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INITIAL VALUE PROBLEMS FOR NONLINEAR
SECOND ORDER IMPULSIVE INTEGRO-

DIFFERENTIAL EQUATIONS IN BANACH SPACES

JINQING ZHANG

ABSTRACT. In this paper the author uses the fixed point
theory to investigate the existence of solutions of initial
value problems for nonlinear second order impulsive integro-
differential equations in Banach spaces.

1. Introduction. The theory of impulsive differential equations
has become an important area of investigation in recent years, see
[5]. In Section 4.3 of [4] and [1], the authors discussed the existence
of solutions of boundary value problems for nonlinear second order
impulsive integro-differential equations in Banach spaces E by means
of Darbo’s fixed point theorem. Now, under more wide conditions, see
Remark 2, this paper shall also use fixed point theory to investigate the
existence of solutions of initial value problems (IVP) for second order
impulsive integro-differential equations in E. But we cannot obtain the
results in this paper directly by means of Darbo’s fixed point theorem
used in [4] and [1].

Consider the IVP for impulsive integro-differential equations in a
Banach space E:

(1.1)

x′′ = f(t, x, x′, Tx, Sx), t ∈ J, t �= tk,

Δx|t=tk
= Ik(x(tk), x′(tk)),

Δx′|t=tk
= Īk(x(tk), x′(tk)), k = 1, 2, . . . , m,

x(0) = x0, x′(0) = x1,

where f ∈ C[J ×E×E×E×E, E], J = [0, a](a > 0), 0 < t1 < t2 · · · <
tm < a, Ik, Īk ∈ C[E × E, E], x0, x1 ∈ E and

(1.2) (Tx)(t) =
∫ t

0

k(t, s)x(s) ds, (Sx)(t) =
∫ a

0

h(t, s)x(s) ds,
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k ∈ C[D, R1], h ∈ C[J × J, R1], D = {(t, s) ∈ J × J : 0 ≤ s ≤ t ≤ a},
R1 = (−∞, +∞), Δx|t=tk

denotes the jump of x(t) at t = tk, i.e.,

Δx|t=tk
= x(t+k ) − x(t−k ).

Here x(t+k ) and x(t−k ) denote the right and left limits of x(t) at
t = tk, respectively. Δx′|t=tk

has a similar meaning for x′(t). Let
PC1[J, E] = {x : x is a map from J into E such that x(t) is
continuously differentiable at t �= tk, left continuous at t = tk and
x(t+k ), x′(t−k ), x′(t+k ) exist, k = 1, 2, . . . , m}. For x ∈ PC1[J, E], by
virtue of the mean value theorem, it is easy to see that the left derivative
x′
−(tk) exists and

x′
−(tk) = lim

h→0+
h−1[x(tk) − x(tk − h)] = x′(t−k ).

In IVP (1.1) and in the following, x′(tk) is understood as x′
−(tk). It is

clear that PC1[J, E] is a Banach space with norm

‖x‖PC1 = max
{

sup
t∈J

‖x(t)‖, sup
t∈J

‖x′(t)‖
}
.

Notice that PC[J, E] = {x : x is a map from J into E such that x(t)
is continuous at t �= tk, left continuous at t = tk and x(t+k ) exists, k =
1, 2, . . . , m} is also a Banach space with norm ‖x‖PC = supt∈J ‖x(t)‖.
Let J ′ = J\{t1, t2, . . . , tm}. A map x ∈ PC1[J, E]∩C2[J ′, E] is called
a solution of IVP (1.1) if it satisfies (1.1).

2. Some lemmas.

Lemma 1. x ∈ PC1[J, E]∩C2[J ′, E] is a solution of IVP (1.1) if and
only if x ∈ PC1[J, E] is a solution of the impulsive integral equation

(2.1) x(t) = Ax(t), t ∈ J,

where
(2.2)

Ax(t) = x0 + tx1 +
∫ t

0

(t − s)f(s, x(s), x′(s), (Tx)(s), (Sx)(s)) ds

+
∑

0<tk<t

[Ik(x(tk), x′(tk)) + (t − tk)Īk(x(tk), x′(tk))].
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Proof. First suppose that x ∈ PC1[J, E] ∩ C2[J ′, E] is a solution of
IVP (1.1). Evidently, for tk < t ≤ tk+1, we have

x(t1) − x(0) =
∫ t1

0

x′(s) ds, x(t2) − x(t+1 ) =
∫ t2

t1

x′(s) ds,

· · ·

x(tk) − x(t+k−1) =
∫ tk

tk−1

x′(s) ds, x(t)− x(t+k ) =
∫ t

tk

x′(s) ds.

By adding, we get, for tk < t ≤ tk+1,

x(t) − x(0) −
k∑

i=1

[x(t+i ) − x(ti)] =
∫ t

0

x′(s) ds,

that is,

(2.3) x(t) = x(0) +
∫ t

0

x′(s) ds +
∑

0<tk<t

[x(t+k ) − x(tk)], t ∈ J.

Replacing x(t) by x′(t) in (2.3), because of x ∈ PC1[J, E] ∩ C2[J ′, E],
we have

(2.4) x′(t) = x′(0) +
∫ t

0

x′′(s) ds +
∑

0<tk<t

[x′(t+k ) − x′(tk)], t ∈ J.

Then substituting (2.4) into (2.3), we can obtain (2.1).

Conversely, assume that x ∈ PC1[J, E] is a solution of Equation (2.1).
Evidently,

Δx|t=tk
= Ik(x(tk), x′(tk)), k = 1, 2, . . . , m.

Direct differentiation implies, for t ∈ J , t �= tk,

(2.5)
x′(t) = (Ax)′(t) = x1 +

∫ t

0

f(s, x(s), x′(s), (Tx)(s), (Sx)(s)) ds

+
∑

0<tk<t

Īk(x(tk), x′(tk))
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and
x′′(t) = f(t, x(t), x′(t), (Tx)(t), (Sx)(t)),

hence x ∈ C2[J ′, E] and

Δx′|t=tk
= Īk(x(tk), x′(tk)), k = 1, 2, . . . , m.

On the other hand, from (2.1) and (2.5) we can calculate x(0) = x0

and x′(0) = x1. The proof is completed.

In the following, let J0 = [0, t1], J1 = (t1, t2], . . . , Jm−1 = (tm−1, tm],
Jm = (tm, a], k0 = max{k(t, s) : (t, s) ∈ D} and h0 = max{h(t, s) :
(t, s) ∈ J × J}. For H ⊂ PC1[J, E], we denote H ′ = {x′ : x ∈
H} ⊂ PC[J, E], Hk = {x|Jk

: x ∈ H}, H ′
k = {x′|Jk

: x ∈ H},
H(t) = {x(t) ∈ E : x ∈ H} ⊂ E, H ′(t) = {x′(t) ∈ E : x ∈ H} ⊂ E(t ∈
J). Similarly, we can define (TH)(t), (SH)(t), (TH)′(t) and (SH)′(t),
where k = 0, 1, 2, . . . , m, t ∈ J . Then, using the same method as in
the proof (29) of [1], we can get

Lemma 2. If H ⊂ PC1[J, E] is bounded and the elements of H ′ are
equicontinuous on each Jk, k = 0, 1, 2, . . . , m, then

α(H(J)) ≤ 2α(H), α(H ′(J)) ≤ 2α(H),

where α denotes the Kuratowski measure of noncompactness, H(J) =
{x(s) : x ∈ H, s ∈ J} and H ′(J) = {x′(s) : x ∈ H, s ∈ J}.

Lemma 3. If H ⊂ PC1[J, E] and the elements of H are equicon-
tinuous on each Jk, k = 0, 1, 2, . . . , m, then the elements of co H ⊂
PC1[I, E] are also equicontinuous on each Jk, k = 0, 1, 2, . . . , m.

Proof. For any given ε > 0, it is easy to show, using the conditions of
Lemma 3, that there exists δ > 0 such that if t1, t2 ∈ Jk and |t1−t2| < δ,
then

(2.6) ‖x(t1) − x(t2)‖ <
ε

3
holds for any x ∈ H. For any y ∈ coH, there exists yk ∈ co H such
that

(2.7) ‖yk − y‖PC1 <
ε

3
.
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Obviously, there exists y
(k)
i ∈ H, i = 1, 2, . . . , nk, such that yk =∑nk

i=1 α
(k)
i y

(k)
i , where α

(k)
i ≥ 0 and

∑nk

i=1 α
(k)
i = 1. Thus, by (2.6) and

(2.7) we know, for t1, t2 ∈ Jk and |t1 − t2| < δ,

‖y(t1) − y(t2)‖ ≤ ‖y(t1) − yk(t1)‖ + ‖yk(t1) − yk(t2)‖
+ ‖yk(t2) − y(t2)‖

≤ 2‖y − yk‖PC1 +
nk∑
i=1

α
(k)
i ‖y(k)

i (t1) − y
(k)
i (t2)‖

< ε.

Therefore, the elements of coH are equicontinuous on each Jk. The
proof is completed.

On account of Theorem 1.2.2 in [4], we can easily show the following
lemma.

Lemma 4. If H ⊂ PC1[J, E] is bounded and the elements of H are
equicontinuous on each Jk, then α(H(t)) is continuous on each Jk and

α

({ ∫
J

x(t) dt : x ∈ H

})
≤

∫
J

α(H(t)) dt,

where k = 0, 1, 2, . . . , m.

In the following, let r > 0, Tr = {x ∈ E : ‖x‖ ≤ r} ⊂ E. Then we
list for convenience the following assumptions:

(H1) For any Tr, f is uniformly continuous on J ×Tr ×Tr ×Tr ×Tr,
and there exist nonnegative constants Li, i = 1, 2, 3, 4, such that

(2.8)
α(f(t, B1, B2, B3, B4)) ≤

4∑
i=1

Liα(Bi),

∀ t ∈ J, bounded Bi ⊂ E, i = 1, 2, 3, 4.

(H2) For any Tr, Ik and Īk, k = 1, 2, . . . , m, are bounded on
Tr × Tr, and for any bounded H ⊂ PC1[J, E], Ik(H(tk), H ′(tk)) and
Īk(H(tk), H ′(tk)), k = 1, 2, . . . , m, are relatively compact sets in E.
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Lemma 5. Suppose that the assumptions (H1) and (H2) are fulfilled.
Then the operator A defined by (2.2) is a continuous and bounded map
from PC1[J, E] into PC1[J, E], and there exist a positive integer n0

and a constant 0 ≤ τ < 1 such that, for any bounded H ⊂ PC1[J, E],

(2.9) α(Ãn0(H)) ≤ τα(H)

holds, where

(2.10)
Ã1(H) = A(H), Ãn(H) = A(co (Ãn−1(H))),

n = 2, 3, . . . .

Proof. It is easy to see that the uniform continuity of f on J × Tr ×
Tr × Tr × Tr implies the boundedness of f on J × Tr × Tr × Tr × Tr.
Then, by (2.2) and (2.5) we know that A is a bounded and continuous
operator from PC1[J, E] into PC1[J, E]. Obviously, in view of the
boundedness of H ⊂ PC1[J, E] and by (2.2), A(H) ⊂ PC1[J, E] is
bounded and it is easy to show using (2.2) and (2.5) that the elements
of A(H) and (A(H))′ are equicontinuous on each Jk. Noticing (2.10)
again, we have, for any fixed n, n = 1, 2, . . . , that Ãn(H) and (Ãn(H))′

are also bounded on PC1[J, E] and that the elements of Ãn(H) and
(Ãn(H))′ are also equicontinuous on each Jk. Hence, Lemma 4.3.11 in
[4] or Lemma 3 in [1] implies

(2.11) α(Ãn(H)) = max
{

sup
t∈J

α(Ãn(H)(t)), sup
t∈J

α((Ãn(H))′(t))
}
.

By virtue of (2.2), (2.8), (2.10), (H2) and in view of Lemma 2, we have

α((Ã1(H))(t)) = α((A(H))(t))
≤ tα(co {(t − s)f(s, x(s), x′(s), (Tx)(s), (Sx)(s))|

x ∈ H, s ∈ J})
+

∑
0<tk<t

[α(Ik(H(tk), H ′(tk)))(2.12)

+ (t − tk)α(Īk(H(tk), H ′(tk)))]
≤ t2[L1α(H(J)) + L2α(H ′(J))

+ ak0L3α(H(J)) + αh0L4α(H(J))]
≤ 2t2[(L1 + ak0L3 + ah0L4)α(H) + L2α(H ′(J))]
≤ Lt2α(H),
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where L = 2(L1 + L2 + ak0L3 + ah0L4). Similarly, by (2.5), (2.8),
(2.10), (H2) and Lemma 2, we can get

(2.13) α((Ã1(H))′(t)) ≤ Ltα(H),

which, together with (2.12), implies

(2.14) max{α((Ã1(H))(t)), α((Ã1(H))′(t))} ≤ L(a + 1)tα(H).

By the uniform continuity of k, h and f on J × Tr × Tr × Tr × Tr, we
can easily see, for any bounded B ⊂ PC1[I, E] that, if the elements of
B′ are equicontinuous on each Jk, then the elements of TB, SB and
f(t, B(t), B′(t), (TB)(t), (SB)(t)) are also equicontinuous on each Jk.
Therefore, by the boundedness and the equicontinuity of the elements
of Ã1(H) and (Ã1H))′ on each Jk, it is easy to show from Lemma 3
that
(2.15)
f(s, (co Ã1(H))(s), (co Ã1(H))′(s), (T co Ã1(H))(s), (Sco Ã1(H))(s))

is bounded and that the elements of (2.15) are equicontinuous on each
Jk. Thus, by (2.2), (2.8), (2.14), (H2) and in view of Lemma 4, we get

α((Ã2(H))(t)) ≤ α

( ∫ t

0

(t − s)f(s, (co Ã1(H))(s), (co Ã1(H))′(s),

(T co Ã1(H))(s), (Sco Ã1(H))(s)) ds

)

+
∑

0<tk<t

[
α(Ik((co Ã1(H))(tk), (co Ã1(H))′(tk)))

+(t−tk)α(Īk((co Ã1(H))(tk), (co Ã1(H))′(tk)))
]

≤
∫ t

0

α(t − s)(f(s, (co Ã1(H))(s), (co Ã1(H))′(s),

(T co Ã1(H))(s), (Sco Ã1(H))(s))) ds

≤ t

∫ t

0

[
(L1 + ak0L3 + ah0L4)α((Ã1(H))(s))

+L2α((Ã1(H))′(s))
]

ds
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≤ Lt

∫ t

0

max{α((Ã1(H))(s)), α((Ã1(H))′(s))} ds

≤ L2(a + 1)tα(H)
∫ t

0

s ds

=
L2(a + 1)t3

2
α(H).

In the same way, by (2.5), (2.8), (2.14), (H2) and on account of
Lemma 4, we can show that

α((Ã2(H))′(t)) ≤ L2(a + 1)t2

2
α(H),

thus,

max{α((Ã2(H))(t)), α((Ã2(H))′(t))} ≤ L2(a + 1)2t2

2!
α(H).

Using induction on n, we have, for n = 1, 2, . . . ,

(2.16) max{α((Ãn(H))(t)), α((Ãn(H))′(t))} ≤ Ln(a + 1)ntn

n!
α(H).

(2.11) and (2.16) imply

(2.17) α(Ãn(H)) ≤ Ln(a + 1)nan

n!
α(H).

Clearly, (Ln(a + 1)nan/n!) → 0, n → ∞, hence it follows from (2.17)
that there exist 0 < τ < 1 and a positive integer n0 such that
α(Ãn0(H)) ≤ τα(H). The proof is completed.

Remark 1. The assumptions of Lemma 5 are automatically satisfied
when E is finite dimensional.

3. Main theorem. In the following, let

lim
‖x‖+‖y‖+‖z‖+‖w‖→∞

(
sup
t∈J

‖f(t, x, y, z, w)‖
‖x‖ + ‖y‖ + ‖z‖ + ‖w‖

)
= β,

lim
‖x‖+‖y‖→∞

‖Ik(x, y)‖
‖x‖ + ‖y‖ = βk, k = 1, 2, . . . , m,

lim
‖x‖+‖y‖→∞

‖Īk(x, y)‖
‖x‖ + ‖y‖ = β̄k, k = 1, 2, . . . , m.
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So 0 ≤ β, βk, β̄k ≤ ∞.

Theorem 1. Let the assumptions of Lemma 5 be satisfied. Suppose
that

(3.1) η = max
{

a2β(2 + ak0 + ah0) + 2
m∑

k=1

[βk + (a − tk)β̄k],

aβ(2 + ak0 + ah0) + 2
m∑

k=1

β̄k

}
< 1.

Then IVP (1.1) has at least one solution in PC1[J, E] ∩ C2[J ′, E].

Proof. By (3.1), we can choose β′ > β, β′
k > βk and β̄′

k > β̄k,
k = 1, 2, . . . , m, such that

(3.2) η′ = max
{

a2β′(2 + ak0 + ah0) + 2
m∑

k=1

[β′
k + (a − tk)β̄′

k],

aβ′(2 + ak0 + ah0) + 2
m∑

k=1

β̄′
k

}
< 1.

On account of the definition of β and β′, there exists N > 0 such that

‖f(t, x, y, z, w)‖ < β′(‖x‖ + ‖y‖ + ‖z‖ + ‖w‖)

for t ∈ J , ‖x‖ + ‖y‖ + ‖z‖ + ‖w‖ ≥ N . So

(3.3)
‖f(t, x, y, z, w)‖ ≤ β′(‖x‖ + ‖y‖ + ‖z‖ + ‖w‖) + M,

t ∈ J, x, y ∈ E,

where M = supt∈J,‖x‖+‖y‖+‖z‖+‖w‖≤N ‖f(t, x, y, z, w)‖ < ∞. Simi-
larly, we have

‖Ik(x, y)‖ ≤ β′
k(‖x‖ + ‖y‖) + Mk, x, y ∈ E, k = 1, 2, . . . , m,

(3.4)

‖Īk(x, y)‖ ≤ β̄′
k(‖x‖ + ‖y‖) + M̄k, x, y ∈ E, k = 1, 2, . . . , m,

(3.5)
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where Mk, M̄k, k = 1, 2, . . . , m, are positive constants. Now (2.2) and
(3.3) (3.5) imply

‖(Ax(t)‖ ≤ ‖x0‖ + a‖x1‖
+ a

∫ a

0

[β′(‖x(s)‖ + ‖x′(s)‖ + ‖(Tx)(s)‖ + ‖(Sx)(s)‖)+M ] ds

+
∑

0<tk<t

{
[β′

k(‖x(tk)‖ + ‖x′(tk)‖) + Mk]
(3.6)

+(t − tk)[β̄′
k(‖x(tk)‖ + ‖x′(tk)‖) + M̄k]

}

≤
{

a2β′(2 + ak0 + ah0) + 2
m∑

k=1

[β′
k + (a−tk)β̄′

k]
}
‖x‖PC1 + C1

≤ η′‖x‖PC1 + C1,

where η′ is defined by (3.2) and C1 is a positive constant. Similarly,
from (2.5) and (3.3) (3.5), we can get

(3.7) ‖(Ax)′(t)‖ ≤ η′‖x‖PC1 + C2, t ∈ J,

where C2 is a positive constant. The relations (3.6) and (3.7) imply

(3.8) ‖Ax‖PC1 ≤ η′‖x‖PC1 + C, x ∈ PC1[J, E],

where η′ < 1 is defined by (3.2) and C = max{C1, C2} = const. Letting
R > C/(1−η′) and BR = {x ∈ PC1[J, E] : ‖x‖PC1 ≤ R} ⊂ PC1[J, E],
by (3.8) we have A(BR) ⊂ BR. Thus it is clear from Lemma 5 that A is
a bounded and continuous operator from BR into BR. Using Lemma 5
again, we know that there exist a positive integer n0 and 0 < τ < 1
such that (2.9) holds for any H ⊂ BR, where Ãn is defined by (2.10).
Let

B0 = BR, B1 = co (Ãn0(B0)), Bn = co (Ãn0(Bn−1)),
n = 2, 3, . . . .

We shall show

(i) B0 ⊃ B1 ⊃ B2 · · · ⊃ Bn ⊃ · · · ;
(ii) limn→∞ α(Bn) = 0.
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In fact, by (2.10) and B1 = co (Ãn0(B0)) ⊂ BR = B0, we have
Ãn0(B1) ⊂ Ãn0(B0). Thus,

B2 = co (Ãn0(B1)) ⊂ co (Ãn0(B0)) = B1.

Using induction on n, we get Bn ⊂ Bn−1, n = 1, 2, . . . , so (i) is
proved. Then by (2.9) and the properties of the Kuratowski measure
of noncompactness, we have

α(Bn) = α(co Ãn0(Bn−1)) ≤ τα(Bn−1) ≤ · · · ≤ τnα(B0) −→ 0,

n → ∞;

thus (ii) is fulfilled. Therefore, it follows from Lemma 5.2 of Chapter
II in [3] that B̃ = ∩∞

n=0Bn is a nonempty, convex and compact set in
BR.

In the following, we need only to show AB̃ ⊂ B̃. By Ã1(B0) =
A(B0) ⊂ B0, we have co (Ã1(B0)) ⊂ B0 = BR and, by (2.10),

Ã2(B0) = A(co (Ã1(B0))) ⊂ A(B0) = Ã1(B0),

Ã3(B0) = A(co (Ã2(B0))) ⊂ A(co (Ã1(B0))) = Ã2(B0),
· · ·

Ãn0(B0) = A(co (Ãn0−1(B0))) ⊂ A(co (Ãn0−2(B0))) = Ãn0−1(B0);

hence,
B1 = co (Ãn0(B0)) ⊂ co (Ãn0−1(B0));

thus,

A(B1) ⊂ A(co (Ãn0−1(B0))) = Ãn0(B0) ⊂ co (Ãn0(B0)) = B1.

In the same way, we can get ABn ⊂ Bn, n = 2, 3, . . . . So

(3.9) ABn ⊂ Bn, n = 0, 1, 2, . . .

holds. The relation (3.9) implies AB̃ = ∩∞
n=0ABn ⊂ ∩∞

n=0Bn = B̃.
Then, noting that B̃ is a nonempty, convex and compact set in BR, it
is easy to show using Schauder’s fixed point theorem that A has a fixed
point in B̃ ⊂ BR ⊂ PC1[J, E], and the theorem is proved.
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Remark 2. In order to use Darbo’s fixed point theorem to investigate
similar problems, the references [4] and [1] placed strict restrictions
on the constants in the compactness type conditions, see 4.3.111 and
4.3.114 in [4], (21) and (24) in [1]. In the same way, from (2.11) (2.13),
it is not difficult to see that if we also use Darbo’s fixed point theorem
to consider IVP (1.1), we have to add a restricted condition, i.e.,

(3.10)
τ = max{2(L1 + L2 + ak0L3 + ah0L4)a,

2(L1 + L2 + ak0L3 + ah0L4)a2} < 1.

But, in this paper, we delete any restriction on the constants Li,
i = 1, 2, 3, 4, in (2.8). Thus we cannot obtain the results of the paper
by the same method, that is, Darbo’s fixed point theorem, as in [4] or
[1].

4. An example.

Example. Consider the IVP of infinite system for nonlinear second
order integrodifferential equations

x′′
n =

t4

12n

[
1
8

x3
2n +

( ∫ t

0

e−ts sin(t − 2s)x2n+1(s) ds

)3]1/3

+
1
7

(
xn − 3

2
x′

n +
3
2

∫ 1

0

cos2/3 π(t − s)xn(s) ds

)
,

0 ≤ t ≤ 1, t �= 1
2
,(4.1)

Δxn|t=1/2 =
1
30

[
1√
n

x
3/5
n+1

(
1
2

)
− 1

n
x′

2n−1

(
1
2

)]
,

Δx′
n|t=1/2 =

1
15
√

n
x1/3

n

(
1
2

) [
x′

2n

(
1
2

)]1/5

,

xn(0) =
1
n2

, x′
n(0) = 0, n = 1, 2, . . . .

Conclusion. IVP (4.1) has at least one continuous and differentiable
solution x∗(t) = (x∗

1(t), . . . , x∗
n(t), . . . ) on [0, 1/2) ∪ (1/2, 1] such that

xn(t) → 0 as n → ∞ for 0 ≤ t ≤ 1.
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Proof. Let E = c0 = {x = (x1, . . . , xn, . . . ) : xn → 0}, with
norm ‖x‖ = supn |xn|. Then (4.1) can be regarded as an IVP of the
form (1.1) in E, where J = [0, 1], x0 = (1, (1/22), . . . , (1/n2), . . . ),
x1 = (0, . . . , 0, . . . ), k(t, s) = e−ts sin(t − 2s), h(t, s) = cos2/3 π(t − s),
x = (x1, . . . , xn, . . . ), y = (y1, . . . , yn, . . . ), z = (z1, . . . , zn, . . . ),
w = (w1, . . . , wn, . . . ), f = (f1, . . . , fn, . . . ), with

(4.2)
fn(t, x, y, z, w) =

t4

12n

(
1
8

x3
2n + z3

2n+1

)1/3

+
1
7

(
xn − 3

2
yn +

3
2

3wn

)
,

yn = x′
n(s), zn =

∫ t

0
k(t, s)xn(s) ds, wn =

∫ 1

0
h(t, s)xn(s) ds and m = 1,

t1 = (1/2), I1 = (I11, . . . , I1n, . . . ), Ī1 = (Ī11, . . . , Ī1n, . . . ) with
(4.3)

I1n(x, y) =
1
30

(
1√
n

x
3/5
n+1 −

1
n

y2n−1

)
, Ī1n(x, y) =

1
15
√

n
x1/3

n y
1/5
2n .

Evidently, f ∈ C[J ×E ×E ×E ×E, E], I1, Ī1 ∈ C[E ×E, E] and, for
any r > 0, f is uniformly continuous on J × Tr × Tr × Tr × Tr, I1 and
Ī1 are bounded on Tr × Tr. By (4.2), we have

|fn(t, x, y, z, w)| ≤ 1
12n

(
1
8
‖x‖3 + ‖z‖3

)1/3

+
1
7

(
‖x‖ +

3
2
‖y‖ +

3
2
‖w‖

)

≤ 1
12n

(
1
2
‖x‖ + ‖z‖

)
+

1
7

(
‖x‖ +

3
2
‖y‖ +

3
2
‖w‖

)

≤
(

1
24n

+
1
7

)
‖x‖ +

3
14

‖y‖ +
1

12n
‖z‖ +

3
14

‖w‖,

thus

(4.4) ‖f(t, x, y, z, w)‖ ≤ 31
168

‖x‖ +
3
14

‖y‖ +
1
12

‖z‖ +
3
14

‖w‖.
It is easy to show using (4.4) that (H1) in Theorem 1 is fulfilled. By
(4.3), we know

(4.5)
|I1n(x, y)| ≤ 1

30
√

n
‖x‖3/5 +

1
30n

‖y‖,

|Ī1n| ≤ 1
15
√

n
‖x‖1/3 ‖y‖1/5.
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By virtue of (4.5) and the diagonal method, we have, for any bounded
U, V ⊂ E = c0 and t ∈ J = [0, 1] that I1(U, V ) and Ī1(U, V ) are
relatively compact, hence (H2) in Theorem 1 is fulfilled. From (4.4)
and (4.5) it follows that β ≤ (3/14), β1 ≤ (1/30), β̄1 ≤ (1/15), and
therefore (3.1) is satisfied since η < 1. Thus, our conclusion follows
from Theorem 1.

Finally we need to point out that the restricted condition (3.10) is
not satisfied in the above example. Let

g(1)
n (t, x, y, z, w) =

t4

12n

(
1
8

x3
2n + z3

2n+1

)1/3

,

g(2)
n (t, x, y, z, w) =

1
7

xn,

g(3)
n (t, x, y, z, w) = − 3

14
yn,

g(4)
n (t, x, y, z, w) =

3
14

wn

and g(i) = (g(i)
1 , . . . , g

(i)
n , . . . ), i = 1, 2, 3, 4. Then fn = g

(1)
n + g

(2)
n +

g
(3)
n + g

(4)
n , n = 1, 2, . . . , and f = g(1) + g(2) + g(3) + g(4). It is obvious

that, for any bounded Bi ⊂ E = c0, i = 1, 2, 3, 4, and t ∈ J =
[0, 1], α(g(2)(t, B1, B2, B3, B4)) = α(B1)/7, α(g(3)(t, B1, B2, B3, B4)) =
3α(B2)/14, α(g(4)(t, B1, B2, B3, B4)) = 3α(B4)/14. Using the diagonal
method again, we have, for any bounded Bi ⊂ E, i = 1, 2, 3, 4, and
t ∈ J = [0, 1] that g(1)(t, B1, B2, B3, B4) is relatively compact, hence
α(g(1)(t, B1, B2, B3, B4)) = 0. By the above discussions, we get

α(f(t, B1, B2, B3, B4)) ≤
4∑

i=1

Liα(Bi),

∀ t ∈ J, bounded Bi ⊂ E, i = 1, 2, 3, 4,

where L1 = (1/7), L2 = (3/14), L3 = 0, L4 = (3/14). Observing a = 1
and k0 = h0 = 1, we get

τ = max{2(L1 + L2 + ak0L3 + ah0L4)a,

2(L1 + L2 + ak0L3 + ah0L4)a2}
=

8
7

> 1.
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Therefore, the assumption (3.10) is not satisfied. Thus we cannot use
Darbo’s fixed point theorem to study IVP (1.1).
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