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INITIAL VALUE PROBLEMS FOR NONLINEAR
SECOND ORDER IMPULSIVE INTEGRO-
DIFFERENTIAL EQUATIONS IN BANACH SPACES

JINQING ZHANG

ABSTRACT. In this paper the author uses the fixed point
theory to investigate the existence of solutions of initial
value problems for nonlinear second order impulsive integro-
differential equations in Banach spaces.

1. Introduction. The theory of impulsive differential equations
has become an important area of investigation in recent years, see
[5]. In Section 4.3 of [4] and [1], the authors discussed the existence
of solutions of boundary value problems for nonlinear second order
impulsive integro-differential equations in Banach spaces E by means
of Darbo’s fixed point theorem. Now, under more wide conditions, see
Remark 2, this paper shall also use fixed point theory to investigate the
existence of solutions of initial value problems (IVP) for second order
impulsive integro-differential equations in £. But we cannot obtain the
results in this paper directly by means of Darbo’s fixed point theorem
used in [4] and [1].

Consider the IVP for impulsive integro-differential equations in a
Banach space E:

2 = f(t,x, o', Tz,Sz), teJ, t+t,

(1.1)

x(0) = wo, 2/ (0) = z1,
where f € C[Jx ExExEXE,E], J=[0,a](a>0),0<t; <ty--- <
tm < a, I, Iy € C[E x E,E], xg,21 € E and

(1.2) (Tx)(t) = /0 k(t,s)x(s)ds, (Sx)(t) = /Oa h(t,s)x(s) ds,
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ke CID,RY, heC[JxJ,R|,D={(t,s) e JxJ:0<s<t<a},
R! = (=00, +0), Az|i—¢, denotes the jump of z(t) at t = t, i.e.,

Ay, = () — z(t;).

Here z(t)) and z(t;) denote the right and left limits of x(t) at
t = tg, respectively. Aa’|;—;, has a similar meaning for z’'(t). Let
PCYJ,E] = {x : x is a map from J into E such that z(t) is
continuously differentiable at ¢ # tg, left continuous at ¢ = ¢; and
z(th), ' (t,),2'(t)) exist, k = 1,2,... ,m}. For x € PCY[J, E], by
virtue of the mean value theorem, it is easy to see that the left derivative
a’_(ty) exists and

ol (te) = lim A7 () = @(te — )] = 2'(t).

In IVP (1.1) and in the following, 2/(¢x) is understood as z’_(¢x). It is
clear that PC'[J, E] is a Banach space with norm

Jellper = max { sup 2(t)] sup |12’ (£)]}-
teJ teJ

Notice that PC[J, E] = {z : « is a map from J into E such that z(t)
is continuous at t # ty, left continuous at ¢t = ¢, and x(t;) exists, k =
1,2,...,m} is also a Banach space with norm ||z||pc = sup,¢ [|z(t)||.
Let J' = J\{t1,t2,... ,tm}. A map x € PC[J, E]NC?[J, E] is called
a solution of IVP (1.1) if it satisfies (1.1).

2. Some lemmas.

Lemma 1. x € PC*[J, EINC?[J’, E] is a solution of IVP (1.1) if and
only if v € PC[J, E] is a solution of the impulsive integral equation
(2.1) z(t) = Az(t), teJ,

where

(2.2)
Az(t) = g + toy + /0 (t—s)f(s,2(s),2'(s), (Tz)(s), (Sx)(s)) ds

Y Te(tn), o' (t)) + (= t) Iu(2(t), 2 (t))]-

0<tp<t
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Proof. First suppose that x € PC[J, E] N C?[J', E] is a solution of
IVP (1.1). Evidently, for t; <t < t;4+1, we have

x(tl)—x(O)z/le'(s) ds,as(tg)—as(tf)z/th'(s) ds,

z(tk)—x(t;ctl):/k 2 (s) ds,x(t)—z(t,':):/ x'(s)ds.

te—1 ty

By adding, we get, for t;, <t < tgy1,

k t
2(t) = 2(0) = S [a(tF) — a(ts)] = / 2/(s) ds,

i=1
that is,
t
(2.3)  x(t) =x(0) +/ 2'(s)ds + Z [x(tf) —z(ty)], teJ
0 0<ty <t
Replacing z(t) by 2/(t) in (2.3), because of z € PC1[J, E] N C?[J', E],
we have
t
@) =0+ [ PEas+ Y EE) -0 e
0 0<tr <t

Then substituting (2.4) into (2.3), we can obtain (2.1).

Conversely, assume that 2 € PC'[J, E] is a solution of Equation (2.1).
Evidently,

Azli—y, = Ix(z(te), 2’ (tr)), k=1,2,...,m.

Direct differentiation implies, for ¢t € J, t # ty,

a'(t) = (Az)'(t) = +/0 f(s,x(s),2'(s), (Tx)(s), (Sx)(s)) ds
+ ) Du(x(ty), ' (t)

0<tp<t

(2.5)



408 J. ZHANG

and
2 (t) = f(t, x(t), 2’ (1), (T)(1), (Sz)(1),
hence z € C?[J', E] and

Ax/|t:tk = jk(x(tk),x/(tk))’ k= 1, 2, oo ,m.

On the other hand, from (2.1) and (2.5) we can calculate 2(0) = zg
and 2/(0) = z1. The proof is completed. O

In the following, let Jy = [O,tl}, J1 = (tl,tg], R (tm_l,tm],
Jm = (tm,al, ko = max{k(t,s) : (t,s) € D} and hy = max{h(t,s) :
(t,s) € J x J}. For H C PC[J,E], we denote H = {2’ : z €
H} C PC[J,E], H, = {z|;, : ® € H}, H, = {2'|;, : v € H},
Ht)={z(t)e E:z2 € HYCE,H{t)={2't)e E:x € H} CE(te
J). Similarly, we can define (TH)(t), (SH)(t), (TH)'(t) and (SH)'(¢),
where £ = 0,1,2,... ,m, t € J. Then, using the same method as in
the proof (29) of [1], we can get

Lemma 2. If H C PC'[J, E] is bounded and the elements of H' are
equicontinuous on each Ji, k =0,1,2,... ,m, then

a(H(J)) < 2a(H),  a(H'(J)) < 2a(H),

where « denotes the Kuratowski measure of noncompactness, H(J) =
{z(s):x € H,seJ} and H(J)={a'(s) :x € H,s € J}.

Lemma 3. If H C PC'[J,E] and the elements of H are equicon-
tinuous on each Jy, k = 0,1,2,... ,m, then the elements of cOH C
PC I, E] are also equicontinuous on each Ji, k =0,1,2,... ,m.

Proof. For any given € > 0, it is easy to show, using the conditions of
Lemma 3, that there exists § > 0 such that if t1,t5 € Jy and |t —t2| < 4,
then

€
(2.6) lz(t1) = 2(t2)ll < 5
holds for any x € H. For any y € co H, there exists y, € co H such
that

€
(2.7) lyr — yllpcr < 3
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Obviously, there exists yz(k) € H, v+ =1,2,... ,nk, such that y, =
S agk)yz(k), where agk) >0and ) ;% agk) = 1. Thus, by (2.6) and
(2.7) we know, for t1,ts € Ji and [t; — ta] < 4,

ly(t1) —y(t2)ll < lly(t1) =yl + llye(t1) — ye(t)]|
+ [lyk (t2) — y(t2)||

Ny

<20y —wllper + > oyt (1) -y (k)
=1

< €.

Therefore, the elements of €6 H are equicontinuous on each Jy. The
proof is completed. i

On account of Theorem 1.2.2 in [4], we can easily show the following
lemma.

Lemma 4. If H C PC'[J, E] is bounded and the elements of H are
equicontinuous on each Ji, then a(H(t)) is continuous on each Jy and

a({/Jx(t) dt:er}) < /Ja(H(t))dt,

where k =0,1,2,... ,m.
In the following, let r > 0, T, = {x € E : ||z|| <r} C E. Then we
list for convenience the following assumptions:

(Hy) For any T, f is uniformly continuous on J X Tp. x T. x T,. X T,.,
and there exist nonnegative constants L;, 1 = 1,2,3,4, such that

4
a(f(t, By, By, Bs, B1)) < Y Lia(By),
i=1
VteJ, bounded B; C E, i=1,2,3,4.

(2.8)

(Hs) For any T,, I, and I, k = 1,2,...,m, are bounded on
T, x Ty, and for any bounded H C PC'[J, E|, I(H(ty), H'(t})) and
I (H(tg), H (tr)), k= 1,2,... ,m, are relatively compact sets in E.
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Lemma 5. Suppose that the assumptions (H1) and (Hz) are fulfilled.
Then the operator A defined by (2.2) is a continuous and bounded map
from PCY[J, E] into PCY[J,E), and there exist a positive integer ng
and a constant 0 < 7 < 1 such that, for any bounded H C PC'[J, E],

(2.9) a(A™(H)) < ra(H)
holds, where
Al(H) = A(H),  A"(H) = A(eo (A" (H))),

2.10
( ) n=23,....

Proof. 1t is easy to see that the uniform continuity of f on J x T, x
T, x T, x T,. implies the boundedness of f on J x T, x T}. x T,. x T;..
Then, by (2.2) and (2.5) we know that A is a bounded and continuous
operator from PC1[J, E] into PC[J, E]. Obviously, in view of the
boundedness of H C PC[J, E] and by (2.2), A(H) C PC'[J, E] is
bounded and it is easy to show using (2.2) and (2.5) that the elements
of A(H) and (A(H))" are equicontinuous on each Ji. Noticing (2.10)
again, we have, for any fixed n, n = 1,2, ..., that A"(H) and (A"(H))’
are also bounded on PC'[J, E] and that the elements of A™(H) and
(A™(H))' are also equicontinuous on each .J;. Hence, Lemma 4.3.11 in
[4] or Lemma 3 in [1] implies

(2.11)  a(A"(H)) = max { sup (A" (H) (1)), supa((A"(H))'(t))}.

teJ teJ
By virtue of (2.2), (2.8), (2.10), (Hz) and in view of Lemma 2, we have

a((A'(H))(1)) = a((A(H))(t))
< ta(c—{(t - S)f(57 :L‘(S), CL'/(S), (T‘T)(S)v (S$)(S))|
x € H,seJ})
(2.12) + Y lall(H(ty), H' (t)))

0<tp<t
+ (t = tw)a( D (H (ty), H'(tx)))]
< t?[Lia(H(J)) + Loa(H'(J))
+ akoLsa(H(J)) 4+ ahoLaa(H(J))]
< 2t*[(Ly + akoLs + ahoLy)a(H) + Lya(H'(J))]
< Lt*a(H),
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where L = 2(Ly + Lg + akoLs + ahoL4). Similarly, by (2.5), (2.8),
(2.10), (H2) and Lemma 2, we can get

(2.13) a((AY(H)) () < Lta(H),
which, together with (2.12), implies
(214)  max{a((A'(H))(1)),a((A'(H))' (1)} < L(a+ 1)ta(H).

By the uniform continuity of k,h and f on J x T,. X T, X T, x T}, we
can easily see, for any bounded B C PC[I, F] that, if the elements of
B’ are equicontinuous on each Ji, then the elements of T'B, SB and
f(t, B(t),B'(t),(TB)(t), (SB)(t)) are also equicontinuous on each Jg.
Therefore, by the boundedness and the equicontinuity of the elements
of AY(H) and (A'H))" on each .J, it is easy to show from Lemma 3
that

(2.15)

f(s, (coA'(H))(s), (e A (H))'(s), (Teo A'(H))(s), (Sco A (H))(s))

is bounded and that the elements of (2.15) are equicontinuous on each
Ji. Thus, by (2.2), (2.8), (2.14), (H3) and in view of Lemma 4, we get

o((2(H) (1)) < a( [ €= 9165, @A (o) @i 1) ),
(T A () s), <sm1<H>><s>>ds)

£ 3 [l A H) (1) (e A (H)) (1))

0<tp<t

+(t—ty)a(Te((e A (H) (k) (0 A (H))' (1))

(Teo A'(H))(s), (Sco AL (H))(s))) ds
<t /O (L + akoLa + ahoLy)a((A (H))(s))

+Loa((AY(H)) (s))| ds
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< Lt/o max{a((A'(H))(s)), a((A'(H))'(s))} ds

t
< L*(a+ 1)ta(H)/ sds
0
_ L*a+1)88
B 2

In the same way, by (2.5), (2.8), (2.14), (Hz) and on account of
Lemma 4, we can show that

a(H).

a((A*(H))'(1) <
thus,

2(q + 1)22

masc{a((A2(H)) (), a((A2(H)) (1)} < = oy o).

Using induction on n, we have, for n =1,2,...,

(216) max{a((A"(H))(0), a((A"(H)) (1))} < Lot D"

py a(H).

(2.11) and (2.16) imply

o LMat1)e

(2.17) a(A"(H)) < o(H).

n!

Clearly, (L™(a + 1)™a™/nl) — 0, n — oo, hence it follows from (2.17)
that there exist 0 < 7 < 1 and a positive integer ng such that
a(A™(H)) < ta(H). The proof is completed. O

Remark 1. The assumptions of Lemma 5 are automatically satisfied
when E is finite dimensional.

3. Main theorem. In the following, let
1-_ ( ||f(t7377y72'7w)” )
im sup
lell+lyll+ 21 +lwll—oo \ tes [zl + lyll + 2] + flw]]
S I
Il +lyll—oo |2 + [yl

. T _
— (@9l — B k=1,2,... .m.
)+ llyll—oo [|2]| + ||yl

=0,

:6/67 ]{7:1,2,...,777,,



INITIAL VALUE PROBLEMS 413

So 0 < 3, By, Br < oo.

Theorem 1. Let the assumptions of Lemma 5 be satisfied. Suppose
that

(3.1) n=max {aQﬂ(Q + ako + aho) + 22[5k + (a — tg) B,
k=1

af(2 + aky + ahg) +2Zﬂk} <1.
k=1

Then IVP (1.1) has at least one solution in PC1[J, E] N C?[J', E|.

Proof. By (3.1), we can choose 8 > 3, B, > B and B, > B,
k=1,2,...,m, such that

(3.2) 1 =max {a2ﬁ'(2 + ako + ahg) + 2 Z[ﬁ;g + (a — t) By],
k=1
af’' (2 + aky + ahg) +2ZB,’€} <1
k=1

On account of the definition of § and ', there exists N > 0 such that

1£(t 2,y 2, w)ll < B (2] + Nyl + NIzl + [lwl)
for t € J, ||zl + llyll + l[2] + lw]| = N. So

I1f (&2, 2, w)ll < B2l + [yl + [zl + [[wl]) + M,

(3.3)
te Jx,y€ E,

where M = SUpie s |+ g+ |zl +wl < [1f (529, 2wl < o0. Simi-
larly, we have

(3.4)

[Ik(z, )l < Br(lzll + lyl) + Me, @,y€ B k=1,2,...,m,
(3.5) - -

[Ik(z, )l < Br(lzll + llyl) + Me, @,y€ B k=1,2,...,m,
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where My, My, k =1,2,... ,m, are positive constants. Now (2.2) and
(3.3)—(3.5) imply

[(Az@)] < llzoll + allz: ||

+ a/oa[ﬂ’(lx(S)ll + 12" ()| + [(T2) ()| + 1(Sz) (s)[)) +M] ds

(3.6)
+ 3 Bl |+ 12 (E)]l) + M

0<tp<t
+H(t = to) [Br (e te) [l + |2 (t) ) + M}

m

< {azﬂ/(Q + ako + aho) + 2 Z[ﬁ,’c + (G/—tk)ﬁ];]}nxnpcl + C
k=1

<n'||z||pcr + Ch,

where 7' is defined by (3.2) and C} is a positive constant. Similarly,
from (2.5) and (3.3)—(3.5), we can get

(3.7) I(Az)' O] < n'llxllper + Co €,
where C5 is a positive constant. The relations (3.6) and (3.7) imply
(3.8) |Az||pcr < 0'||z||per +C, =€ PC[J, E|,

where ' < 1 is defined by (3.2) and C = max{C4, Cy} = const. Letting
R>C/(1—7')and Bg = {x € PCY[J,E] : ||z|pc: < R} C PC'[J, E],
by (3.8) we have A(Br) C Br. Thus it is clear from Lemma 5 that A is
a bounded and continuous operator from Bg into Br. Using Lemma 5
again, we know that there exist a positive integer ng and 0 < 7 < 1
such that (2.9) holds for any H C Bpg, where A" is defined by (2.10).
Let

Byo=Br,  Byi=w(A™(By)), B, =c0(A"(Bn 1)),
n=23....

‘We shall show
(i)ByDB1 DBy DBy, D+
(ii) limy,— 00 a(By) = 0.
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_In fact, by (2.10) and B; = @ (A™(By)) € Br = By, we have
A™o (Bl) C AnO(B()). Thus,

By = E(Ano(Bl)) C E(A”“(BO)) = Bj.

Using induction on n, we get B, C B,_1, n = 1,2,..., so (i) is
proved. Then by (2.9) and the properties of the Kuratowski measure
of noncompactness, we have

a(Bp) = a(@A™ (B,_1)) < 7a(Bp_1) < --- < 7"a(By) — 0,

n — o0;

thus (i) is fulfilled. Therefore, it follows from Lemma 5.2 of Chapter
IT in [3] that B = N2 B, is a nonempty, convex and compact set in
Bpg.

In the following, we need only to show AB c B. By A'(By) =
A(Bg) C By, we have co (A(By)) C By = Bgr and, by (2.10),

A?(By) = A(co (A (By))) € A(Bo) = A'(By),
A3(By) = A(co(A%(By))) € A(To (A (By))) = A*(By),
A™(By) = A(eo(A™ 1 (By))) C A(eo(A™*(By))) = A" '(Bo);

hence, ~ R
By =0 (A™(By)) C co (A" (By));

thus,
A(B1) C A(to(A™H(By))) = A™(By) C co(A™(By)) = Bu.
In the same way, we can get AB, C B,, n=2,3,.... So
(3.9) AB, CB,, n=01,2,...
holds. The relation (3.9) implies AB = N2 ,AB, C N%%,B, = B.
Then, noting that B is a nonempty, convex and compact set in Bp, it

is easy to show using Schauder’s fixed point theorem that A has a fixed
point in B C Bg C PC'[J, E], and the theorem is proved. a
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Remark 2. In order to use Darbo’s fixed point theorem to investigate
similar problems, the references [4] and [1] placed strict restrictions
on the constants in the compactness type conditions, see 4.3.111 and
4.3.114 in [4], (21) and (24) in [1]. In the same way, from (2.11)—(2.13),
it is not difficult to see that if we also use Darbo’s fixed point theorem
to consider IVP (1.1), we have to add a restricted condition, i.e.,

T = max{2(L1 —+ Lg —+ akoLg + ah0L4)a,

3.10
( ) 2(L1 —+ L2 —+ CLIC()Lg —+ ah0L4)a2} < 1.

But, in this paper, we delete any restriction on the constants L;,
i=1,2,3,4, in (2.8). Thus we cannot obtain the results of the paper
by the same method, that is, Darbo’s fixed point theorem, as in [4] or
(1].

4. An example.

Example. Consider the IVP of infinite system for nonlinear second
order integrodifferential equations

_— ¢ 311/3
xl = o {g s, + (/0 e S sin(t — 28)T9,41(5) ds) }

(4.1) 0<t<1, t#

171 35 /1 1
Agcn|t:1/2 = 30 {ﬁ JUn/+1 (5) “n €
1 1 1\1Y°
Al‘/n|t:1/2 = 15\/’5 vlL/d (5) |:I/2n <§) )
1
I"(O):ﬁ’ 2, (0)=0, n=1,2,....

Conclusion. IVP (4.1) has at least one continuous and differentiable
solution x*(t) = (x5(t),...,z5(t),...) on [0,1/2) U (1/2,1] such that

rr'n

Zp(t) > 0asn —oofor 0 <t <1.
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Proof. Let E = ¢g = {z = (z1,...,2Tpn,...) : ©, — 0}, with
norm ||z|| = sup,, |zn|. Then (4.1) can be regarded as an IVP of the
form (1.1) in E, where J = [0,1], mo = (1,(1/2%),...,(1/n?),...),
1 = (0,...,0,...), k(t,s) = e"*sin(t — 2s), h(t,s) = cos?/? n(t — s),
x = (T, Tnyoo )y, U= Ylye oo s Unsov-)y 2 = (Z1y000 3 2Zny-v-)s
w=(w1,... ,Wny...), f=f1y.o ;s fn,-..), with

o1, .\
f (t z,Y, %, ’U}) 12 <§x2n+22n+1>

+1 3 +33
7 T 2yn 2wn )

Yn = ( zn—fo (t,8)xn(s)ds, wn—fo (t,8)xn(s)ds and m = 1,

(4.2)

tl = (1/2) (1117.. [1n,...) Il (111,.. Ih“...) with
(4.3) 1 1
Iln(l' y) 30<\/— ?L{El y2n1>7 I_ln($7y) 15\/— ’}L/gy%’l/ls.

Evidently, f € C[J x Ex Ex Ex E,E|, I,I, € C[E x E, E] and, for
any r > 0, f is uniformly continuous on J x T}, x T}, x T}, x T;, I and
I; are bounded on T, x T.. By (4.2), we have

1/3
1 1 1 3 3
iz < g (glolP+120°) o+ 5 (el + Sl + Sl

(e + (el + 2o+ 2y
—||x z = |z = =
n\2 7 g I 5w

o

< (2 D) et 2+ 2z + 2w
N B, L3
=\oan 77 12T 1o, 141

thus

1 3
4.4 t < — — — .
@) 5wy 2w < ozl + gl + 2l + el

It is easy to show using (4.4) that (H;) in Theorem 1 is fulfilled. By
(4.3), we know

: 1
Tin(e,)] < ¥+ ool

L el
— || T
30vn

(4.5) 1
m [Eal

|j17L| S 1/3 ||yH1/5
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By virtue of (4.5) and the diagonal method, we have, for any bounded
UV CE=cyand t € J = [0,1] that I;(U,V) and I(U,V) are
relatively compact, hence (Hs) in Theorem 1 is fulfilled. From (4.4)
and (4.5) it follows that 8 < (3/14), 81 < (1/30), f; < (1/15), and
therefore (3.1) is satisfied since n < 1. Thus, our conclusion follows
from Theorem 1.

Finally we need to point out that the restricted condition (3.10) is
not satisfied in the above example. Let

1 tt (1, 3 Ve
9n (taxayasz) = m (g x2n+z2n+1> )

9'512) (t7377y7 Z, U)) = 5 Tn,

7
gt x,y, z,w) = —iyn,
n 14
(4) t _ =
gn (7377,%2710) 14wn

and ¢") = (g%i),..‘ ,gff),...), 1 =1,2,3,4. Then f, = g,(ll) +gr(12) +
g7(13) + g§L4), n=1,2,...,and f =g + ¢@ + ¢B) 4+ ¢ Tt is obvious
that, for any bounded B; C EF = ¢y, ¢ = 1,2,3,4, and t € J =
[0,1], a(g®(t, By, By, B3, By)) = a(B1)/7,a(9® (t, By, Ba, B3, By)) =
3a(By)/14, a(¢™ (t, By, Ba, B3, By)) = 3a(B4)/14. Using the diagonal
method again, we have, for any bounded B; C F, i = 1,2,3,4, and
t € J = [0,1] that ¢ (¢, By, Bo, Bs, By) is relatively compact, hence
a(gM(t, By, By, B3, By)) = 0. By the above discussions, we get

1
a(f(t, B1, By, Bs, B1)) < > Lia(By),
i=1

Vte J, bounded B, C E, i=1,2,3,4,

where Ly = (1/7), Ly = (3/14), L3 =0, Ly = (3/14). Observing a = 1
and kg = hg = 1, we get
T = maX{Q(Ll —+ L2 + akoLg —+ ah0L4)a,
Q(Ll + L2 + ak‘oLg + ah0L4)a2}

8
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Therefore, the assumption (3.10) is not satisfied. Thus we cannot use
Darbo’s fixed point theorem to study IVP (1.1).
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