
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 12, Number 3, Fall 2000

GLOBAL STABILITY OF A FRACTIONAL
PARTIAL DIFFERENTIAL EQUATION

HANA PETZELTOVÁ AND JAN PRÜSS
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1. Introduction. We consider the equation

(1.1)
utt(t, x) =

∫ t

0

b(t− s)utxx(s, x) ds+ (g(ux(t, x))x,

t > 0, x ∈ (0, 1)

with boundary conditions

(1.2) u(t, 0) = u(t, 1) = 0, t > 0,

and initial values

(1.3) u(0, x) = u0(x), ut(0, x) = u1(x).

This problem is motivated by the theory of viscoelastic materials, cf.,
Pego [10], Ball et al. [1]. The nonlinearity g behaves typically like a
power at infinity,

g(ξ) ∼ sign (ξ)|ξ|m, |ξ| → ∞,

and we assume that it vanishes solely at zero so that zero is the unique
stationary state of (1.1).

The convolution term represents a fractional derivative with respect
to t; explicitly, let

b(t) =
t−α

Γ(1 − α)
, 0 < α < 1.
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Copyright c©2000 Rocky Mountain Mathematics Consortium

323



324 H. PETZELTOVÁ AND J. PRÜSS

Then the equation can be rewritten in terms of fractional derivatives,

utt =
∂α

∂tα
uxx + g(ux)x.

In case b = δ (the Dirac delta function) the strong dissipative character
of the instantaneous viscous damping term utxx forces all solutions of
the problem to tend to zero; see, e.g., Greenberg [6]. The energy of the
dynamical system generated by the equation decreases along solutions
and can serve as a Lyapunov function.

Due to the presence of memory, our equation does not generate
a semi-flow in a natural energy space, the energy is in general not
decreasing along solutions, so the theory of Lyapunov functions is not
applicable.

The aim of this paper is to prove that, even in the case of fractional
derivatives where the damping effect is not so strong, the system still
dissipates enough energy so that all solutions tend to zero, the unique
stationary state, in energy norm. Our main result reads as follows.

Theorem 1.1. Let g ∈ C1(R,R), g(0) = 0, g′(0) > 0, g(s)s > 0 for
all s �= 0, assume there are p ≥ 1 and a positive constant K such that

(1.4) |g(s)|p ≤ K
( ∫ s

0

g(ξ) dξ + 1
)
, s ∈ R,

and let

(1.5) b(t) =
tβ−1

Γ(β)
, t > 0, where 0 < β <

2p− 1
2p+ 1

.

Suppose u0 ∈
◦
W 1,∞(0, 1) and u1 ∈ Lq(0, 1) where q ≥ max{2, (1 +

β)/(1 − β)}.
Then problem (1.1) (1.3) admits a unique global solution u(t) of class

u ∈ BUC (R+;
◦
W 1,∞(0, 1)) ∩ BUC1(R+;Lq(0, 1)).

As t→ ∞, u(t) converges to zero in W 1,∞(0, 1) and ut(t) converges to
zero in Lq(0, 1).
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If the initial values satisfy in addition, for some r ∈ [1,∞), u0 ∈
W 2,r(0, 1) ∩

◦
W 1,∞(0, 1), u1 ∈

◦
W 1,r(0, 1), then

u ∈ BUC(R+;W 2,r(0, 1)) ∩ BUC1(R+;
◦
W 1,r(0, 1)),

and u(t) → 0 in W 2,r(0, 1), ut(t) → 0 in W 1,r(0, 1) as t→ ∞.

Our work builds on results obtained in [7] where existence of global
weak solutions of the equation

ut = a ∗ uxx + b ∗ g(ux)x + f

on the whole real line is proved for fairly general initial conditions and
forcing functions, and a larger class of nonlinearities.

The existence results are based on abstract formulations of the
equation. Results from harmonic analysis of vector-valued functions
derived in Prüss [11] are applied to find estimates of resolvent operators
for the problem. The energy inequality together with methods from
nonlinear Volterra equations enables us to find a priori estimates which
allow to prove global existence and to examine the asymptotic behavior
of solutions. We use properties of Triebel-Lizorkin spaces and spectra
of vector-valued bounded functions to prove for some r ∈ [2,∞) that
ux ∈ BUCµ(R+;H) ∩ Lr(R+;H) and u̇(t) → 0 in H, hence also
u(t) → 0 in W 1,2(0, 1); here we have put H = L2(0, 1).

The kernel b could be taken more general; the same method applies
for log-convex kernels whose Laplace transforms can be estimated with
the help of |λ|−β but the notation would be more complicated. More
precisely, as in Prüss [11] it would be sufficient for b to be of class
L1

loc(R
+), positive, nonincreasing, log-convex, and

c|λ|−β ≤ |̂b(λ)| ≤ c−1|λ|−β, Reλ > R,

for some constants c > 0 and R ≥ 0.

The assumption g(0) = 0 is a normalization, since only g′ enters the
equation. g′(0) > 0 means that the linearized problem is asymptotically
stable, which will be shown in Lemma 4.4 below. It should be noted
that asymptotic stability of the linearized problem is valid for all kernels
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b such that b(t) > 0 and log-convex for t > 0; this has nothing to do
with the choice of β. The condition g(s)s > 0 for s �= 0 ensures that
zero is the only equilibrium state. Even in case b = δ0 the asymptotic
behavior of (1.1) seems to be unclear if the latter condition is violated
because then the set of stationary solutions is not discrete, in particular,
zero is nonisolated.

Observe that in the case where sg(s) ∼ G(s) ∼ |s|m+1 as |s| → ∞,
for some m ≥ 0, (1.4) holds with p = 1 + 1/m, hence the restriction on
β in (1.5) becomes β < (m+2)/(3m+2). This is certainly not optimal
since the linear case g(s) = ηs, η > 0 corresponds to m = 1, hence
β < 3/5. In fact, global existence of weak solutions has been shown in
[7] provided β < (m + 3)/(3m + 1), which means β < 1 in the linear
case. We need the stronger restriction on β here to obtain a uniform
bound on ‖ux(t; ·)‖L∞ . Actually, it is possible to prove local asymptotic
stability of the trivial steady state in the case β < (m + 3)/(3m + 1),
but we shall not do it here.

The paper is organized as follows. In Section 2 several representations
for the solutions are derived, estimates on resolvent operators are given
and a local existence result is proved. A priori estimates based on the
energy inequality are deduced and used to prove the global existence
result in Section 3. Finally, convergence of solutions is shown in
Section 4.

2. Solution formulae. Let ‖ · ‖H , 〈·, ·〉 denote the norm and
the scalar product in H = L2(0, 1), D = d/dx, v̇ = vt, k ∗ v =∫ t
0
k(t−s)v(s) ds; C stands for a generic positive constant. The Laplace

transform of a function f is denoted by f̂ or L(f). We introduce (1.1)
in an appropriate functional analytic setting.

Let 1 ≤ p <∞, and define

D(Ap) =W 2,p(0, 1) ∩
◦
W 1,p(0, 1),

Apφ = − d
2

dx2
φ = −D2φ.

For simplicity we drop the subscript p when there is no danger of
confusion. It is well known that Ap is an invertible, sectorial operator
on Lp(0, 1), A2 is self-adjoint, positive definite in H, σ(Ap) ⊂ [π2,+∞)
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consists only of simple eigenvalues and there is M(θ) > 0 such that

(2.1)
‖Aα(z +A)−1‖B(Lp) ≤ M(θ)

|π2 + z|1−α , 0 ≤ α ≤ 1,

|arg (z + π2)| ≤ π − θ, θ > 0.

We reformulate (1.1) as

(2.2) ü+ b ∗Au̇ = Dg(Du)

and apply results of [12] to solve it. The Laplace transform of (2.2)
yields

λ(λ+ b̂(λ)A)û(λ) = (λ+ b̂(λ)A)u0 + u1 + L(Dg(Du)).

Let S be the solution of the operator equation

Ṡ + b ∗AS = 0, S(0) = I,

so that
Ŝ(λ) = (λ+ b̂(λ)A)−1, λ /∈ (−∞, 0]

and denote

S1(t) =
∫ t

0

S(s) ds.

Then the solution u can be expressed by means of the variation of
parameters formula

(2.3) u(t) = u0 + S1(t)u1 + S1 ∗Dg(Du)(t).

Using estimates collected in the forthcoming lemma together with the
relations

Au(t) = Au0 +AS1(t)u1 − AS1 ∗ g′(Du)Au(t),(2.4)
u̇(t) = S(t)u1 − S ∗ g′(Du)Au(t),(2.5)

and the embedding W 2,p(0, 1) ↪→ C1[0, 1], we may apply the contrac-
tion mapping principle to obtain local existence and uniqueness of a
strong solution

u ∈ C([0, t0); D(Ap)) ∩ C1([0, t0);
◦
W 1,p(0, 1))
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provided

u0 ∈ D(Ap) =W 2,p(0, 1) ∩
◦
W 1,p(0, 1)

u1 ∈ D(A1/2
p ) =

◦
W 1,p(0, 1),

and in addition g ∈ C2(R). This relies on the boundedness of S(t) and
on the estimate ‖AS1(t)‖B(Lp(0,1)) ≤ ct−β, t > 0; see (2.18) below. In
fact, by means of these estimates we can even get more regularity of
the solution u(t), but this is not the goal here.

However, via this approach, strong solutions will only be local; they
only exist as long as Au(t) stays bounded in Lp(0, 1), and this cannot be
guaranteed a priori. But we can do better by means of weak solutions.
In fact, since (2.4) is linear in Au, one obtains global existence of
strong solutions as soon as weak solutions exist such that |Du(t)|∞
stays bounded.

To prove existence of weak solutions we need to get rid of the outer
x-derivative of the term g(ux)x. To do so we integrate the equation
with respect to x and get a similar equation for a function v where
vx = u:

∂

∂x
(vtt − b ∗ vtxx − g(ux)) = 0.

We choose v with mean zero and solve the Neumann boundary value
problem for v, treating the term g(ux) as given.

For φ ∈ Lp(0, 1), denote

Pφ =
∫ 1

0

φ(x) dx, Lp0(0, 1) = {φ ∈ Lp(0, 1); Pφ = 0},

and define an operator Q : Lp(0, 1) →W 1,p(0, 1) by

Qφ(x) =
∫ x

0

yφ(y) dy −
∫ 1

x

(1 − y)φ(y) dy.

Then
PQφ = 0, DQφ = φ, QDφ = φ− Pφ.

The function v = Qu satisfies

vtt − b ∗ vtxx − g(ux) = K, Pv = 0.
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Applying the operator P we determine the constant K : PK = K =
−Pg(ux). Thus we have to solve the problem

vtt − b ∗ vtxx − g(ux) = −Pg(ux),
v(0, x) = v0(x) := Qu0(x), v̇(0, x) = v1(x) := Qu1(x),

vx(t, 0) = vx(t, 1) = 0.

The last equation can be reformulated as

v̈ + b ∗AN v̇ = g(Du) − Pg(Du)

where AN denotes the Laplace operator with Neumann boundary
conditions, i.e.,

D(ANp ) = {φ ∈ Lp0 : φ ∈W 2,p(0, 1), φx(0) = φx(1) = 0},

ANp φ = − d
2

dx2
φ = −D2φ.

Everything that has been said about the operator A, in particular
formula (2.1), remains valid when replacing Ap by ANp and Lp by Lp0,
and we let AN = AN2 .

As before, the solution v is given by the formula

v(t) = v0 + SN1 (t)v1 + SN1 ∗ (g(Du) − Pg(Du))(t),

SN being the solution operator corresponding to AN , ŜN (λ) = (λ +
b̂(λ)AN )−1. For the solution of (1.1), u = Dv, we have

u(t) = u0 +DSN1 (t)Qu1 +DSN1 ∗ (g(Du) − Pg(Du))(t).

Remark. We can derive this formula directly from (2.3) as soon as
we realize that

A = DANQ

which implies

S(t) = DSN (t)Q,S1(t) = DSN1 (t)Q.



330 H. PETZELTOVÁ AND J. PRÜSS

We denote P1 = I − P and express u and its derivatives as follows.

(2.6) u = u0 + S1u
1 +DSN1 ∗ P1g(Du),

(2.7) Du = Du0 +DS1u
1−ANSN1 ∗ P1g(Du),

(2.8) u̇ = Su1 +DSN ∗ P1g(Du),
(2.9) Du̇ = DSu1−ANSN ∗ P1g(Du),
(2.10) ü = Ṡu1+DSNP1g(Du0)+DSN ∗ P1(g′(Du)Du̇).

As all formulae, estimates and proofs for A, S and AN , SN are
identical, we omit the superscript N throughout the further text.

Since b̂(λ) = λ−β there is a positive number θ < (π/2) such that

(2.11) arg (λ/b̂(λ)) ≤ π − θ when |arg (λ)| ≤ π
2

+ θ, λ �= 0.

Hence [(λ/b̂(λ)) +A]−1 exists for these values of λ, (2.1) holds, and we
can integrate over the contour ΓR, R > 0, which consists of three parts




Γ1 . . . − ire−iθ R ≤ r <∞,

Γ2 . . . Reiφ, −θ − π
2
≤ φ ≤ θ +

π

2
Γ3 . . . ireiθ R ≤ r <∞,

to obtain the following formulae:

(2.12) S(t) =
1

2πi

∫
ΓR

eλt(λ+ b̂(λ)A)−1 dλ,

Ŝ(λ) = (λ+b̂(λ)A)−1 =
1

b̂(λ)

(
λ

b̂(λ)
+A

)−1

,

(2.13) S1(t) =
∫ t

0

S(s) ds, Ŝ1(λ) =
1
λ

(λ+b̂(λ)A)−1,

(2.14) ÂS1(λ) =
1

λb̂(λ)
(I−λ(λ+b̂(λ)A)−1)

=
1

λb̂(λ)
− 1

b̂(λ)
(λ+b̂(λ)A)−1 = k̂(λ)−T̂ (λ)
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so

(2.15) AS1(t) = k(t) − T (t)

where
k(t) = t−β/Γ(1 − β), T (t) =

d

dt
k ∗ S(t).

In the following lemma we collect estimates on S, S1 and T .

Lemma 2.1. Let S, S1 and T be given by the formulae (2.12), (2.13),
(2.15), 1 ≤ p <∞, 0 ≤ α ≤ 1. Then there is a constant C such that

‖AαS(t)φ‖Lp ≤ Cmin{t−α(1+β), t−1−β}‖φ‖Lp ,(2.16)

‖Ṡ(t)φ‖Lp ≤ Ct−1‖φ‖Lp ,(2.17)

‖AαS1(t)φ‖Lp ≤ Cmin{t1−α(1+β), t−β}‖φ‖Lp ,(2.18)

AαS ∈ L1(R+,B(Lp(0, 1))), if α <
1

1 + β
,(2.19)

‖T (t)φ‖D(Aα
p ) ≤ Cmin{t−(α+β+αβ), t−1−2β}‖φ‖Lp ,(2.20)

‖(T (t+ h)−T (t))φ‖Lp ≤ Ch1−β 1 + hβt−β

t+ h
‖φ‖Lp ,

(2.21)

T ∈ L1(R+,B(Lp(0, 1), Cµ(0, 1))(2.22)

when 0 < µ < 2
1 − β
1 + β

− 1
p
.

Proof. We shall take advantage of the following result on vector-
valued analytic functions in C+ = {λ ∈ C : Reλ > 0} (see [11,
Theorem 1]).

Lemma 2.2. Suppose h : C+ → X is holomorphic and satisfies

‖h(λ)‖ + ‖λh′(λ)‖ ≤ c|λ|−γ , Reλ > 0,

for some γ ∈ (0, 1). Then there is a continuous function v : (0,∞) → X
such that v̂(λ) = h(λ) for Reλ > 0. In addition, the following estimates
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hold

‖v(t)‖ ≤Mtγ−1, t > 0,(2.23)
‖tv(t) − sv(s)‖ ≤M |t− s|γ , 0 < s < t <∞.(2.24)

Here M denotes a constant depending only on γ and c.

Estimate (2.16) is obtained by using (2.12), (2.1) and (2.11).

‖AαŜ(λ)φ‖Lp =
∥∥∥∥ 1

b̂(λ)
Aα

(
λ

b̂(λ)
+A

)−1

φ

∥∥∥∥
Lp

≤ C |λ|β
|1 + λ/b̂(λ)|1−α

‖φ‖Lp

≤ C1|λ|−1+α(1+β)‖φ‖Lp for Reλ > 0.

The same estimate we get for ‖Aαλ(d/dλ)Ŝ(λ)φ‖Lp . If α < 1/(1 + β),
we directly apply Lemma 2.2 with γ = 1−α(1+β) while if α ≥ 1/(1+β),
we use the fact that L(tS(t)) = −(d/dλ)Ŝ(λ) to get the same result.
The latter observation is also used to prove

‖AαS(t)φ‖Lp ≤ Ct−1−β‖φ‖Lp ,

estimating∥∥∥∥Aα ddλŜ(λ)φ
∥∥∥∥
Lp

= ‖Aα(I + b̂′(λ)A)(λ+ b̂(λ)A)−2φ

∥∥∥∥
Lp

≤ C|λ|β−1‖φ‖Lp .

Hence (2.16) and, consequently, (2.19), follow.

Estimates (2.17) and (2.18) are obtained in the same way. To see
(2.20), we use the expression

ÂαT (λ)φ =
1

b̂2(λ)
Aα

(
λ

b̂(λ)
+A

)−1

φ

and ∥∥∥∥ 1

b̂2(λ)
Aα

(
λ

b̂(λ)
+A

)−1

φ

∥∥∥∥
Lp

≤ C |λ|2β
(1 + |λ|1+β)1−α ‖φ‖Lp

≤ C|λ|−1+α+β+αβ.
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Taking α = 0, γ = 1 − β, we get (2.21) from (2.24).

According to [9, Theorem 1.6.1],

(2.25) D(Aαp ) ⊂ Cµ(0, 1) if 0 < µ < 2α− 1
p
.

Now it is sufficient to realize that (µ/2)+(1/2p) < (1−β)/(1+β) when
0 < µ < 2(1 − β)/(1 + β) − (1/p). Choosing α ∈ (

(µ/2) + (1/2p), (1 −
β)/(1 + β)

)
in (2.20), we get (2.22).

Now we are in a position to prove local existence and uniqueness of
a weak solution of (1.1).

Proposition 2.1. Let the assumptions of Theorem 1.1 be fulfilled.

Given any data u0 ∈
◦
W 1,∞(0, 1), u1 ∈ Lq(0, 1), a unique time t0 =

t0(u0, u1) > 0 and a unique weak solution u ∈ C([0, t0);
◦
W 1,∞(0, 1)) ∩

C1([0, t0);Lq(0, 1)) exist; if t0 < ∞ then limt→t0+ ‖Du(t)‖L∞ = ∞.
Moreover,

Du ∈ C(1−β)/2([0, t0), Lq(0, 1)),(2.26)
and

Du̇, ü− Ṡu1 ∈ Lr((0, t0);Lq(0, 1)),(2.27)

provided 1/r > (1 + β)/2. If, in addition, u0 ∈ D(Aq), u1 ∈ D(A1/2
q ),

then u is a strong solution of (1.1), u ∈ C([0, t0);D(Aq)) ∩ C1([0, t0);
◦
W 1,q(0, 1)).

Proof. We apply the contraction mapping principle to the operator

defined by the righthand side of (2.6) in the class C([0, t1];
◦
W 1,∞(0, 1))

with a suitable t1 > 0. For this, estimates from Lemma 2.1, identities
(2.7) and (2.8) are employed as well as the fact that

A1/2Q, DA−1/2 are bounded operators in Lq(0, 1).

Inclusion (2.25) with α > 1/(2q), p = q, allows for the estimate

‖DS1(t)u1‖L∞ ≤ C‖AαA1/2S1(t)u1‖Lq ≤ Ct1−(α+(1/2))(1+β)‖u1‖Lq .
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Observe that, by proper choice of α, the exponent on the righthand
side of this equation can be chosen positive provided (1/q) < (1 − β)/
(1 + β). From (2.15) and (2.22) we get AS1 ∈ L1

loc(R
+;B(L∞(0, 1))),

so AS1 ∗P1g(Du) ∈ BUC([0, t1];L∞(0, 1)), AS1 ∗P1g(Du)(0) = 0. The
estimates for u̇ are similar, using this time (2.8) and (2.16).

We can continue the solution as long as ‖u(t)‖W 1,∞ remains bounded;
this implies boundedness of ‖u̇(t)‖Lq on the same interval. To prove
(2.26) we observe that (2.21) yields the same estimate for AS1, and
Hölder continuity follows by a straightforward computation involving
Lemma 2.1. It is then used in the proof of (2.27) where we have to
solve the following equation for v = Du̇ in Lr((0, t0);Lq(0, 1)).

v(t) = DS(t)u1 −
∫ t

0

AS1(t−s)P1(g′(Du(s))v(s)) ds−AS1(t)P1g(Du0)

and use (2.16) and (2.20). The remaining assertions follow from (2.10)
and (2.17).

The contraction mapping principle applied in the space

C([0, t1];D(Aq)) ∩ C1([0, t1];
◦
W 1,q(0, 1))

yields existence of a strong solution to (1.1).

3. A priori estimates and global existence. One of the
important features of (1.1) is the fact that there is an energy inequality.
Dissipation is not so strong as in the case when the viscous damping
term D2u̇ is present where the energy

E(u) :=
∫ 1

0

(
1
2
u̇2 +G(Du)

)
dx, G(s) =

∫ s

0

g(r) dr

decreases along solutions. In our case we have

E(u)(t) +
∫ t

0

〈b ∗Du̇(t), Du̇(t)〉 dt = E(u)(0),

and consequently,

(3.1) E(u)(t) +
∫ t

0

‖a ∗Du̇‖2
H ≤ E(u)(0)
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holds for every kernel a such that b is a-positive, i.e.,

(3.2)

∫ t

0

(b ∗ φ)(s)φ(s) ds ≥
∫ t

0

|a ∗ φ(s)|2 ds
for all t > 0, φ ∈ C(R+).

It follows that the energy stays bounded on R+. Inequality (3.1)
holds for strong solutions of (1.1) provided b satisfies the positivity
assumption (3.2). Using density arguments we get (3.1) also for weak
solutions. This is the starting point of our discussion of the long time
behavior of solutions of (1.1).

An immediate consequence of (3.1), (3.2) and growth assumption
(1.4) is

(3.3) ‖u̇(t)‖H ≤ C0, ‖g(Du(t))‖Lp ≤ C0, 0 ≤ t < t0

where C0 = C0(‖u0‖W 1,∞ , ‖u1‖H). Another important consequence of
(3.1) is

(3.4) a ∗Du̇ ∈ L2((0, t0), H)

for every kernel a satisfying (3.2). Now we use the energy estimates to
obtain global existence.

Proposition 3.1. Let the assumption of Theorem 1.1 be ful-

filled. Given any data u0 ∈
◦
W 1,∞(0, 1), u1 ∈ Lq(0, 1), there ex-

ists a unique weak solution of the problem (1.1) (1.3) and a constant
K = K(‖u0‖W 1,∞ , ‖u1‖Lq) such that

(3.5) u ∈ BUC (R+;
◦
W 1,∞(0, 1)) ∩ BUC1(R+;Lq(0, 1)),

and
sup
t∈R+

(‖u(t)‖W 1,∞ + ‖u̇(t)‖Lq) ≤ K.

Moreover,

u ∈ C1((0,∞);
◦
W 1,q(0, 1)),
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and there is a nondecreasing function C(T ) such that

‖Du(t+h)−Du(t)‖Lq ≤ C(T )ht−(1+β)/2, for t ≤ T,
(3.6)

‖Du̇(t)‖Lq ≤ C(T )t−(1+β)/2 for t ≤ T.(3.7)

If, in addition, u0 ∈ D(Aq), u1 ∈ D(A1/2
q ), then u is a strong solution

of (1.1),

u ∈ C(R+;D(Aq)) ∩ C1(R+;
◦
W 1,q(0, 1)).

Proof. We can continue the solution as long as ‖Du(t)‖L∞ re-
mains bounded. It follows from (3.3) that u̇ is bounded in H and
g(Du) ∈ L∞((0, t0);Lp(0, 1)). The convolution T ∗P1g(Du) belongs to
BUC([0, t0), L∞(0, 1)) according to (2.22). This, together with (2.15),
allows us to continue the solution to R+ and rewrite (2.7) in the form

v + k ∗ g(v) = h1 + k ∗ h2,

with v = Du, h1 = Du0 +DS1u
1 +T ∗P1g(Du), h2 = Pg(Du) and log-

convex kernel k(t) = t−β/Γ(1−β); observe that h1 and h2 are bounded.
The theory of scalar integral equations yields boundedness of v, hence
of ‖Du(t)‖L∞ ; see [8, Chapter 20, Theorem 3.1] or the discussion in
[7]. u̇ ∈ BUC(R+, Lq(0, 1)) is due to (3.3) and (2.8).

To prove (3.6) we use the mean value theorem together with (2.16)
and (2.18).

‖Du(t+ h) −Du(t)‖Lq

≤ ‖[DS1(t+ h) −DS1(t)]u1‖Lq

+
∥∥∥∥

∫ t

0

AS1(s)P1(g(Du(t+ h− s)) − g(Du(t− s))) ds
∥∥∥∥
Lq

+
∥∥∥∥

∫ t+h

t

AS1(s)g(Du(t+ h− s)) ds
∥∥∥∥
Lq

≤ C
(
ht−(1+β)/2 +

∫ t

0

(t−s)−β‖Du(s+h) −Du(s)‖Lq +
∫ t+h

t

s−β
)

≤ C(T )ht−(1+β)/2 + C
∫ t

0

(t− s)−β‖Du(s+ h) −Du(s)‖Lq ,
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and the generalized Gronwall lemma applies. We employed (3.6) when
proving (3.7).

‖Du̇(t)‖Lq = ‖DS(t)u1 −AS ∗ P1g(Du)(t)‖Lq

≤ C
(
t−(1+β)/2 +

∫ t/2

0

(t− s)−1−β ds

+
∥∥∥∥A

∫ t

t/2

S(t− s)P1g(Du(t)) ds
∥∥∥∥
Lq

+
∫ t

t/2

(t− s)−1−β‖Du(t) −Du(s)‖Lq ds

)

≤ C
(
t−(1+β)/2 + t−β +

∫ t

t/2

(t− s)−βs−(1+β)/2 ds

)
≤ C(T )(t−(1+β)/2 + t(1−3β)/2) ≤ C(T )t−(1+β)/2.

As for strong solutions, having

u0 ∈ D(Aq), u1 ∈ D(A1/2
q ),

we get boundedness of Aqu, A
1/2
q u̇ using expressions (2.4) and (2.5)

and estimates (2.18) and (2.16). For ‖Au‖Lq we have

‖Au(t)‖Lq ≤ C1 + C2

∫ t

0

(t− s)−β‖Au(s)‖Lq ds

and use the Gronwall lemma, while

‖A1/2u̇(t)‖Lq ≤ ‖S(t)A1/2u1‖Lq +‖A1/2S ∗ g′(Du)Au(t)‖Lq

≤ C + ‖A1/2S‖L1(R+;B(Lq))sup
s≤t

‖g′(Du(s))‖L∞‖Au(s)‖Lq .

To prove convergence of solutions we employ the energy inequality
once more and derive estimates we will need in the following section.

Let a1(t) = t(β/2)−1(
√

cos(βπ/2)/Γ(β/2)). Then

Re b̂(iρ) ≥ |â1(iρ)|2, ρ ∈ R.
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Moreover, according to Lemma 2 in [4], there exists a function a2 such
that

(3.8)
a2 ∈ L1(R+), â2(iρ) �= 0 on R,

Re b̂(iρ) ≥ |â2(iρ)|2, ρ ∈ R.

It follows that b is both a1 and a2-positive and, from (3.4), we have

(3.9) a1 ∗Du̇ ∈ L2(R+, H), a2 ∗Du̇ ∈ L2(R+, H).

Important consequences of (3.9) are collected in the following lemma.

Lemma 3.1. Let a1(t) = t(β/2)−1(
√

cos(βπ/2)/Γ(β/2)), u a solution
of (1.1) satisfying (3.5) and the energy inequality (3.1). Then

Du ∈ BUC(1−β)/2(R+;H),(3.10)

a1 ∗ d
dt
g(Du) ∈ L2(R+;H),(3.11)

u̇(t) → 0 in H as t→ ∞.(3.12)

Proof. To prove Lemma 3.1 we use properties of the homogeneous
Triebel-Lizorkin spaces Ḟ σ2,2(R) endowed with norm

‖v‖Ḟσ
2,2

=
∫
R

|ξ|2σ|ṽ(ξ)|2 dξ

where ṽ = F(v) denotes the Fourier transform of v. This space is
equivalent to the homogeneous Besov space Ḃσ2,2(R) with norm

‖v‖Ḃσ
2,2

=
∫
R

∫
R

|v(t) − v(s)|2
|t− s|1+2σ

ds dt.

The operator
İηf = F−1[|ξ|ηFf ]

maps Ḟ σ2,2(R) isomorphically onto Ḟ σ−η2,2 (R) and Ḃσ2,2(R) onto Ḃσ−η2,2 (R)
respectively, and

Ḟ 0
2,2(R) = L2(R).
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The space Ḃσ2,2(R) is continuously embedded into BUCσ−(1/2)(R),
σ > (1/2); see [13] for the theory of these spaces. The definitions and
properties just mentioned extend to functions with values in a Hilbert
space.

We continue Du by Du0, a1(t) = 0 for t negative to obtain

a1 ∗Du̇ ∈ L2(R, H), F(a1 ∗Du̇)(ξ) = (iξ)1−(β/2)F(Du)(ξ).

Hence Du belongs to the space Ḟ 1−(β/2)
2,2 (R;H) ∼ Ḃ1−(β/2)

2,2 (R;H) ↪→
BUC(1−β)/2(R;H). (This assertion can also be obtained directly as in
the proof of Proposition 2.1.)

Now it is sufficient to realize that Du ∈ L∞(R+;H) and that g is
locally Lipschitz continuous and use the Hilbert space-valued version
of the foregoing results to see that

a1 ∗Du̇ ∈ L2(R+;H) =⇒ a1 ∗ d
dt
g(Du) ∈ L2(R+;H).

To prove (3.12) we employ the following notion of the spectrum of
bounded functions which, roughly speaking, says that ρ ∈ sp (u) if and
only if its Laplace transform cannot be extended to a neighborhood of
iρ on the imaginary axis as an L1

loc-function.

Definition. Let X be a Banach space and u ∈ L∞(R+;X). A
number ρ ∈ R does not belong to sp (u) if there is an r > 0 and a
function h ∈ L1(Br(ρ);X) such that

∫ ρ+r

ρ−r
φ(s)û(σ + is) ds→

∫ ρ+r

ρ−r
φ(s)h(s) ds as σ → 0+

for all φ ∈ C∞(R) with suppφ ⊂ Br(ρ) ⊂ R.

It is shown, e.g., in Chill [2] that BUC functions with void spectrum
belong to C0(R+;X). So it is sufficient to show that sp(u̇) = ∅ to
obtain (3.12). Let a2 be such that (3.8) and, consequently, (3.9) are
satisfied. This together with the Poincaré inequality yields

a2 ∗ u̇ ∈ L2(R+;H).
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Since H is a Hilbert space, the Laplace transform ψ(λ) = â2(λ) · ̂̇u(λ) ∈
H2(C+;H), the Hardy space of exponent 2, and has boundary values
on the imaginary axis in L2(R;H). Hence,

̂̇u(iρ) = lim
λ→iρ

̂̇u(λ) =
ψ(iρ)
â2(iρ)

exists in L2
loc(R, H) since â2(iρ) �= 0. Thus sp (u̇) = ∅ and u̇(t) → 0 in

H as t→ ∞.

4. Global asymptotic stability. In this section we prove Du =
ux ∈ Lr(R+, H) for some r ∈ [2,∞) which, together with (3.10),
implies Du → 0 in H, i.e., u(t) → 0 as t → ∞ in W 1,2(0, 1). To
do so we will need the following lemma, which expresses the fact that
the operator (d/dt)b∗ is accretive in Lp(R+;X) for each p ∈ [1,∞] and
each Banach space X, see Clément and Prüss [3].

Lemma 4.1. Let X be a Banach space, 1 ≤ p < ∞, b ∈ L1
loc(R

+)
nonnegative, nonincreasing, and let Bp be defined in Lp(R+;X) by

(Bpu)(t) =
d

dt
b ∗ u(t), t ≥ 0, u ∈ D(Bp),

with domain

D(Bp) = {u ∈ Lp(R+;X) : b ∗ u ∈
◦
W 1,p(R+;X)}.

Then Bp is m-accretive. In particular, if X = H is a Hilbert space,
then ∫ T

0

〈Bu(t), u(t)〉‖u(t)‖p−2
H dt ≥ 0, T > 0,

for each u ∈ D(Bp).

Next we decompose Du given by (2.7) into two parts, corresponding
to the decomposition (2.15).

(4.1)
Du(t) = Du0 +DS1(t)u1 + T ∗ P1g(Du)(t) − k ∗ P1g(Du)(t)

= w(t) − k ∗ P1g(Du)(t),
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where

(4.2) w(t) = Du0 +DS1(t)u1 + T ∗ P1g(Du)(t).

Let B denote the inverse operator to k∗, i.e.,

Bu(t) =
d

dt
b ∗ u(t), t ≥ 0.

Then
B̂v(λ) = λb̂(λ)v̂(λ), Bv =

d

dt
(b ∗ v),

and from (4.1) we have

B(Du− w) + P1g(Du) = 0.

The scalar product with Du‖Du‖r−2
H gives

〈B(Du−w)(t), Du(t)〉‖Du(t)‖r−2
H + 〈g(Du(t)), Du(t)〉‖Du(t)‖r−2

H = 0,

and, according to Lemma 4.1 assumptions on g and boundedness of
‖Du‖L∞ , there is a constant c > 0 such that

∫ T

0

〈B(Du)(t), Du(t)〉‖Du(t)‖r−2
H dt ≥ 0,

〈g(Du)(t), Du(t)〉‖Du(t)‖r−2
H ≥ c‖Du(t)‖rH .

Hence

(4.3)
c

∫ T

0

‖Du(t)‖rH dt ≤
∫ T

0

〈Bw(t), Du(t)〉‖Du(t)‖r−2
H dt

for all T > 0.

To estimate further we need

Lemma 4.2. Let u be a weak solution of (1.1) and w be given by
(4.2). Then

(4.4) Bw ∈ Lr((1,∞), H) ∩ L1((0, 1), H),
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for each r ≥ 1 with (1/r) < (1 − β)/2.

Proof. Having in mind b ∗ T = S, we express Bw as follows
(4.5)

Bw(t) =
d

dt
b ∗ w(t) = b(t)Du0 + b ∗DS(t)u1 +

d

dt
S ∗ P1g(Du)(t)

= b(t)Du0 − b ∗DS(t)u1 + S(t)P1g(Du0) + S ∗ d
dt
P1g(Du)(t).

The first term belongs to Lr((1,∞);H)∩L1((0, 1);H) for (1/r) < 1−β,
SP1g(Du0) ∈ L1(R+;H) ∩ L∞(R+;H), according to (2.16). The
remaining terms are handled once more with the help of Laplace
transforms.

We use the following generalization of the Paley-Wiener theorem to
the Laplace transform of Hilbert space valued L2 functions.

Lemma 4.3. Let v ∈ L2(R+, H). Then v̂ belongs to the Hardy space
H2(C+;H), i.e., is analytic for Reλ > 0 and

sup
σ>0

∫
R

‖v̂(σ + iω)‖2
H dω = 2π

∫
R

‖v(t)‖2
H dt <∞.

Conversely, to every H-valued function φ ∈ H2(C+;H), there is a
unique function v ∈ L2(R+, H) satisfying v̂(λ) = φ(λ) for Reλ > 0.

The Laplace transform of the second term in (4.5) is essentially given
by

L(b ∗DS)(λ)u1 ∼ b̂(λ)A1/2Ŝ(λ)u1,

which is bounded by C(1/|1 + λ1+β |1/2)‖u1‖H . According to the
preceding lemma, this implies b ∗A1/2Su1 ∈ F γ2,2(R+;H) for γ < β/2.
Since

F γ2,2(R+;H) ↪→ Lr(R+;H) for
1
r
≤ 1

2
− γ,

we obtain b ∗ A1/2Su1 ∈ Lr(R+;H) for (1/r) < (1 − β)/2. Because of
boundedness of DA−1/2 we then also obtain b ∗DSu1 ∈ Lr(R+;H).

As for the last term, it is sufficient to show that S ∗ (d/dt)g(Du) ∈
Lr(R+;H). We have

L
(
S ∗ d
dt
g(Du)

)
= L

(
T1 ∗ a1 ∗ d

dt
g(Du)

)
,
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where

T̂1(λ) =
1

â1(λ)
Ŝ(λ), a1(t) = t(β/2)−1/Γ

(
β

2

)
.

(1 + λ1−(β/2))T̂1(λ) is bounded in Reλ > 0 and a1 ∗ (d/dt)g(Du) ∈
L2(R+, H) according to Lemma 3.1. Hence Lemma 4.2 applies and

S ∗ d
dt
g(Du) ∈ F 1−(β/2)

2,2 (R+;H) ↪→ BUC(1−β)/2(R+;H).

Combining these results we get Bw ∈ Lr((1,∞);H).

From the relation (4.3) we have

c

∫ T

0

‖Du(t)‖rH dt ≤
∫ T

0

〈Bw(t), Du(t)〉‖Du(t)‖r−2
H dt

≤ ‖Bw(t)‖L1((0,1);H) sup
t∈[0,1]

‖Du(t)‖r−1
L∞

+ ‖Bw‖Lr((1,T ),H)‖Du‖r−1
Lr((1,T ),H)

≤ C + ‖Bw‖Lr((1,∞),H)‖Du‖r−1
Lr((0,T ),H)

for all T > 0. This implies Du ∈ Lr(R+, H). By Du ∈
BUC(1−β)/2(R+;H) we obtain Du(t) → 0 in H as t → ∞, and then
also Du(t) → 0 in every Lq(0, 1) because of uniform boundedness of Du
in L∞(0, 1). By means of the integral equation for u̇ and the properties
of S and DS, this in turn yields u̇(t) → 0 in Lq(0, 1) as t→ ∞.

To prove the remaining assertions of Theorem 1.1 we need another
lemma which deals with the linearization of (1.1), i.e., with the linear
problem

(4.6) ü+ b ∗Au̇+ ηAu = f, t > 0, u(0) = u0, u̇(0) = u1.

The solution of this problem is given by the variation of parameters
formula

(4.7) u(t) = C(t)u0 +R(t)u1 +
∫ t

0

R(t− s)f(s) ds, t ≥ 0.

By means of results from Prüss [12] (see also the discussions in
Fašangová and Prüss [4], [5]), we have the following properties of the
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operator families C(t) and R(t), which resemble the operator-cosine
and -sine families for the case b ≡ 0. Their Laplace transforms are
given by

Ĉ(λ) = (λ+ b̂(λ)A)R̂(λ),

and

R̂(λ) = (λ2 + λb̂(λ)A+ ηA)−1,

for Reλ > 0, and we let

T̂ (λ) = R̂(λ)/λ.

Lemma 4.4. Let b(t) = tβ−1/Γ(β) for t > 0, and let η > 0. Then
the operator families C(t), A1/2R(t), AT (t), S(t) = Ṙ(t), A−1/2Ċ(t)
exist, are strongly continuous on R+ in X = Lq(0, 1), 1 ≤ q < ∞,
and in X = C0[0, 1] and are uniformly bounded. There is a function
φ ∈ L1(R+) ∩ C0(R+) such that

‖S(t)‖B(X) + ‖A1/2R(t)‖B(X) + ‖A−1/2Ċ(t)‖B(X) ≤ φ(t), t ≥ 0,

i.e., S(t), A1/2R(t), A−1/2Ċ(t) are integrable and converge to zero in
B(X). Also we have limt→∞ C(t) = 0 as well as limt→∞AT (t) = 1/η
strongly in B(X). In addition, AR, A1/2S ∈ L1(R+;B(X)). These
assertions are also valid in X = L∞(0, 1), except that S(t) is not
continuous at zero.

Proof. The first assertions are contained in Propositions 1 and 2 of
[4] for the Hilbert space case. However, these claims remain valid in
the Banach case, as soon as A generates a uniformly bounded cosine
family which is the case here. In fact, it is even sufficient that A is
sectorial of sufficiently small spectral angle and invertible. We refer to
Prüss [12, Sections 4 and 10.3] for S(t). A1/2R(t) can be handled in
the same way, and we have the relations

AT (t) = 1 ∗ r ∗ r(t) − r ∗ r ∗ S(t), t ≥ 0,

C(t) = 1 − ηAT (t), Ċ(t) = −ηAR(t), t ≥ 0,
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where r(t) is defined by r̂(λ) = 1/
√
λb̂(λ) + η. Observe that r ∈

L1(R+) is nonnegative and r̂(0) =
∫ ∞
0
r(t) dt = 1/

√
η. So we have

to prove only the very last statement. Applying Lemma 2.2 directly,
we obtain

‖AR(t)‖B(X) ≤ ct−β, ‖A1/2S(t)‖B(X) ≤ ct−(1+β)/2, t > 0,

which shows that both quantities are well-defined and locally inte-
grable. On the other hand, for tAR(t) and tA1/2S(t), Lemma 2.2.
yields

‖AR(t)‖B(X) ≤ ctβ−2, ‖A1/2S(t)‖B(X) ≤ ctβ−2, t > 0,

which then yields the asserted integrability.

Having the information of this lemma available with η > 0 small
enough, we may proceed as before to obtain the following equation for
Du(t).

Du(t) = C(t)Du0 +DR(t)u1 −AR ∗ P1[g(Du) − ηDu](t),

hence
Du+ kη ∗ [g(Du) − ηDu] = w,

where

w(t) = C(t)Du0+DR(t)u1+Tη ∗ P1[g(Du)−ηDu](t)+kη ∗ Pg(Du)(t),
k̂η(λ) = r̂2(λ) = 1/(λ1−β + η),

and
T̂η(λ) = λ2k̂η(λ)R̂(λ).

Since we know ‖Du(t)‖L∞ ≤ M on R+ for some constant M > 0, by
the assumptions on g there is a constant η > 0 such that sg(s)−ηs2 ≥ 0
for all |s| ≤ M . Therefore we may apply [8, Chapter 20, Theorem
3.1] once more to obtain ‖Du(t)‖L∞ → 0 as t → ∞, once we have
‖w(t)‖L∞ → 0. This will follow from the facts that ‖Du(t)‖Lr → 0 as
t → ∞, for any r ∈ [1,∞), and properties of the operator families
introduced in Lemma 4.6. In fact, we have C(t)Du0 → 0 by the
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properties of C(t); rη ∈ L1(R+) implies kη ∗ Pg(Du)(t) → 0, and
the estimates on R(t) given in the proof of Lemma 4.6 show

‖DR(t)u1‖L∞ ≤ ‖DA−1‖B(Lq,L∞)‖AR(t)u1‖Lq ≤ Ctβ−2‖u1‖Lq → 0.

To conclude, observe that, by Lemma 2.2, we obtain

Tη ∈ L1(R+;B(Lr(0, 1), Cµ[0, 1])), for 0 < µ < 2
1 − β
1 + β

− 1
r
.

This then implies convergence to zero in L∞(0, 1) of the third term in
the definition of w(t), hence ‖Du(t)‖L∞ → 0 as t→ ∞.

As for the convergence of strong solutions, with η = g′(0) > 0, we
may rewrite problem (1.1) ∼ (1.3) as

u(t) = C(t)u0+R(t)u1+
∫ t

0

R(t−s)[g′(0)−g′(Du(s))]Au(s) ds, t ≥ 0,

which yields the following inequality for φ(t) = ‖Au(t)‖X

φ(t) ≤ φ0(t) +
∫ t

0

γ(t− s)‖g′(0) − g′(Du(s))‖L∞φ(s) ds, t ≥ 0,

where

φ0(t) = ‖C(t)Au0+A1/2R(t)A1/2u1‖X and γ(t) = ‖AR(t)‖B(X).

Because of ‖Du(t)‖L∞ → 0 as t → ∞ and φ0(t) → 0, this implies
φ(t) = ‖Au(t)‖X → 0. Here X may be any of the spaces X = Lp(0, 1),
1 ≤ p < ∞ or X = C0[0, 1]. In a similar way one also gets
‖A1/2u̇(t)‖X → 0 as t→ ∞. This proves the last statement of Theorem
1.1.
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