1(Ω) + C‖χ0‖2

+ C ′τ
m∑

i=1

‖χi‖2, ∀m = 1, . . . , n,
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for some positive constant C, C ′. Note that we can write here the V
full norm of χi − χi−1, because it satisfies the null-average condition.

Summing up now the three estimates (4.8), (4.15), (4.18), and choos-
ing ζ = 1/16 and a suitable ε′, thanks also to (A5), we can obtain

3C1

8

m∑
i=1

τ‖δχi‖2
∗+C

m∑
i=1

‖χi − χi−1‖2+
C1

2
‖χm‖2

+ C1‖β̂τ (χm)‖L1(Ω) +
ετ1/4

2

m∑
i=1

|ui − ui−1|2 + ετ
1/4

2
|um|2

+ C1τ
1/4‖υ̂(um)‖L1(Ω)+

C2ε

2

m∑
i=1

|ρ(ui)− ρ(ui−1)|2

+C2ε|ρ(um)|2+C1(1+ε)‖ ln(ρ(um))‖L1(Ω)+
ε

16

m∑
i=1

τ‖ui‖2

≤ C(1 + ε+ τ1/4)+ nτ
[
γC1C2|Γ|+ εC

2
2 |ρ(0)|2
4

+ 2(|Ω|+ γ|Γ|)|σ′(0)|2
]
+ C1‖β̂τ (χ0)‖L1(Ω)

+C‖χ0‖2+
C2ε

2
|ρ(u0)|2+C1(1+ε)‖ ln(ρ(u0))‖L1(Ω)

+
ετ1/4

2
|u0|2+C1τ

1/4‖υ̂(u0)‖L1(Ω)

+
ε

2

m∑
i=1

τ‖fi‖2
∗+Cε

m∑
i=1

τ‖fi‖2
∗+4ελ

2
m∑

i=1

τ‖δχi‖2
∗

+C ′τ
m∑

i=1

‖χi‖2+C ′′
ε τ

m∑
i=1

τ‖ui‖2+C ′′′
ε τ

m∑
i=1

i∑
j=1

τ‖uj‖2,

∀m = 1, . . . , n, ∀ ε > 0, and for some C ′′
ε , C

′′′
ε > 0.

Now we can choose ε = (C1/16λ2) and then

τ < min{C1/2C ′, C1/256λ2C ′′
ε , C1/256λ2C ′′′

ε },
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to obtain

C
m∑

i=1

τ‖δχi‖2
∗ + C

m∑
i=1

‖χi − χi−1‖2 + C‖χm‖2

+ C1‖β̂τ (χm)‖L1(Ω) + Cτ1/4
m∑

i=1

|ui − ui−1|2

+ Cτ1/4|um|2 + Cτ1/4‖υ̂(um)‖L1(Ω)

+ C
m∑

i=1

|ρ(ui)− ρ(ui−1)|2 + C|ρ(um)|2

+ C‖ ln(ρ(um))‖L1(Ω) + C
m∑

i=1

τ‖ui‖2

≤ C + C1‖β̂τ (χ0)‖L1(Ω) + C‖χ0‖2

+ C|ρ(u0)|2 + C‖ ln(ρ(u0)‖L1(Ω) + Cτ1/4|u0|2

+ C‖υ̂(u0)‖L1(Ω) + C
m∑

i=1

τ‖fi‖2
∗ + Cτ

m−1∑
i=1

i∑
j=1

τ‖uj‖2

+ Cτ
m−1∑
i=1

‖χi‖2, ∀m = 1, . . . , n.

Applying a discrete version of Gronwall’s lemma (see e.g. the version
reported in [17]) and owing to (3.16), we obtain from (4.19)

(4.20)

‖∂tχτ‖2
L2(0,T ;V ′) + τ‖∂tχτ‖2

L2(0,T ;V ) + τ
5/4‖∂tuτ‖2

L2(0,T ;H)

+ ‖χτ‖2
L∞(0,T ;V ) + ‖β̂τ (χτ )‖L∞(0,T ;L1(Ω)) + ‖uτ‖2

L2(0,T ;V )

+ τ1/4‖uτ‖2
L∞(0,T ;H) + τ‖∂tρ(uτ )‖2

L2(0,T ;H) + ‖ρ(uτ )‖2
L∞(0,T ;H) ≤ C.

Now it is straightforward to see that

(4.21) ‖ρ(uτ )− ρ(uτ )‖2
L2(0,T ;H) ≤

τ2

3
‖∂tρ(uτ )‖2

L2(0,T ;H) ≤ Cτ,

‖χτ − χτ‖2
L2(0,T ;V ) ≤

τ2

3
‖∂tχτ‖2

L2(0,T ;V ) ≤ Cτ,(4.22)

‖uτ − uτ‖2
L2(0,T ;H) ≤

τ2

3
‖∂tuτ‖2

L2(0,T ;H) ≤ Cτ3/4.(4.23)
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Thanks to the estimates (4.20) (4.22), well-known compactness results,
and Lemma 3.1, cf. (A5), one can infer that there exists at least
a subsequence of time steps, still denoted by τ , and some functions
ϑ, u, χ, ϕ, such that

ρ(uτ )
∗−→ϑ in L∞(0, T ;H),(4.24)

uτ ⇀ u in L2(0, T ;V ),(4.25)
χτ ⇀ χ in H1(0, T ;V ′),(4.26)

χτ
∗−→χ in L∞(0, T ;V ),(4.27)

(k ∗τ u)τ ⇀ ϕ in L2(0, T ;V ),(4.28)

as τ ↘ 0. In addition, the generalized Ascoli theorem (see [31,
Corollary 4]) ensures that, thanks to (4.26) (4.27),
(4.29)
χτ → χ in C0([0, T ];H), at least for a subsequence of τ ↘ 0.

Now, taking (3.33) and (4.25) (4.26), (2.11), (3.16), (2.4) into account,
we may say that

‖τ1/4∂tuτ + ∂tρ(uτ )‖L2(0,T ;V ′)

≤ λ‖∂tχτ‖L2(0,T ;V ′) + C‖uτ‖L2(0,T ;V ) + ‖fτ‖L2(0,T ;V ′) ≤ C

and

‖τ1/4uτ (s) + ρ(uτ )(s)‖2 ≤ C + C‖uτ (s)‖2, for a.e. s ∈ (0, T ).

Consequently, thanks to Ascoli’s theorem and to (4.24) (4.25), we may
say that

τ1/4uτ + ρ(uτ )→ ϑ in C0([0, T ];H),(4.30)
ρ(uτ )→ ϑ in L2(0, T ;V ) and so a.e. in Q.(4.31)

Now, to deduce that ρ(u) = ϑ, we can use [1, p. 42], with the maximal
monotonicity of α, and (4.31).

Moreover, Lemma 3.2, (4.25) and (2.30) lead to

(k ∗τ u)τ − k ∗ uτ → 0 in L1(0, T ;V ),(4.32)
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and

k ∗ uτ − k ∗ u−→0 in L2(0, T ;V ).(4.33)

Thus, ϕ = k ∗ u.

Fourth estimate. Now we need to estimate the L2 norm of βτ (χτ ),
independently of τ . So, first we may observe that, from (3.19), it comes
immediately

〈χi −m0, 1〉 = 0, ∀ i = 1, . . . , n, where m0 :=
∫

Ω

χ0 dx.

Now, let us take

xi :=
1
|Ω| 〈ξi, 1〉,

and test (3.19) with τN (ξi − xi) and (3.20) with τ (ξi − xi). Then,
subtracting the resulting equations and setting

Fi = −N (χi − χi−1)− τσ′(χi) +
τλ

C1

(
ui − C2ρ(ui)

)
,

and subtracting also 〈xi, ξi − xi〉 = 0, we obtain the identity

τ
(∇χi,∇(ξi − xi)

)
+ τ |ξi − xi|2 = τ

(
Fi − xi, ξi − xi

)
= τ

(
Fi, ξi − xi

)
.

Since the first term on the lefthand side is nonnegative, due to the
monotonicity of βτ we deduce that

τ |ξi − xi| ≤ τ |Fi|.

Then, summing it up for i = 1, . . . ,m, and taking (4.20) into account,
we get immediately

‖ξτ − xτ‖L1(0,T ;H) ≤ C.

In the next step, we would like to derive an analogous estimate for
βτ (χτ ). To do that, we have to find an upper bound for the L2-norm
of xτ .
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Following exactly the argument reported for example in [6, Section
4], which follows closely the proof devised by Kenmochi, Niezgódka,
and Pawlow in [24, Lemma 5.2], we can state that

(4.34) ‖ξτ‖L1(0,T ;H) ≤ C.

Note that assumption (2.22) is used at this step.

Now, in order to derive an estimate of wτ in L2(0, T ;V ), we may
observe that, thanks to (3.34), wτ − 1/|Ω|〈wτ , 1〉 is a solution of a
problem like (2.8) with datum ∂tχτ ∈ L2(0, T ;V ′), thanks to (4.20).
Hence, estimating the mean value of wτ with the help of (3.35) (choose
v = 1) and using again (4.20), we can say that

(4.35) ‖wτ‖L2(0,T ;V ) ≤ C.

Moreover, applying the same argument to (3.35), we obtain that
χτ−m0 is the solution of a problem like (2.8) with datum in L1(0, T ;H)
and consequently we may obtain that

(4.36) ‖χτ‖L2(0,T ;W ) ≤ C.

Thus, we can still take convergent subsequences by compactness
as in (4.20), letting τ ↘ 0. Finally, on account of (4.24) (4.27),
(4.33), (4.34) (4.36) and (A2), passing to the limit in (3.33) (3.35),
we immediately recover (2.18) (2.20) and the regularity (2.12) (2.16).

By (4.29) and (4.31), we get also (2.21). Next, we note that {βτ (χτ )}τ

and {χτ}τ converge to some ξ and χ weakly in L1(0, T ;H), for instance,
and we have to deduce (1.6). This can be done using [1, p. 42], and the
strong convergence of {χτ}, given in (4.29). This concludes the proof
of Theorem 2.1.

Remark 4.1. Let we say that we could obtain the same existence
result with less regularity on the kernel k, belonging to the intersection
of L2(0, T ) and suitable interpolation space between L1(0, T ) and
BV (0, T ), where BV (0, T ) denotes the space of the functions with
bounded total variation (see e.g. [2]).
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Indeed all the estimates can be repeated, taking as approximation for
k the following one

ki :=
1
τ

∫ iτ

(i−1)τ

k(s) ds, for i = 1, . . . , n.

In this case only Lemma 3.2 needs to be modified, but it is always
possible to prove an analogous statement that allows us to say that

(k ∗τ u)τ − k ∗ uτ −→ 0 in L1(0, T ;V ), as τ ↘ 0

and so to pass to the limit into the discretized problem and get existence
of solution to Problem (P).

5. Further regularity and uniqueness. This section is devoted
to the proof of Theorem 2.2, so we now suppose that the assumptions
(A1) (A10) hold. Let now, in place of (3.15)

fτ (t) = f(iτ) ∈ V ′, for t ∈ ((i− 1)τ, iτ ], ∀ i = 1, . . . , n,

so that we can say that

‖δfτ‖L1(0,T ;V ′) ≤ Var[0,T ];V ′ [f ],

and
‖f − fτ‖L1(0,T ;V ′) ≤ τVar[0,T ];V ′ [f ],

where Var[0,T ];V ′ [f ] denotes the total variation on the interval [0, T ] in
the space V ′ of the function f (see e.g. [2]).

Moreover, let χ−1 ∈ H be defined by

〈χ0 − χ−1

τ
, v

〉
+

∫
Ω

∇w0∇v = 0 ∀ v ∈ V, where(5.1)

〈w0, v〉 :=
∫

Ω

∇χ0∇v +
∫

Ω

(
ξ0 + σ′(χ0)− λ

C1

(
u0 − C2ρ(u0)

))
v,

(5.2)

∀ v ∈ V,
ξ0 = βτ (χ0),(5.3)
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and, according to (3.5), be

(5.4) δχ0 =
χ0 − χ−1

τ
,

then, thanks to (5.1) (5.4), (A2), (A10) (A11), and (2.4), we have that
a positive constant C exists such that

(5.5) ‖δχ0‖∗ ≤ C,

and this estimate will be useful in the sequel.

Remark 5.1. We may now observe that, in substitution of (A11), the
following condition

(5.6)
∥∥∥−∆χ0+βτ (χ0)+σ′(χ0)− λ

C1

(
u0−C2ρ(u0)

)∥∥∥ ≤ C ∀ τ ∈ [0, 1],

holding for some positive constant C, is sufficient to prove Theorem
2.2, together with (A1) (A10) and (2.22). This is the most natural
initial condition for this kind of problem, as it is possible to see looking
at (5.1) (5.3). In fact, using just (5.6), we may recover (5.5). Let us
also note that obviously (A2) and (A10) (A11), together with (2.4),
imply condition (5.6).

Let us now perform some additional regularity estimates.

Fifth estimate. Multiplying (3.18) by ui − ui−1, we get

(5.7)

τ1/4

∫
Ω

τ |δui|2 +
∫

Ω

τδϑiδui + λ
∫

Ω

δχi(ui − ui−1)

+
1
2
‖ui − ui−1‖2 +

1
2
‖ui‖2 − 1

2
‖ui−1‖2

≤ − (((k ∗τ u)i, ui − ui−1)) + 〈fi, ui − ui−1〉.,

First, we can observe that, thanks the second equality in Remark 2.1,

(5.8) τ

∫
Ω

δϑiδui ≥ C2τ |δϑi|2.
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Then, we may sum up (5.7) for i = 1, . . . ,m and, using a discrete
integration by parts (see (4.3)) we have

−
m∑

i=1

(((k ∗τ u)i, ui − ui−1)) = − (((k ∗τ u)m, um)) + (((k ∗τ u)1, u0))

+
m−1∑
i=1

(((k ∗τ u)i − (k ∗τ u)i+1, ui)),

∀m = 1, . . . , n.

Now, estimating the righthand side, we have

m−1∑
i=1

(((k ∗τ u)i − (k ∗τ u)i+1, ui))

=
m−1∑
i=1

τ (((δk ∗τ u)i+1, ui)) + k0
m−1∑
i=1

τ ((ui+1, ui)),

and

‖(k ∗τ u)m‖2 ≤ ‖k‖2
L∞(0,T )

( m∑
j=1

τ‖uj‖
)2

≤ ‖k‖2
L∞(0,T )mτ

2
m∑

j=1

‖uj‖2,

∀m = 1, . . . , n,

whence,

−
m∑

i=1

(((k ∗τ u)i, ui − ui−1))

≤ 1
4
‖um‖2 + T‖k‖2

L∞(0,T )

m∑
i=1

τ‖ui‖2 +
|k1|2
2
τ2‖u1‖2

+
1
2
‖u0‖2 +

1
2

m−1∑
i=1

τ
(
‖(δk ∗τ u)i+1‖2 + ‖ui‖2

)

+
1
2
|k0|

m−1∑
i=1

τ
(
‖ui‖2 + ‖ui+1‖2

)
, ∀m = 1, . . . , n.



458 E. ROCCA

Recalling (3.9) and (3.13), we finally deduce that

(5.9) −
m∑

i=1

(((k ∗τ u)i, ui − ui−1))

≤ 1
4
‖um‖2 +

1
2
‖u0‖2 + C

m∑
i=1

τ‖ui‖2, ∀m = 1, . . . , n.

Now, use again a discrete integration by parts (see (4.3)) in order to
estimate the last term in (5.7). Indeed,

(5.10)
m∑

i=1

〈fi, ui − ui−1〉 = 〈fm, um〉 − 〈f1, u0〉+
m−1∑
i=1

〈fi − fi+1, ui〉

and

(5.11)

m∑
i=1

〈fi, ui − ui−1〉 ≤ 1
8
‖um‖2 +

5
2
‖fτ‖2

L∞(0,T ;V ′)

+
1
2
‖u0‖2 +

m−1∑
i=1

τ‖δfi+1‖∗‖ui‖.

Now, taking (5.7) (5.11) into account, we have the following estimate

(5.12)

τ1/4
m∑

i=1

τ |δui|2 + C2

m∑
i=1

τ |δϑi|2 + λ
m∑

i=1

∫
Ω

δχi(ui − ui−1)

+
1
2

m∑
i=1

‖ui − ui−1‖2 +
1
8
‖um‖2

≤ ‖u0‖2 + C ′τ
m∑

i=1

‖ui‖2 +
5
2
‖f τ‖2

L∞(0,T ;V ′) +
m−1∑
i=1

τ‖δfi+1‖∗‖ui‖,

∀m = 1, . . . , n.

Sixth estimate. First, we can take the difference between (3.19) at i
and (3.19) at (i− 1), then multiply it by C1/τ , to get

(5.13)

C1

〈χi − χi−1

τ2
− χi−1 − χi−2

τ2
, v

〉
+ C1

∫
Ω

∇
(
wi − wi−1

τ

)
∇v = 0,

∀ v ∈ V.
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Now we take the difference between (3.20) at i and (3.20) at (i − 1),
then multiply it by C1/τ , to get

(5.14)

C1

〈wi − wi−1

τ
, v

〉
= C1

∫
Ω

∇
(
χi − χi−1

τ

)
∇v + C1

∫
Ω

(
ξi − ξi−1

τ

)
v

− λ
∫

Ω

(
ui − ui−1

τ

)
v + λC2

∫
Ω

(
ϑi − ϑi−1

τ

)
v

+ C1

∫
Ω

(
σ′(χi − σ′(χi−1)

τ

)
v, ∀ v ∈ V.

Now multiply (5.13) by N (χi − χi−1) and (5.14) by χi − χi−1.

Subtracting the two resulting equalities, we get

(5.15)

C1

2
‖δχi‖2

∗ +
C1

2

∥∥∥χi − 2χi−1 + χi−2

τ

∥∥∥2

∗

− C1

2
‖δχi−1‖2

∗ + τC1|∇(δχi)|2 − λ
∫

Ω

(ui − ui−1)δχi

+ C1

∫
Ω

(
βτ (χi)− βτ (χi−1)

)
δχi

≤ −C1

∫
Ω

(
σ′(χi)− σ′(χi−1)

)
δχi − λC2τ

∫
Ω

δϑiδχi.

Now, in order to estimate the righthand side of (5.15), we can first
observe that, thanks to (A1) and (3.17),

C1

∫
Ω

(
βτ (χi)− βτ (χi−1)

)
δχi ≥ 0,

and (A2) lead to

−C1

∫
Ω

(
σ′(χi)− σ′(χi−1)

)
δχi ≤ τ

8
‖δχi‖2 + Cτ‖δχi‖2

∗ ,

−λC2τ

∫
Ω

δϑiδχi ≤ C2

2
τ |δϑi|2 + τ8 ‖δχi‖2 + Cτ‖δχi‖2

∗.

It follows

(5.15)

C1

2
‖δχi‖2

∗ + C1τ‖δχi‖2 +
τ2C1

2

∥∥∥χi − 2χi−1 + χi−2

τ2

∥∥∥2

∗

− C1

2
‖δχi−1‖2

∗ − λ
∫

Ω

(ui − ui−1)δχi

≤ C2

2
τ |δϑi|2 + Cτ‖δχi‖2

∗ +
τ

4
‖δχi‖2,
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where we have written the V -norm of δχi instead of the H-norm of its
gradient, because δχi is a zero mean value function.

Moreover, taking (5.1) (5.4) and (A9) into account, summing up this
estimate for i = 1, . . . ,m and then adding the result to (5.12), we have

τ1/4
m∑

i=1

τ |δui|2 + C2

m∑
i=1

τ |δϑi|2 + 1
2

m∑
i=1

‖ui − ui−1‖2 +
1
4
‖um‖2

(5.16)

+
τ2

2

m∑
i=1

‖δ(δχi))‖2
∗ +

1
2
‖δχm‖2

∗ + Cτ
m∑

i=1

‖δχi‖2 − 1
2
‖δχ0‖2

∗

≤ C2

2
τ

m∑
i=1

|δϑi|2 + C ′′τ
m∑

i=1

‖δχi‖2
∗ + C

′τ
m∑

i=1

‖ui‖2

+ ‖u0‖2 +
5
2
‖fτ‖2

L∞(0,T ;V ′) +
m−1∑
i=1

τ‖δfi+1‖∗‖ui‖,

for all m = 1, . . . , n and for some positive constants C ′ and C ′′.

Then we can choose τ < min{1/4C ′, 1/2C ′′} in (5.16), so that we
get, thanks also to (A9),

τ1/4
m∑

i=1

τ |δui|2 + C2

2

m∑
i=1

τ |δϑi|2 + 1
2

m∑
i=1

τ2‖δui‖2 + C‖um‖2

+
τ

2

m∑
i=1

τ‖δ(δχi))‖2
∗ +

1
2
‖δχm‖2

∗ + Cτ
m∑

i=1

‖δχi‖2

≤ C + ‖u0‖2 + C‖δχ0‖2
∗ + Cτ

m−1∑
i=1

‖δχi‖2
∗

+ Cτ
m−1∑
i=1

‖ui‖2 +
m−1∑
i=1

τ‖δfi+1‖∗‖ui‖, ∀m = 1, . . . , n.

Now, we may use a discrete version of Gronwall’s lemma to see that,
thanks also to (5.5),

(5.17)
τ‖∂tuτ‖2

L2(0,T ;V ) + τ
1/4‖∂tuτ‖2

L2(0,T ;H) + ‖uτ‖L∞(0,T ;V )

+‖∂tϑτ‖2
L2(0,T ;H) + ‖∂tχτ‖2

L∞(0,T ;V ′)∩L2(0,T ;V ) ≤ C
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and is straightforward to see that

(5.18) ‖uτ − uτ‖2
L2(0,T ;V ) ≤

τ2

3
‖∂tuτ‖2

L2(0,T ;V ) ≤ Cτ.

Now, by standard compactness argument, using also (5.18), at least for
a subsequence of τ ↘ 0, we have the following

uτ
∗−→u in L∞(0, T ;V ),(5.19)

∂tϑτ

⇀ ∂tϑ in L2(0, T ;H),(5.20)
∂tχτ

⇀ ∂tχ in L2(0, T ;V ),(5.21)

∂tχτ
∗−→∂tχ in L∞(0, T ;V ′).(5.22)

Thus, (2.23) (2.24) and the first two inclusions in (2.25) are satisfied.
Moreover, let us observe that, proceeding exactly like in the fourth
estimate, thanks to (5.17), we obtain

‖ξτ‖L∞(0,T ;H) + ‖wτ‖L∞(0,T ;V ) + ‖χτ‖L∞(0,T ;W ) ≤ C.

Now, by the standard compactness argument, at least for a subsequence
of τ ↘ 0, we have the following

ξτ
∗−→ξ in L∞(0, T ;H),

wτ
∗−→w in L∞(0, T ;V ),

χτ
∗−→χ in L∞(0, T ;W ),

and so we recover also regularity (2.25) (2.27).

Now, let us come to the proof of Theorem 2.2. We use [30, Lemma
3.5] and state it for the reader’s convenience.

Lemma 5.1. Taking assumptions (A4) and (2.1) (2.4) into account,
there exists a constant d > 0, such that

d|r1 − r2|
1 + r21 + r22

≤ |ρ(r1)− ρ(r2)|, ∀ r1, r2 ∈ R.
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Let now (ϑi, ui, χi, ξi) for i = 1, 2, be two quadruples fulfilling
(2.12) (2.21), that is, (ϑ1, χ1) and (ϑ2, χ2) are two solutions of problem
(1.1) (1.7), in the sense of Theorem 2.2.

First, we take the difference of equalities (2.18), then integrate from
0 to s ∈ (0, T ) and test it by (u1 − u2)(s).

Thanks to (A3), integrating the result from 0 to t ∈ (0, T ), we get

(5.23)

∫ t

0

∫
Ω

(
ρ(u1)− ρ(u2)

)
(s)u(s) ds+

1
2

∥∥∥ ∫ t

0

u(r) dr
∥∥∥2

≤ −λ
∫ t

0

〈χ(s), u(s)〉 ds−
∫ t

0

(( ∫ s

0

(k ∗ u)(r) dr, u(s)
))
ds,

where u := u1 − u2, and χ := χ1 − χ2.

Now subtract the two equations (2.19), and test the result by N (χ).
Take the difference between the two equations (2.20), test it by −χ and
then sum with the preceding expression. Using the monotonicity of β
and integrating on (0, t), with t ∈ (0, T ), we deduce that

(5.24)

1
2
‖χ(t)‖2

∗ +
∫ t

0

∫
Ω

|∇χ(s)|2 ds

≤ −
∫ t

0

∫
Ω

(
σ′(χ1)− σ′(χ2)

)
(s)χ(s) ds

+
λ

C1

∫ t

0

∫
Ω

χ(s)
[
u(s)−C2

(
ρ(u1)−ρ(u2)

)]
(s) ds.

Integrating by parts the latter term in (5.23), we obtain

(5.25)

−
∫ t

0

(( ∫ s

0

(k ∗ u)(τ ) dτ, u(s)
))
ds

= −
(( ∫ t

0

(k ∗ u)(τ ) dτ,
∫ t

0

u(s) ds
))

+
∫ t

0

((
(k ∗ u)(s),

∫ s

0

u(r) dr
))
ds.

Now, let us call

I1 = −
(( ∫ t

0

(k ∗ u)(r) dr,
∫ t

0

u(s) ds
))
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and

I2 =
∫ t

0

((
(k ∗ u)(s),

∫ s

0

u(r) dr
))
ds.

Using (2.28) (2.30), (2.34), and (4.19), we can easily get

I1 ≤ 1
4

∥∥∥ ∫ t

0

u(s) ds
∥∥∥2

+ ‖k ∗ u‖2
L1(0,T ;V )

(5.26)

≤ 1
4

∥∥∥ ∫ t

0

u(s) ds
∥∥∥2

+ 2T
(|k(0)|2+ ‖k′‖2

L1(0,T )

) ∫ t

0

∥∥∥ ∫ s

0

u(r) dr
∥∥∥2

ds

and

I2 ≤
∫ t

0

‖(k ∗ u)(s)‖
∥∥∥∫ s

0

u(r) dr
∥∥∥ds

≤ 2T
(|k(0)|2 + ‖k′‖2

L1(0,T )

) ∫ t

0

∥∥∥ ∫ s

0

u(r) dr
∥∥∥2

ds.

Looking now at (5.24), we can observe that, thanks also to (A2) and
(2.31),

−
∫ t

0

∫
Ω

(
σ′(χ1)− σ′(χ2)

)
(s)χ(s) ds

≤ C
∫ t

0

∫
Ω

|χ(s)|2 ds ≤ ζ‖χ‖2
L2(0,T ;V ) + Cζ‖χ‖2

L2(0,T ;V ′),

∀ ζ > 0 and for some Cζ > 0.

Moreover, we can see that, thanks to (2.4),

λ

C1

∫ t

0

∫
Ω

χ(s)
[
u(s)− C2

(
ρ(u1)− ρ(u2)

)]
(s) ds

≤ C
∫ t

0

∫
Ω

|u(s)||χ(s)| ds

≤ C
∫ t

0

∫
Ω

|u(s)|√
1 + |u1(s)|2+ |u2(s)|2

√
1 + |u1(s)|2+ |u2(s)|2|χ(s)|ds

≤ 1
2

∫ t

0

∫
Ω

d|u(s)|2
1 + |u1(s)|2 + |u2(s)|2 ds

+ C
∫ t

0

∫
Ω

(1 + |u1(s)|2 + |u2(s)|2)|χ(s)|2 ds,
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where d is the same constant of Lemma 5.1.

Now, thanks to (2.31), we have that

(5.29)

C

∫ t

0

∫
Ω

(1 + |u1(s)|2 + |u2(s)|2)|χ(s)|2 ds

≤ C
∫ t

0

|χ(s)|2 ds+ C
2∑

i=1

∫ t

0

∫
Ω

|ui(s)|2||χ(s)|2 ds

≤ η‖χ‖2
L2(0,T ;V ) + Cη‖χ‖2

L2(0,T ;V ′)

+ C
2∑

i=1

‖ui‖2
L∞(0,T ;V )

∫ t

0

‖χ(s)‖2
L4(Ω) ds,

∀ η > 0 and for some Cη > 0,

then, we can apply (2.31) to this last estimate and use the boundness
of ui in L∞(0, T ;V ), given by (5.19), so that, choosing ζ, η suitably in
(5.27) and (5.29), then Lemma 5.1, (5.24) (5.29) and (A5) lead to

1
2

∫ t

0

∫
Ω

d|u(s)|2
1 + |u1(s)|2 + |u2(s)|2 ds+

1
2

∥∥∥ ∫ t

0

u(s) ds
∥∥∥2

+
1
2
‖χ(t)‖2

∗ +
1
2

∫ t

0

∫
Ω

|∇χ(s)|2 ds

≤ C‖χ‖2
L2(0,T ;V ′) + C

∫ t

0

∥∥∥ ∫ s

0

u(r) dr
∥∥∥2

ds.

Applying Gronwall’s lemma (see [2, Lemmas A.4 A.5, pp. 156 157]),
we finally have that |u| = 0 almost everywhere, in Q and χ(t) = 0, for
all t ∈ [0, T ].

So, on account of (2.17) (2.21), this entails that the two pairs (ϑ1, χ1)
and (ϑ2, χ2) must necessarily coincide and the proof of Theorem 2.2 is
complete.
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