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EXISTENCE AND STABILIZATION OF SOLUTIONS
TO THE PHASE-FIELD MODEL WITH MEMORY

PIERLUIGI COLLI AND PHILIPPE LAURENÇOT

ABSTRACT. A phase field model is considered when the
classical Fourier law is replaced by the linearized Gurtin-
Pipkin constitutive assumption for the heat flux. The re-
sulting system of partial differential equations consists in a
Volterra integro-differential equation coupled with a nonlinear
parabolic inclusion. The initial and boundary value problem
with homogeneous Neumann boundary conditions is investi-
gated for a kernel of positive type. Results on the long-time
behavior of solutions are obtained in a quite general setting.

1. Introduction. This paper is devoted to the study of the so-called
phase-field model, see, e.g., [6, 10, 12], for the temperature ϑ and the
phase variable χ, in the case where the classical Fourier law q = −k0∇ϑ,
k0 constant, is replaced by the following nonlocal condition

(1.1) q(x, t) = −
∫ t

−∞
k(t− s) ∇ϑ(x, s) ds,

for a kernel k : (0,+∞) → R of positive type. Here, x ∈ Ω denotes
the space variable and t represents the time, letting Ω be a bounded
domain of R3 with smooth boundary Γ and t vary in (0,+∞), as the
past evolution of ϑ is supposed to be a known function ϑP up to t = 0,

(1.2) ϑ = ϑP in Ω × (−∞, 0).

The relation (1.1) then states that the heat flux depends only on
the temporal history of the temperature gradient and turns out to
be compatible with classical thermodynamical laws whenever k is a
kernel of positive type, cf. [11]. This is indeed a basic assumption
in our approach. Two other important facts to be mentioned at once
are the facts that we allow quadratic nonlinearities in the model and
that we consider an initial-boundary value problem with homogeneous
Neumann boundary conditions for both unknowns. Concerning the
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former, we want to notice that thus our system does not apply only to
solid-liquid phase transitions but also to ferromagnetic transformations.
For homogeneous Neumann boundary conditions, we just say that they
allow multiple steady state solutions for the temperature and obviously
this makes the analysis more delicate.

Let us then state the initial-boundary value problem which reads

χt−Δχ+β(χ) �−σ′(χ)+λ′(χ) ϑ in Q := Ω × (0,+∞),(1.3)
(ϑ+ λ(χ))t − Δ(k ∗ ϑ) = g in Q,(1.4)

∂χ

∂n
=
∂(k ∗ ϑ)
∂n

= 0 on Σ := Γ × (0,+∞),(1.5)

χ(0) = χ0, ϑ(0) = ϑ0 in Ω,(1.6)

where ∗ denotes the usual convolution product with respect to time
over (0, t),

(k ∗ ϑ)(x, t) =
∫ t

0

k(t− s) ϑ(x, s) ds, (x, t) ∈ Q,

and the datum g is specified by, cf. (1.2),

g(x, t) =
∫ 0

−∞
k(t− s)ΔϑP (x, s) ds, (x, t) ∈ Q,

in case of no heat source in the energy balance equation (1.4). The
phase dynamics is described by the relationship (1.3), in which β rep-
resents a maximal monotone graph and σ and λ are two nonlinearities
playing in the Ginzburg-Landau free energy, as well as the convex func-
tion β̂ whose subdifferential ∂β̂ is equal to β. The system (1.3) (1.4) is
actually derived from the free energy by imposing the balance of energy
and satisfying the second principle of thermodynamics.

In this paper, we prove an existence result for (1.3) (1.6) in the
framework outlined above. Moreover, we investigate the long-time
behavior of solutions to (1.3) (1.6), carrying out sharp convergences
and identifying the limit points for the trajectories, i.e., their ω-limit
set.

Existence and uniqueness of strong and weak solutions to (1.3) (1.6)
have already been discussed in [7] and [8] in the case of a smooth kernel
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k and a function λ which is either Lipschitz continuous or linear, i.e., λ′

is a constant l. Thus, our first result turns out to be a generalization of
some results of [7] (to which we refer for a more detailed presentation of
the model) and [8] along the direction of kernels k of positive type, see
(2.4) below for a precise definition. Within this setting, the problem
(1.3) (1.6) has already been investigated by Aizicovici and Barbu [1]
in the particular situation when

β(χ) + σ′(χ) = χ3 − χ =
1
4
((χ2 − 1)2)′

and λ′(χ) = l, for Dirichlet boundary conditions. Using semigroup
techniques, it is shown in [1] that there exists a solution to (1.3) (1.6)
which is unique provided that k is a nonnegative decreasing and
convex function. Moreover, stability and asymptotic convergences as
t → +∞ are derived for (χ(t), ϑ(t)) under quite heavy assumptions
on k, assuming in particular that k is of strongly positive type (a
precise definition is provided in (2.8)). On the contrary, our analysis
gives a complete description of the ω-limit set of (χ, ϑ), i.e., the set
of cluster points of (χ(t), θ(t)) as t → +∞ in some suitable topology,
when λ′(χ) = l, β is single-valued and k ∈ L1(0,+∞) is of positive
type. A similar result is also obtained for a wider class of functions λ
and β under stronger requirements on k, namely, assuming k of strongly
positive type.

The paper is organized as follows. In the next section, we introduce
the set of assumptions on the data of (1.3) (1.6) together with some
notations and state our results. Section 3 is devoted to the existence
proof (of Theorem 2.3) which relies on an approximation procedure and
a priori estimates. In Section 4.1 we prove the first result concerning
long-time behavior, assuming that k is a kernel of positive type which
belongs to L1(0,+∞) and that λ′ is a constant and β is single-valued.
It is worth mentioning at this point that, since we do not assume that
k is a kernel of strongly positive type, we cannot use the methods of
[1], while the memory term prevents us from applying the classical
device of [14]. In fact, the main difficulty encountered at this stage is
to find a connection between the cluster points of ϑ(t) and (k ∗ ϑ)(t)
as t→ +∞. Such a connection is derived from (1.3) (1.4) by a careful
analysis of the behavior of the trajectories starting from these cluster
points. We finally deduce our second result on long-time behavior
in Section 4.2. The approach used there is in the spirit of [14], but
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additional arguments from Section 4.1 are needed to handle the memory
term.

2. Main results. Let Ω be a bounded and connected open subset
of R3 with smooth boundary Γ. We put

H = L2(Ω), V = H1(Ω), W =
{
v ∈ H2(Ω),

∂v

∂n
= 0 on Γ

}
,

and denote by V ′ and W ′ the dual spaces of V and W , respectively.
Notice that W ↪→ V ↪→ H with dense and compact injections. Also,
we denote by 〈〈., .〉〉 the duality pairing between W ′ and W and by 〈., .〉
the duality pairing between V ′ and V . Moreover, (., .) stands for the
usual scalar product in the space H, which is identified with H ′, and
|.|H represents the norm both in H and L2(Ω;R3).

Concerning the data, we assume the following.

(2.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β is a maximal monotone graph in R2

with domain D(β) such that int (D(β))
is nonempty and 0 ∈ β(0). We denote by
β̂ a lower semicontinuous and proper convex
function such that β = ∂β̂.

(2.2) σ, λ ∈ C2(R) with σ′′, λ′′ ∈ L∞(R).

(2.3) The function β̂ + σ is nonnegative.

(2.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k ∈ L1(0, T ) for each T ∈ (0,+∞)
and is of positive type, i.e.,∫ T

0
(v(t), (k ∗ v)(t)) dt ≥ 0,

v ∈ L2(0, T ;H), T ∈ (0,+∞).

(2.5) χ0 ∈ V, β̂(χ0) ∈ L1(Ω), ϑ0 ∈ H.
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(2.6) g ∈ L1(0, T ;H) for each T ∈ (0,+∞).

Note that the datum g accounts for the history of ϑ up to t = 0, namely,

g(x, t) =
∫ 0

−∞
k(t− s)ΔϑP (x, s) ds, (x, t) ∈ Ω × (0,+∞),

and ϑP is a known function.

In the remainder of the paper, and in particular for the study of
long-time behavior, we shall use some of the following assumptions.

(2.7)
{
g ∈ L1(0,+∞;H) and k ∈ L1(0,+∞)

with
∫ ∞
0
k(s) ds �= 0.

(2.8)

⎧⎨
⎩
k ∈W 1,1(0,+∞) and k is of strongly positive type, i.e.
there exists η > 0 such that
t �→ k(t) − ηe−t is of positive type.

Under this last condition on k, it turns out that the operator v �→ k ∗ v
enjoys the following additional property, see e.g. [16, Lemma 4.2].

Lemma 2.1. Assume that k fulfills (2.8). If v ∈ L1(0, T ;H) for each
T ∈ (0,+∞), the following holds

(2.9)

∫ T

0

|(k ∗ v)(s)|2H ds ≤ C1

∫ T

0

(v(s), (k ∗ v)(s)) ds,
T ∈ (0,+∞),

where C1 is a constant which depends only on |k|W 1,1(0,+∞) and η.

Definition 2.2. A solution to (1.3) (1.6) is a set of functions (χ, ξ, ϑ)
such that, for each T ∈ (0,+∞),

χ ∈W 1,2(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W 2,3/2(Ω)),(2.10)
ϑ ∈ C([0, T ];W ′) ∩ L∞(0, T ;H), (⊂ C([0, T ];V ′)),(2.11)

ϑt − g ∈ L2(0, T ;W ′), k ∗ ϑ ∈ C([0, T ];H),(2.12)

ξ ∈ L2(0, T ;L3/2(Ω)),(2.13)
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and

(2.14) χt − Δχ+ ξ + σ′(χ) = λ′(χ)ϑ a.e. in Ω × (0, T ),

(2.15) 〈〈(ϑ+ λ(χ))t(t), v〉〉 −
∫

Ω

(k ∗ ϑ)(t)Δv dx =
∫

Ω

g(t)v dx,

for all v ∈W and almost every t ∈ (0, T ),

ξ ∈ β(χ) a.e. in Ω × (0, T ),(2.16)
∂χ

∂n
= 0 a.e. on Γ × (0, T ),(2.17)

χ(0) = χ0 in H, ϑ(0) = ϑ0 in W ′.(2.18)

Observe that the terms (λ′(χ)ϑ) and (λ(χ))t in (2.14) (2.15) belong
to the space L2(0, T ;L3/2(Ω)), due to (2.10) (2.11) and Sobolev em-
beddings. We may now state our results, first studying the existence
of solutions to (1.3) (1.6).

Theorem 2.3. (i) Assume that (2.1) (2.6) are fulfilled. Then
(1.3) (1.6) has at least a solution (χ, ξ, ϑ) in the sense of Definition 2.2,
satisfying in addition that, for each t ∈ (0,+∞),

(2.19) |∇χ(t)|2H + |ϑ(t)|2H +
∫ t

0

|χt(s)|2H ds

≤ C2(1 + |χ0|2V + |ϑ0|2H + |β̂(χ0)|L1(Ω) + |g|2L1(0,t;H)),

where the constant C2 depends only on Ω and σ.

(ii) Assume that (2.1) (2.6) and (2.8) are fulfilled. Then (1.3) (1.6)
has one solution (χ, ξ, ϑ) satisfying

(2.20) k ∗ ϑ ∈ L2(0, T ;V ), T ∈ (0,+∞)

and, for each t ∈ (0,+∞),

(2.21) |∇χ(t)|2H + |ϑ(t)|2H +
∫ t

0

(|χt(s)|2H + |(k ∗ ∇ϑ)(s)|2H) ds

≤ C3(1 + |χ0|2V + |ϑ0|2H + |β̂(χ0)|L1(Ω) + |g|2L1(0,t;H)),
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where C3 depends only on Ω, σ, |k|W 1,1(0,+∞) and η.

The triplets (χ, ξ, ϑ) given by Theorem 2.3 will be obtained as limits
of solutions to a regularized problem whose well-posedness is studied
in [3].

Remark 2.4. Assuming further that k is a smooth function and that λ′

is bounded, we may infer from [7, 8] and Theorem 2.3 that (1.3) (1.6)
has a unique solution.

We next turn to the investigation of the long-time behavior of the
solution to (1.3) (1.6) given by Theorem 2.3. More precisely, if (χ, ϑ)
is a solution to (1.3) (1.6), we wish to identify the cluster points as
t → +∞ of (χ(t), ϑ(t)) in some suitable topology. In our setting, cf.
(2.10) (2.11), it turns out that a suitable topology for the study of the
long-time behavior is that of H × V ′. We then define the ω-limit set
ω(χ, ϑ) of (χ, ϑ) in H × V ′ by

(2.22)

ω(χ, ϑ) =

⎧⎨
⎩

(χ∞, ϑ∞) ∈ H × V ′ such that there exists
a sequence of positive real numbers {tn} with
tn ↗ +∞ and (χ(tn), ϑ(tn)) → (χ∞, ϑ∞) in H × V ′.

⎫⎬
⎭

Our first result then reads

Theorem 2.5. Assume that (2.1) (2.6) and (2.7) are fulfilled, and let
(χ, ξ, ϑ) be a solution to (1.3) (1.6) given by Theorem 2.3 (i). Assume
further that

(2.23) λ′(r) = l �= 0, r ∈ R and β is single-valued.

Then ω(χ, ϑ) is a nonempty compact and connected subset of H × V ′,
and if (χ∞, ϑ∞) belongs to ω(χ, ϑ), one has

(2.24) χ∞ ∈W, ϑ∞ = const. = M0 − l

|Ω|
∫

Ω

χ∞(x) dx,

(2.25) −Δχ∞ + β(χ∞) + σ′(χ∞) = lϑ∞,



176 P. COLLI AND P. LAURENÇOT

where

(2.26) M0 =
1
|Ω|

(∫
Ω

(ϑ0(x) + lχ0(x)) dx+
∫ ∞

0

∫
Ω

g(x, s) dx ds
)
.

Let us first notice that the problem (2.24) (2.26) also arises in the
study of the long-time behavior of solutions to the standard phase-
field model, see, e.g., [9]. We next mention that though the above
theorem identifies the possible cluster points of (χ(t), ϑ(t)) as t→ +∞,
it does not indicate whether (χ(t), ϑ(t)) has a limit or not as t→ +∞.
This last question may be answered in some cases by the study of the
solutions to (2.24) (2.26). Indeed, if one can show that the number of
solutions to (2.24) (2.26) is finite, the connectedness of ω(χ, ϑ) yields
that ω(χ, ϑ) is a singleton, i.e., (χ(t), ϑ(t)) has a limit in H × V ′ as
t → +∞. Results in that direction may be found in [9] for the special
case (β + σ′)(r) = r3 − r.

If we strengthen the assumptions on k, we may relax the assumption
(2.23) on λ and β and still obtain a result similar to Theorem 2.5.

Theorem 2.6. Assume that (2.1) (2.6) and (2.7) (2.8) are fulfilled
and let (χ, ξ, ϑ) be a solution to (1.3) (1.6) given by Theorem 2.3 (ii).
Then ω(χ, ϑ) is a nonempty compact and connected subset of H × V ′,
and if (χ∞, ϑ∞) ∈ ω(χ, ϑ), one has

(2.27) χ∞ ∈W, ϑ∞ = const. = M ′
0 −

1
|Ω|

∫
Ω

λ′(χ∞)(x) dx,

(2.28) −Δχ∞ + β(χ∞) + σ′(χ∞) � λ′(χ∞)ϑ∞,

where

(2.29) M ′
0 =

1
|Ω|

(∫
Ω

(ϑ0(x) + λ(χ0)(x)) dx+
∫ ∞

0

∫
Ω

g(x, s) dx ds
)
.

3. Existence of solutions. Let (gε)ε>0 be a sequence in
L2(0,+∞;H) such that, for each T ∈ (0,+∞),

(3.1) lim
ε→0

|gε − g|L1(0,T ;H) = 0.
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For ε > 0, we consider the following regularized problem.

Problem (Pε). Find (χ, ξ, ϑ) satisfying, for each T ∈ (0,+∞),

χ ∈W 1,2(0, T ;H) ∩ C([0, T ];V ) ∩ L2(0, T ;W ), χ(0) = χ0,(3.2)
ϑ ∈W 1,2(0, T ;V ′) ∩ L2(0, T ;V ), ϑ(0) = ϑ0,(3.3)

χt − Δχ+ ξ + σ′(χ) = λ′(χ)ϑ a.e. in Ω × (0, T ),(3.4)

〈(ϑ+ λ(χ))t(t), v〉 +
∫

Ω

(ε∇ϑ(t) + (k ∗ ∇ϑ)(t))∇v dx(3.5)

=
∫

Ω

gε(t)v dx,

for all v ∈ V and almost every t ∈ (0, T ),

(3.6) ξ ∈ β(χ) a.e. in Ω × (0, T ), ξ ∈ L2(0, T ;H).

Note that here (λ′(χ)ϑ) and (λ(χ))t stay in L2(0, T ;H). Thanks to
the results of [3], we can infer this statement.

Proposition 3.1. Assume that (2.1) (2.5) are fulfilled. For each ε >
0, Problem (Pε) has a unique solution (χε, ϑε) with the further property
that β̂(χε) ∈ L∞(0, T ;L1(Ω)) for each T ∈ (0,+∞). Moreover, there
is a constant C4 such that, for all t ∈ [0,+∞),

(3.7)

|∇χε(t)|2H + |ϑε(t)|2H +
∫ t

0

(|χε,t(s)|2H + ε|∇ϑε(s)|2H) ds

+
∫ t

0

∫
Ω

∇ϑε(s) · ∇(k ∗ ϑε)(s) dx ds

≤ C4(1 + |χ0|2V + |ϑ0|2H + |β̂(χ0)|L1(Ω) + |gε|2L1(0,t;H)),

where C4 depends only on Ω and σ.

Proof. The existence and uniqueness of a solution (χε, ϑε) to (Pε)
follows at once from [3, Theorem 2.1]. It remains to derive (3.7). For
that purpose, we choose v = ϑε in (3.5) and take the scalar product of
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(3.4) with χε,t. Summing the resulting identities and integrating over
(0, t), we obtain, thanks to [4, Lemma III.3.3],

∫ t

0

|χε,t(s)|2H ds+
1
2
|∇χε(t)|2H

+
∫

Ω

(β̂(χε(t)) + σ(χε(t))) dx+
1
2
|ϑε(t)|2H

+
∫ t

0

(
ε|∇ϑε(s)|2H +

∫
Ω

∇ϑε(s) · ∇(k ∗ ϑε)(s) dx
)
ds

≤ 1
2
|χ0|2V +

∫
Ω

(β̂(χ0) + σ(χ0)) dx+
1
2
|ϑ0|2H

+
∫ t

0

∫
Ω

gε(x, s)ϑε(x, s) dx ds.

From (2.2), (2.3) and (2.5) we easily recover

1
2
(|∇χε(t)|2H + |ϑε(t)|2H) +

∫ t

0

|χε,t(s)|2H ds

+
∫ t

0

(
ε|∇ϑε(s)|2H +

∫
Ω

∇ϑε(s) · ∇(k ∗ ϑε)(s) dx
)
ds

≤ C4(1 + |χ0|2V + |ϑ0|2H + |β̂(χ0)|L1(Ω))

+
∫ t

0

|gε(s)|H(|∇χε(s)|2H + |ϑε(s)|2H)1/2 ds.

The above inequality and [4, Lemma A.5] then yield (3.7).

We next deduce the estimates on (χε, ϑε) that we will need to pass
to the limit as ε↘ 0.

Lemma 3.2. For each T ∈ (0,+∞), there is a constant C5(T )
depending on Ω, σ, |χ0|V , |ϑ0|H , |β̂(χ0)|L1(Ω), T , |k|L1(0,T ) and
sup {|gε|L1(0,T ;H), ε > 0} such that

(3.8) |χε|L∞(0,T ;V ) + |χε,t|L2(0,T ;H) + |ϑε|L∞(0,T ;H)

+ ε1/2|ϑε|L2(0,T ;V ) ≤ C5(T ),
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(3.9) |ξε|L2(0,T ;L3/2(Ω)) + |χε|L2(0,T ;W 2,3/2(Ω)) ≤ C5(T ),

(3.10) |ϑε,t − gε|L2(0,T ;W ′) ≤ C5(T ).

Proof. Let T > 0. Since k is of positive type, (3.8) is a straightforward
consequence of (2.5), (3.1) and (3.7). Next, for almost every t ∈ (0, T ),
χε(t) is a solution to

(3.11)
χε(t) − Δχε(t) + ξε(t) = fε(t) in Ω,

∂χε(t)
∂n

= 0 in Γ,

(3.12) ξε(t) ∈ β(χε(t)),

where fε = χε − σ′(χε) − χε,t + λ′(χε)ϑε satisfies

(3.13) |fε|L2(0,T ;L3/2(Ω)) ≤ C5(T ).

Note that (2.2) and (3.8) yield that λ′(χε) is bounded in L∞(0, T ;L6(Ω)).
Since β is a maximal monotone graph, a monotonicity argument ap-
plied to (3.11) entails, see, e.g., [5],

(3.14) |ξε(t)|L3/2(Ω) ≤ |fε(t)|L3/2(Ω), t ∈ (0, T ).

Combining (3.11), (3.14) and classical elliptic estimates, we further
obtain

(3.15) |χε(t)|W 2,3/2(Ω) ≤ CΩ|fε(t)|L3/2(Ω), t ∈ (0, T ),

for some constant CΩ depending on Ω. Then, (3.9) follows from
(3.13) (3.15) after integration of (3.14) (3.15) over (0, T ).

Finally, let v ∈W . Since W ⊂ V , we deduce from (3.5) that

〈〈ϑε,t − gε, v〉〉 = −ε
∫

Ω

∇ϑε · ∇v dx+
∫

Ω

(k ∗ ϑε)Δv dx,

|〈〈ϑε,t − gε, v〉〉| ≤ (ε |∇ϑε|H + |k ∗ ϑε|H)|v|W ,
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whence
|ϑε,t − gε|W ′ ≤ (ε |ϑε|V + |k ∗ ϑε|H).

The Young inequality for convolution product then implies

|ϑε,t − gε|L2(0,T ;W ′) ≤ ε|ϑε|L2(0,T ;V )

+ |k|L1(0,T )|k ∗ ϑε|L2(0,T ;H),

and (3.10) follows from (3.8) and the above estimate.

We are now ready to prove Theorem 2.3. Indeed, let T > 0. We infer
from Lemma 3.2 and [15, Corollary 4] that there are a subsequence of
{χε, ϑε, ξε} (not relabeled) and some functions

χ ∈W 1,2(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W 2,3/2(Ω)),

ξ ∈ L2(0, T ;L3/2(Ω)),
ϑ ∈ C([0, T ];W ′) ∩ L∞(0, T ;H), ϑt − g ∈ L2(0, T ;W ′),

such that (hereafter, ⇀ and
∗
⇀ stand for weak and weak star conver-

gences, respectively)

χε → χ in C([0, T ];H) ∩ L2(0, T ;V ),(3.16)

ξε ⇀ ξ in L2(0, T ;L3/2(Ω)),(3.17)

ϑε
∗
⇀ ϑ in L∞(0, T ;H),(3.18)

ψε → ψ in C([0, T ];V ′),(3.19)

where ψε = ϑε − 1 ∗ gε and ψ = ϑ − 1 ∗ g. Since V is continuously
embedded into L3(Ω) = L3/2(Ω)′ and β induces a maximal monotone
operator from L2(0, T ;L3(Ω)) in L2(0, T ;L3/2(Ω)), it follows from [2,
Lemma II.1.3], (3.16) and (3.17) that

(3.20) χ ∈ D(β) and ξ ∈ β(χ) a.e. in Ω × (0, T ).

On the other hand, (3.1) entails that (1 ∗ gε) converges to (1 ∗ g) in
C([0, T ];H). Combining this fact and (3.19) yields that

(3.21) ϑε → ϑ in C([0, T ];V ′).
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Finally, we infer from (3.18) that

(3.22) k ∗ ϑε
∗
⇀ k ∗ ϑ in L∞(0, T ;H).

Owing to the convergences (3.16) (3.19), (3.21) (3.22) and to Lemma
3.2, we may pass to the limit as ε ↘ 0 in (Pε) and find that (χ, ϑ) is
a solution to (1.3) (1.6). Indeed, note that, thanks to (3.16), (3.18)
and (2.2), (λ′(χε)ϑε) converges to (λ′(χ)ϑ) in the weak topology of
L2(0, T ;L3/2(Ω)). Moreover, since k is of positive type, (3.7) yields
(2.19) and the proof of Theorem 2.3 (i) is complete.

Next, if k satisfies the additional assumption (2.8), we infer from
(3.7) and Lemma 2.1 that (k ∗ϑε) is bounded in L2(0, T ;V ). Recalling
(3.22), we obtain that k ∗ ϑ ∈ L2(0, T ;V ) and (2.21) follows from (3.7)
and Lemma 2.1.

4. Long-time behavior.

4.1 Proof of Theorem 2.5. Let (χ, ϑ) be a solution to (1.3) (1.6)
given by Theorem 2.3 (i) and define ψ = ϑ− 1 ∗ g. In the following, we
denote by Ci, i ≥ 6, any nonnegative real number depending only on
Ω, σ, |χ0|V , |ϑ0|H , |β̂(χ0)|L1(Ω), |g|L1(0,+∞;H), |k|L1(0,+∞) and l. The
dependence of the Ci’s upon additional parameters will be indicated
explicitly.

Lemma 4.1. The following holds

χ ∈ L∞(0,+∞;V ), χt ∈ L2(0,+∞;H),(4.1)
ϑ ∈ L∞(0,+∞;H), k ∗ ϑ ∈ L∞(0,+∞;H),(4.2)

ψ ∈ L∞(0,+∞;H), ψt ∈ L2(0,+∞;W ′) + L∞(0,+∞;W ′).
(4.3)

Proof. We first infer from (2.19) that

(4.4)
∇χ ∈ L∞(0,+∞;H)3, ϑ ∈ L∞(0,+∞;H),

χt ∈ L2(0,+∞;H).
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We next take v = 1 in (2.15) and obtain, thanks to (2.23),
∣∣∣∣
∫

Ω

χ(x, t) dx
∣∣∣∣ ≤ C6

(
|ϑ(t)|H + |ϑ0|H + |χ0|H +

∫ t

0

|g(s)|H ds

)
,

t > 0.

It follows from (4.4) and (2.7) that the righthand side of the above
inequality lies in L∞(0,+∞). Consequently, t �→ ∫

Ω
χ(x, t) dx belongs

to L∞(0,+∞) and (4.4) and a generalized Poincaré inequality ensure
that χ ∈ L∞(0,+∞;V ), whence (4.1) is verified.

Next, since k ∈ L1(0,+∞) by (2.7), one sees that (4.4) and the
Young inequality yield (4.2). We also infer from (4.4) and (2.7) that
ψ ∈ L∞(0,+∞;H) and then deduce (4.3) from (2.15), (4.1) and (4.2).

A first consequence of Lemma 4.1 is that the set {(χ(t), ϑ(t)), t ≥ 0} is
bounded in V ×H and thus is relatively compact in H×V ′. Therefore,
ω(χ, ϑ) is a nonempty compact subset of H × V ′. In addition, since
(χ, ϑ) ∈ C([0,+∞);H × V ′), a classical argument from the theory of
dynamical systems ensures that ω(χ, ϑ) is connected in H × V ′, see,
e.g., [13, p. 12]. Another consequence of Lemma 4.1 is the following
result.

Lemma 4.2. For each T > 0, there is a constant C7(T ) such that

sup
t≥0

|ψt|L2(t,t+T ;W ′) ≤ C7(T ),(4.5)

sup
t≥0

|(k ∗ ϑ)t|L1(t,t+T ;W ′) ≤ C7(T ).(4.6)

Proof. Owing to (4.3), we can set

ψt = f2 + f∞,

where f2 ∈ L2(0,+∞;W ′) and f∞ ∈ L∞(0,+∞;W ′). Then it is clear
that ∫ t+T

t

|ψt|2W ′ ds ≤ 2
∫ t+T

t

|f2|2W ′ ds+ 2
∫ t+T

t

|f∞|2W ′ ds

≤ 2 |f2|2L2(0,+∞;W ′) + 2T |f∞|2L∞(0,+∞;W ′),
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hence (4.5) is satisfied.

We also have ϑt = g + f2 + f∞ and g ∈ L1(0,+∞;W ′). Since
k ∈ L1(0,+∞) by (2.7), the Young inequality yields

k ∗ ϑt ∈ L1(0,+∞;W ′) + L2(0,+∞;W ′) + L∞(0,+∞;W ′).

A computation similar to the one above then gives

∫ t+T

t

|k ∗ ϑt|W ′ ds ≤ C7(T ).

As (k ∗ ϑ)t = kϑ0 + k ∗ ϑt, thanks to (2.5) and (2.7) we finally obtain
(4.6).

Now, let (χ∞, ϑ∞) be in ω(χ, ϑ) and {tn} be a sequence of positive
real numbers such that tn ↗ +∞ and

(4.7) (χ(tn), ϑ(tn)) −→ (χ∞, ϑ∞) in H × V ′.

For n ≥ 1 and t ≥ 0, we define

χn(t) = χ(tn + t), ξn(t) = ξ(tn + t),
ϑn(t) = ϑ(tn + t), ψn(t) = ψ(tn + t),
ζn(t) = (k ∗ ϑ)(tn + t).

Note that ζn �= k ∗ ϑn. As a consequence of the previous two lemmata,
we may derive some estimates for χn, ξn, ϑn, ψn and ζn in various
norms which are uniform with respect to n ≥ 1.

Lemma 4.3. Let T > 0. There is a constant C8(T ) such that

|χn|L∞(0,T ;V ) + |χn,t|L2(0,T ;H) ≤ C8(T ),(4.8)
|ϑn|L∞(0,T ;H) + |ψn|L∞(0,T ;H) + |ψn,t|L2(0,T ;W ′) ≤ C8(T ),(4.9)

|ζn|L∞(0,T ;H) + |ζn,t|L1(0,T ;W ′) ≤ C8(T ),(4.10)
|ξn|L2(0,T ;H) + |χn|L2(0,T ;W ) ≤ C8(T ).(4.11)
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Proof. First, (4.8) (4.10) are straightforward consequences of Lem-
mata 4.1 and 4.2. We next infer from (1.3), (2.2), (2.23), (4.8) and
(4.9) that, for almost every t ∈ (0, T ), χn(t) is a solution to

χn(t) − Δχn(t) + ξn(t) = Fn(t),
∂χn(t)
∂n

= 0,

ξn(t) = β(χn(t)),

and Fn = lϑn − χn,t − σ′(χn) + χn obeys

|Fn|L2(0,T ;H) ≤ C8(T ).

We now proceed as in the derivation of (3.9) and obtain (4.11).

Similarly as in [14], we notice that we may identify the limit of (χn)
as n→ +∞. More precisely, we have the following item.

Proposition 4.4. For each T > 0, the following holds

(4.12) lim
n→+∞(|χn − χ∞|C([0,T ];H) + |χn,t|L2(0,T ;H)) = 0.

Proof. For n ≥ 1, we have that

(4.13) |χn,t|L2(0,T ;H) ≤ |χt|L2(tn,+∞;H)

and the righthand side of the above inequality goes to zero as n→ +∞
by virtue of (4.1).

Next, for t ∈ (0, T ) and n ≥ 1, one checks that

|χn(t) − χ∞|H ≤ |χn(t) − χn(0)|H + |χ(tn) − χ∞|H
≤ T 1/2 |χn,t|L2(0,T ;H) + |χ(tn) − χ∞|H

Owing to (4.7) and (4.13), the righthand side of the above estimate
goes to zero as n → +∞, uniformly with respect to t ∈ [0, T ]. The
proof of Proposition 4.4 is thus complete.

The next lemma is devoted to an estimate of the difference between
k ∗ ϑn and ζn in the H-norm and it will be needed later to recover a
relationship between the possible limits of {k ∗ ϑn} and {ζn}.
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Lemma 4.5. For t > 0 and n ≥ 1, the following holds

(4.14) |ζn(t) − (k ∗ ϑn)(t)|H ≤ C9|k|L1(t,+∞).

Proof. Observe that

|ζn(t) − (k ∗ ϑn)(t)|H ≤
∣∣∣∣
∫ tn+t

0

k(s)ϑ(., tn + t− s) ds

−
∫ t

0

k(s)ϑ(., tn + t− s) ds
∣∣∣∣
H

≤
∣∣∣∣
∫ tn+t

t

k(s)ϑ(., tn + t− s) ds
∣∣∣∣
H

≤ |ϑ|L∞(0,+∞;H)

∫ tn+t

t

|k(s)| ds.

We then use (4.2) to obtain (4.14).

After these preliminaries, we are ready to prove Theorem 2.5. It
follows from Lemma 4.3, Proposition 4.4 and [15, Corollary 4] that
there are a subsequence of {χn, ξn, ψn, ζn} (not relabeled) and some
functions

ξ̄ ∈ L2(0, T ;H) for each T > 0,
ψ̄ ∈ L∞(0, T ;H) ∩W 1,2(0, T ;W ′) for each T > 0,

ζ̄ ∈ L∞(0, T ;H) for each T > 0,

such that

(4.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χn → χ∞ in L2(0, T ;V ),

ξn ⇀ ξ̄ in L2(0, T ;H),

ψn
∗
⇀ ψ̄ in L∞(0, T ;H),

ψn → ψ̄ in C([0, T ];V ′),

ζn
∗
⇀ ζ̄ in L∞(0, T ;H),

ζn → ζ̄ in L2(0, T ;W ′),

ζn(t) → ζ̄(t) in W ′ for a.e. t ∈ (0, T ),



186 P. COLLI AND P. LAURENÇOT

for each T ∈ (0,+∞). Note that χ∞ ∈W because of (4.11). Since β is
a single-valued maximal monotone graph, we infer from (4.12), (4.15),
(2.16) and [2, Lemma II.1.3] that

(4.16) ξ̄(t) = ξ∞ := β(χ∞) a.e. in Ω,

for almost every t ∈ (0,+∞). Consequently, ξ̄ does not depend on
time.

The remainder of the proof may now be split into three steps. The
first step will be devoted to prove the convergence of {ϑn} to some ϑ̄.
In the second step, a system of partial differential equations satisfied
by (χ∞, ϑ̄, ζ̄) is derived and this is used in the third step to identify
(ϑ̄, ζ̄) in terms of (χ∞, ϑ∞).

Step 1. For T > 0, the following holds

(4.17)

⎧⎪⎪⎨
⎪⎪⎩

ϑn → ϑ̄ in C([0, T ];V ′),

ϑn
∗
⇀ ϑ̄ in L∞(0, T ;H),

ψn,t ⇀ ϑ̄t in L2(0, T ;W ′),

where

(4.18) ϑ̄ = ψ̄ +G and G(x) =
∫ ∞

0

g(x, s) ds, x ∈ Ω.

Indeed, G ∈ H and, cf. (2.7),

(4.19) lim
t→+∞ |G− (1 ∗ g)(t)|H = 0.

Recalling that ψ = ϑ − 1 ∗ g, (4.17) follows from (4.9), (4.15), (4.18)
and (4.19).

Step 2. We next claim that, for each T > 0,

(4.20) −Δχ∞ + ξ∞ + σ′(χ∞) = lϑ̄, a.e. in Ω × (0, T ),

(4.21)

∫ T

0

〈〈ϑ̄t(s), v(s)〉〉 ds =
∫ T

0

∫
Ω

ζ̄(s)Δv(s) dx ds,

∀ v ∈ L2(0, T ;W ),
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To get (4.20), it suffices to pass to the (weak) limit in

χn,t − Δχn + ξn + σ′(χn) = lϑn,

which is (2.14) restricted to Ω× (tn, tn +T ), as n→ +∞ with the help
of (4.12), (4.15), (2.2) and (4.17). On the other hand, from (2.15) we
deduce that∫ T

0

〈〈ψn,t(s) + lχn,t(s), v(s)〉〉 ds =
∫ T

0

∫
Ω

ζn(s)Δv(s) dx ds

and, taking the limit, on account of (4.12), (4.15) and (4.17) we obtain
(4.21).

Step 3. Owing to (4.20), it turns out that ϑ̄ does not depend on t.
Since ϑ̄ belongs to C([0,+∞);V ′) and ϑ̄(0) = limϑ(tn) = ϑ∞ by (4.7),
we finally obtain

(4.22) ϑ̄(t) = ϑ∞, t ∈ [0,+∞).

In particular, ϑ∞ is in H because ϑ̄ ∈ L∞(0,+∞;H) by (4.17). Also,
plugging (4.22) into (4.20) and (4.21) yields that χ∞ satisfies (2.25),
while ζ̄ fulfills, for each T > 0,

(4.23)
∫ T

0

∫
Ω

ζ̄(s)Δv(s) dx ds = 0, ∀ v ∈ L2(0, T ;W ).

This last condition ensures that there is a function ζ : (0,+∞) → R
which belongs to L2(0, T ) for each T > 0 and such that, for almost all
t ∈ (0,+∞),

(4.24) ζ̄(., t) = ζ(t) a.e. in Ω.

Let us now identify ζ in terms of ϑ∞ with the help of Lemma 4.5.
Let t ∈ (0,+∞). For n ≥ 1, we have

|ζ(t) − (k ∗ ϑ∞)(t)|W ′ ≤ |ζ(t) − ζn(t)|W ′ + |ζn(t) − (k ∗ ϑn)(t)|W ′

+ |(k ∗ ϑn)(t) − (k ∗ ϑ∞)(t)|W ′ .

Using the Young inequality and (4.14), we obtain

|ζ(t) − (k ∗ ϑ∞)(t)|W ′ ≤ |ζ(t) − ζn(t)|W ′ + C9|k|L1(t,+∞)

+ |k|L1(0,t)|ϑn − ϑ∞|C([0,t];W ′).
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We then let n → +∞ in the above estimate and use (4.15), (4.17),
(4.22) and (4.24) to deduce

|ζ(t) − (k ∗ ϑ∞)(t)|W ′ ≤ C9|k|L1(t,+∞) for a.a. t ∈ (0,+∞).

Hence, since ϑ∞ does not depend on t,

(4.25) ess lim
t→+∞

∣∣∣∣ζ(t) −
(∫ t

0

k(s) ds
)
ϑ∞

∣∣∣∣
W ′

= 0.

We then claim that (4.25) implies that

(4.26) ϑ∞ = const.

Indeed, consider φ ∈ H with
∫
Ω
φ(x) dx = 0. For ε > 0, we denote by

φε the solution to

φε ∈W, φε − εΔφε = φ a.e. in Ω.

Then, φε obeys
∫
Ω
φε(x) dx = 0 and ζ, being independent of x,

〈〈ζ(t) −
(∫ t

0

k(s) ds
)
ϑ∞, φε〉〉 = −

(∫ t

0

k(s) ds
) ∫

Ω

ϑ∞(x)φε(x) dx,

whence, thanks to (4.25), we infer that

0 = −
(∫ ∞

0

k(s) ds
) ∫

Ω

ϑ∞(x)φε(x) dx.

Since
∫ ∞
0
k(s) ds �= 0 by (2.7), we obtain

∫
Ω

ϑ∞(x)φε(x) dx = 0, ε > 0.

Recalling that ϑ∞ ∈ H, we let ε→ 0 and find
∫

Ω

ϑ∞(x)φ(x) dx = 0,

this equality holding for any φ ∈ H with
∫
Ω
φ(x) dx = 0. Then (4.26)

is verified.



SOLUTIONS TO THE PHASE-FIELD MODEL 189

Finally, taking v = 1 in (2.15) and integrating over (0, tn), we obtain

∫
Ω

(ϑ(tn) + lχ(tn)) dx =
∫

Ω

(ϑ0 + lχ0) dx+
∫ tn

0

∫
Ω

g(x, s) dx ds.

Here, we let n→ +∞ and use (4.12), (4.17), (4.22), (4.26) and (2.7) to
obtain (2.24). Recalling (2.25), this completes the proof of Theorem 2.5.

4.2 Proof of Theorem 2.6. Let (χ, ϑ) be a solution to (1.3) (1.6) given
by Theorem 2.3 (ii). Such a solution enjoys the following properties.

Lemma 4.6. The following holds

χ ∈ L∞(0,+∞;V ), χt ∈ L2(0,+∞;H),(4.27)
ϑ ∈ L∞(0,+∞;H), k ∗ ϑ ∈ L∞(0,+∞;H),(4.28)

∇(k ∗ ϑ) ∈ L2(0,+∞;H)3,
ϑt ∈ L2(0,+∞;V ′) + L1(0,+∞;H),(4.29)

(k ∗ ϑ)t ∈ L2(0,+∞;V ′) + L1(0,+∞;H).(4.30)

Proof. First, (4.27) and (4.28) are derived exactly in the same way
as (4.1) and (4.2) in Lemma 4.1. The fact that ∇(k ∗ ϑ) belongs to
L2(0,+∞;H)3 is a consequence of (2.21). In view of (2.2) and (4.27),
we have that

(λ(χ))t = λ′(χ)χt ∈ L2(0, T ;V ′).

Then, by comparison in (2.15) and using (2.7), we achieve (4.29).
Finally, we remark that

(k ∗ ϑ)t = k ∗ ϑt + kϑ0

and, therefore, (4.29), the Young inequality and (2.7) yield (4.30).

In the following, we denote by Ci, i ≥ 10, any nonnegative real num-
ber depending only on Ω, σ, λ, |χ0|V , |ϑ0|H , |β̂(χ0)|L1(Ω), |g|L1(0,+∞;H),
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|k|W 1,1(0,+∞) and η in (2.8). The dependence of the Ci’s upon addi-
tional parameters will be indicated explicitly.

We now consider (χ∞, ϑ∞) in ω(χ, ϑ) and {tn} to be a sequence of
positive real numbers such that tn ↗ +∞ and

(4.31) (χ(tn), ϑ(tn)) −→ (χ∞, ϑ∞) in H × V ′.

We then put, for t ≥ 0 and n ≥ 1,

χn(t) = χ(tn + t), ξn(t) = ξ(tn + t),
ϑn(t) = ϑ(tn + t), ζn(t) = (k ∗ ϑ)(tn + t).

In this case, we can derive at once strong convergence also for ϑn.

Proposition 4.7. For each T > 0, the following holds

lim
n→+∞(|χn − χ∞|C([0,T ];H) + |χn,t|L2(0,T ;H)) = 0,(4.32)

lim
n→+∞(|ϑn − ϑ∞|C([0,T ];V ′) + |ϑn,t|L2(0,T ;V ′)+L1(0,T ;H)) = 0,

(4.33)

and ϑ∞ ∈ H.

Proof. The proof of (4.32) is the same as that of Proposition 4.4.
Owing to (4.29) and (4.31), we may proceed in an analogous way for
ϑn and obtain (4.33). Finally, ϑ∞ ∈ H is a consequence of (4.33) and
(4.28).

Lemma 4.8. For each T > 0,

|ζn(0)|H = |(k ∗ ϑ)(tn)|H ≤ C10,(4.34)
|ξn|L2(0,T ;L3/2(Ω)) + |χn|L2(0,T ;W 2,3/2(Ω)) ≤ C11(T ).(4.35)

Proof. Since k ∗ ϑ ∈ C([0,+∞);H), (4.34) follows from (4.28).
Concerning (4.35), we can invoke (2.14), (4.27), (4.28), (2.2) and a
monotonicity argument.
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It follows from Lemma 4.8 that we may extract a subsequence of {tn}
(not relabeled) such that, for each T > 0, one has

ζn(0) −→ ζ∞ in V ′,(4.36)

ξn ⇀ ξ̄ in L2(0, T ;L3/2(Ω)),(4.37)

for some functions ζ∞ ∈ V ′ and ξ̄ ∈ L2(0, T ;L3/2(Ω)).

Owing to (4.30) and (4.36), we may now proceed as for the derivation
of (4.32) (4.33) and obtain

(4.38) lim
n→+∞ |ζn − ζ∞|C([0,T ];V ′) = 0 for each T > 0.

We also infer from (4.27) and (4.32) that χn converges to χ∞ in
L2(0, T ;L3(Ω)) for each T > 0, which yields, together with (4.37) and
[2, Lemma II.1.3] that

(4.39) ξ̄(t) ∈ β(χ∞) a.e. in Ω,

for almost every t ∈ (0,+∞). At this point, we cannot conclude (as
in the proof of Theorem 2.5) that ξ̄ does not depend on t, since β is
multivalued.

Now, as (χ, ϑ) solves (2.10) (2.18), the quadruple (χn, ξn, ϑn, ζn)
satisfies, for each T > 0 and n ≥ 1,

∫ T

0

∫
Ω

∇χn · ∇v dx ds

+
∫ T

0

∫
Ω

(ξn + σ′(χn) − λ′(χn)ϑn)v dx ds

= −
∫ T

0

∫
Ω

χn,tv dx ds, ∀ v ∈ L2(0, T ;V ),

∫ T

0

〈〈(ϑn + λ(χn))t(s), v〉〉 ds

=
∫ T

0

∫
Ω

ζnΔv dx ds

+
∫ T

0

∫
Ω

g(.+ tn)v dx ds, ∀ v ∈ L∞(0, T ;W ).
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We then let n→ +∞ in the above two equations and use (4.27), (4.32),
(4.33), (2.2), (4.37) and (2.7) to obtain

∫ T

0

∫
Ω

∇χ∞ · ∇v dx ds

+
∫ T

0

∫
Ω

(ξ̄(t) + σ′(χ∞) − λ′(χ∞)ϑ∞)v dx ds = 0,

∀ v ∈ L2(0, T ;V ),

∫ T

0

∫
Ω

ζ∞Δv dx ds = 0, ∀ v ∈ L∞(0, T ;W ).

The latter equality implies that

(4.40) ζ∞ = const.

while the former ensures that, for almost every t ∈ (0,+∞), the
following holds

(4.41) ξ̄(t) = Δχ∞ − σ′(χ∞) + λ′(χ∞)ϑ∞ in V ′.

Recalling (4.35), (4.37) and (4.39), we realize that χ∞ is a solution to

(4.42)
{−Δχ∞ + β(χ∞) � −σ′(χ∞) + λ′(χ∞)ϑ∞ a.e. in Ω,
∂χ∞/∂n = 0 a.e. on Γ.

Finally, we infer from Lemma 4.5, (4.33), (4.38) and the continuity of
the embedding of H in V ′ that, for t > 0,

|ζ∞ − (k ∗ ϑ∞)(t)|V ′ ≤ C12 |k|L1(t,+∞).

Letting t→ +∞ in the above inequality yields, thanks to (2.7),

ζ∞ =
(∫ ∞

0

k(s) ds
)
ϑ∞,

which in turn gives that ϑ∞ = const., due to (4.40). This last fact and
(4.42) lead to χ∞ ∈W by arguing as in the derivation of (4.11).

In order to complete the proof of Theorem 2.6, it remains to check
(2.29). But this may be done in the same way as for (2.26).
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